CONDENSATION AND LEFT-ORDERABLE GROUPS

FILIPPO CALDERONI AND ADAM CLAY

AsstrAcT. We discuss condensed left-orderings and develop new techniques to
show that the conjugacy relation on the space of left-orderings is not smooth.
These techniques apply to the solvable Baumslag Solitar groups BS(1,7) and to
Thompson’s group F.

1. INTRODUCTION

The study of definable quotients of Polish spaces is one of the main themes
in modern descriptive set theory, with the primary goal being to understand the
Borel structure of Polish spaces modulo analytic equivalence relations. A funda-
mental question is whether the quotient space, equipped with the quotient Borel
structure, is standard. The first trace of such an analysis dates back to the work of
Glimm [Gli61] and Effros [Eff65].

If G is a countable group acting continuously on the Polish space X, we denote
by X /G the space of orbits, endowed with the quotient Borel structure. In this
case X /G is standard if and only if the orbit equivalence relation on X induced by
the G-action is smooth. That is, if and only if there is a Borel map 0: X — R such
that x1, x lie in the same G-orbit if and only if O(x1) = 6(x1). It is owing to this
definition that for the remainder of the manuscript, we assume that all groups are
countable unless otherwise indicated.

Following this trend, a question posed by Deroin, Navas, and Rivas [DNR16]
raised the problem of whether the space of left-orderings LO(G) of a left-orderable
group G modulo the conjugacy G-action is always standard, or equivalently,
whether or not the orbit equivalence relation is always smooth. Using descriptive
set theory to demonstrate non-smoothness, the authors of this manuscript showed
that LO(G)/G is not a standard Borel space in many cases; for example, when G is
a non-abelian free group or a free product of left-orderable groups [CC22, CC23].

Denote the equivalence relation induced by the conjugacy action of a group G
on its space of left-orderings by E|o(G), and let BS(1, n) denote the Baumslag-Solitar
group. In this manuscript, we show:
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Theorem 1.1. (1) Forall n > 2, E\o(BS(1, n)) is not smooth.
(2) The conjugacy equivalence relation Eio(BS(1, 2)) is Borel bi-reducible with Ej.

The novelty of Theorem 1.1 is twofold. Theorem 1.1(1) provides the first ex-
amples of left-orderable solvable groups G with non-standard quotient LO(G)/G.
Moreover, Theorem 1.1(2) shows the first example of a finitely generated group G
for which Ej4(G) is not smooth, yet hyperfinite.

Using similar techniques, we also show how work of Navas implies that Ej(G)
is not smooth whenever LO(G) contains isolated points, and are able to tackle
Thompson’s group F in a similar manner.

Theorem 1.2. For Thompson’s group F, the conjugacy relation Eio(F) is not smooth.

Central to our analysis is the idea of condensed left-orderings in LO(G), which
are orderings that can be approximated by their conjugates. Their existence turns
out to be equivalent to non-smoothness of Ej,(G) (Proposition 2.2), moreover, they
can be detected by analyzing LO((G)), the free part of the conjugacy G-action on
LO(G) (See Proposition 3.7).

2. CONDENSED POINTS

A Polish space is a separable and completely metrizable topological space. For a
Polish space X we denote by F(X) the Effros standard Borel space of closed subsets
of X. The standard Borel structure on F(X) is generated by the sets

Fu={FeFX)|FnU # 0}

for all open U C X.

An equivalence relation E on the Polish space X is Borel if E € X X X is a Borel
subset of X X X. Most of the Borel equivalence relations that we will consider in
this paper arise from group actions as follows. Let G be a countable group. Then a
Polish G-space is a Polish space X equipped with a continuous action (g, x) — g-x
of G on X. The corresponding G-orbit equivalence relation on X, which we will
denote by Eé, is a Borel equivalence relation with countable classes. Let G be
a countable discrete group and let X be a fixed Polish G-space. For a subgroup
H < G, denote Orby(x) the orbit of x under the induced H-action. Whenever
G = H, we let Orb(x) = Orbg(x).

Recall that a Borel equivalence relation E is smooth if there exist a standard Borel
space Y and a Borel map 0: X — Y such that

x1Ex & Q(xl) = 9(362).

An equivalence relation on a Polish space is generically ergodic if every invariant
set with the Baire property is meager or comeager. Whenever X is a Polish G-space,
the following are equivalent:

(1) Eé is generically ergodic.
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(ii) There is x € X such that Orb(x) is dense in X.

Generic ergodicity is an obstruction to smoothness in many cases. In this man-
uscript, we will use the following fact:

Proposition 2.1. Suppose that X is a Polish G-space with no isolated points. If Eé is
generically ergodic, then E g is not smooth.

Following the terminology of Osin [Osi21b, Osi2la], we say that a point x € X
is condensed if it is an accumulation point of Orb(x).

The next proposition is essentially due to Osin [Osi21b, Proposition 2.7], who
analyzed condensation in the Polish space of finitely generated marked groups.
Since we could not find the proof in the literature, we give the proof of this general
fact below.

Proposition 2.2. Let G act on X continuously. Then the following are equivalent:
(1) Eé is smooth.
(2) The are no condensed points in X.

Proof. Suppose that Eé is smooth and let x be any element of X. Consider the

closed G-invariant set Y = Orb(x). If Eé is smooth, then Eé is also smooth. As
Orb(x) is a dense G-orbit in Y, the action G ~ Y is generically ergodic, so there
must be an isolated pointin xg € Y. The point xy cannot be an element of Y \ Orb(x)
since these points are non-isolated by definition, and so xy € Orb(x). Now as the
G-action is continuous, every point of Orb(x), and in particular x itself, must be
isolated in the subspace topology. It follows that x cannot be a condensed point.
On the other hand, suppose that no x € X is a condensed point. Then for every
x € X, the subspace topology on Orb(x) is discrete, and since Orb(x) is countable
it is therefore Polish. By Alexandrov’s theorem, Orb(x) is must be a Gs set for all
x € X. (See [Kec95, Theorem 3.11].) Further note that the saturation of an arbitrary
open set U C X is itself open, since the saturation can be written as a union of
the sets ¢ - U where ¢ € G, each of which is open since G acts continuously. This
implies that the map X — F(X),x + Orb(x) is Borel showing that EX is Borel
reducible to =f(x). (E.g., see [Gao09, Exercise 5.4.8].) O

3. Tue CONJUGACY RELATION ON THE SPACES OF LEFT-ORDERINGS

A group G is left-orderable if it admits a strict total ordering < such that g < h
implies fg < fhforall f,g,h € G.

Proposition 3.1. The following are equivalent:

(1) G is left-orderable.

(2) Thereis P € G such that
(a P-PCG;
(b) PuP! =G\ {id}.
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(3) There is a totally ordered set (Q, <) such that G — Aut(Q, <).

The subset P in (2) above is referred to as a positive cone. Every left-ordering
< of G determines a positive cone P« = {¢ € G : ¢ > id}. The identification of
left-orderings with the corresponding positive cones allows us to define the space
of left-orderings as follows. Equip {0, 1} with the discrete topology, {0, 1} with
the product topology, and set

LO(G) = {P c G : P is a positive cone } ¢ {0,1}°,

equipped with the subspace topology. Note that the subbasic open sets in LO(G)
are the sets of the form U, = {P : ¢ € P}, where ¢ € G\ {id}. One can easily check
that LO(G) is a closed subset of {0, 1}©, hence a compact Polish space. We regard
LO(G) as a Polish G-space in the following precise sense. There is a G-action
by homeomorphisms on LO(G), given by ¢ - P = ¢Pg™!. As mentioned in the
introduction, we denote by E|;(G) the orbit equivalence relation on LO(G) induced
by the conjugacy G-action.

3.1. Smoothness of E;o(G) and relatively convex subgroups. Let G be a group
equipped with a fixed left-ordering <. A subgroup C of G is convex relative to < if
whenever g,h € Cand f € Gwith g < f < h, then f € C. A subgroup C C G is
left-relatively convex in G if C is convex relative to some left ordering of G.

First we leverage the dichotomy established in Proposition 2.2 to prove that the
non-smoothness of Ej;(G) is detected by relatively convex subgroups.

Theorem 3.2. For a left-orderable group G, the following are equivalent:
(1) Eio(G) is smooth.
(2) For every relatively convex C < G the conjugacy orbit equivalence relation Eo(C) is
smooth.

Proof. The only non-trivial implication is (1) = (2). Fix a relatively convex
C < G such that Ejx(C) is not smooth. It follows from Proposition 2.2 that there
is a positive cone Q € LO(C) that is an accumulation point in Orbc(Q). Since
C is relatively convex in G we can find some positive cone P € LO(G) such that
Q =P N C. We are going to show that P is an accumulation point of Orbg(P). We
will need the following:

Claim. 1f ¢ € C and P € N, U, for g; € G\ C, then cPc™! € NI, U,.

Proof of the Claim. Assume that ¢ € P. Then since C is convex with respect to <p,
we have ¢ <p gjforalli =1,...,n. So, fori =1,...,n we have c‘lg,' € P and
therefore ¢! gic € P. Weobtain g; € cPc™! foralli < n, therefore cPc™! € N, U,.

Next suppose that ¢ € P™!. Then ¢! <p cforalli =1,...,n since C is convex.
Therefore gic € P and thus c"gic € P and we conclude as in the previous case,
completing the proof of the claim. O
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Now let P € N7, Uc,-ﬁﬂ;-n:l Uy, for somecy,...,c; € Cand g1,...,8m € G\ C.
Since P N C € Orbc(P N C)’ there exists ¢ € C such that

n
cPNC)c'#PNC and c(PNC)cle ﬂ u,.
i=1
Then cPc™! = c¢(PNC)ctUe(P\ C)c™t # P,and cPc™ € N, U, N MLy Ug, by
the previous claim. ]

Remark 3.3. Note that the condition on relatively convex subgroups in Theo-
rem 3.2(2) cannot be replaced with a condition on proper relatively convex sub-
groups, as the example below shows (see also [CC22]).

Consider the infinitely generated group !

Hoo = {x1,x2,... | x,-x,-_lxi‘1 = xi__l1 for 1 <iand x;x; = xjx; for |[i — j| > 1).

Then for every left-ordering of Hs, one can show the convex subgroups are
precisely the finitely generated subgroups of the form H, = (x1, x2, ..., x,) where
j = 1. This follows from first observing that every element H; can be represented
by a word of the form

a1

az aj
Xl Lou X

X'
where a; € Z, by using repeated applications of x;x;1 = x].__l1 xjand x;jx; = x;x; for
alli < j—1toshuffleall occurrences of x; to the right hand side of any representative
word. By writing every element of He, in this form, it is straightforward to check
that H; is convex relative to every left-ordering of Ho. Moreover, there are no
other relatively convex subgroups aside from the subgroups H;. For if C were such
a subgroup, there would exists j such that H; < C < Hj;;. But then C should
descend to a convex subgroup of Hj.1/H; = Z under the quotient map, which is
only possible if C = H; or C = Hj41 since there are no proper, nontrivial convex
subgroups in Z.

Now one observes that the left-orders of He are in bijective correspondence
with sequences (¢;) € {0, 1}*' that encode the signs of the generators: for example
we can set x; > id if and only if €; = 1. It is not hard to see that the conjugacy action
of Hy on the set LO(H) yields an action of He, on {0, 1} given by x; - (€;) is the
same as (€;) in every entry except the (j — 1)-th position, which has been changed.
Two left-orderings of He are in the same orbit if and only if their corresponding
sequences in {0, 1}*' are eventually equal.

Thus every relatively convex proper subgroup C < H, is a Tararin group, so
LO(C) is finite, and yet Eo(Ho) is not smooth.

1This example also appears in [CC22, Example 2.10], where there is a typo in the group presentation
which is corrected here. We acknowledge Meng Che “Turbo” Ho for finding the typo and suggesting
how to fix it.
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3.2. Non-smoothness and isolated points. Recall that a positive cone P deter-
mines a Conradian left-ordering of G if ¢,h € P implies ¢g"'hg? € P for all
g,h € G [Navl0]. Given a positive cone P € LO(G), a subgroup C < G that
is maximal with respect to the conditions:

(1) C is convex relative to the ordering <p of G, and

(2) P N C determines a Conradian left-ordering of C

is called the Conradian soul of <p.
We recall the following theorem proved via different techniques in both [Cla10]
and [Nav10].

Theorem 3.4. If the Conradian soul of <p is trivial, then P is condensed.

Thus if G admits a positive cone P having trivial Conradian soul, then Ejo(G) is
not smooth.

As a consequence of Theorem 3.4, every isolated point in LO(G) (that is, P €
LO(G) such that there exist g1, ..., 8, € G\ {id} with {P} = [Jj_; U,) must have
nontrivial Conradian soul, as isolated points cannot be condensed. In fact, Navas
shows much more:

Theorem 3.5. [Nav10, Proposition 4.9] Suppose that P is an isolated point and let
C < G its Conradian soul. Then C is a Tararin group, so LO(C) = {Q1, ..., Qqu} for
some k > 0, moreover, if G is not a Tararin group then there exists i € {1,...,2%} such
that P\ C U Q; is a condensed point of LO(G).

As an immediate consequence, we apply Proposition 2.2 and observe:

Corollary 3.6. Suppose that G is not a Tararin group. If LO(G) contains an isolated
point, then Eo(G) is not smooth.

3.3. The free part of LO(G)/G. For a left-orderable group G denote by LO((G))
the free part of its conjugacy action. That is, we set

LO((G)) = {P e LO(G) : Vg # 1(g"'Pg # P)}.

Note that for any P € LO((G)), the orbit Orb(P) is infinite. Forif ¢™'Pg = h~'Ph,
then we get hg"'Pgh~! = P which implies hg~! = ¢h™! = 1 because P has trivial
stabilizer.

Proposition 3.7. IfLO((G)) # 0, then E\o(G) is not smooth.

Proof. Suppose P € LO((G)). By Proposition 2.2 it suffices to show that P is
condensed. Let P € (;_; U, which is a basic open neighborhood of P. And
assume that g1 <p --- <p g, without loss of generality. Then, we claim that

§7'8ig1 €P
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fori =1,...,n. Fori =1, it follows from the assumption that P € Ugl. Fori > 2,
g1 <p gi implies that 1 <p g} lg;, whence 1 <p 85 l¢i¢1 because P is a semigroup.
Therefore, fori =1, ...,n, we have

gi € g1Pg".
This shows that g1 Pg; Le Orb(P)Nn N, Uy,. Since P € LO((G)), we conclude that
g7'Pg1 # P, therefore P is condensed. o

3.4. Baumslag-Solitar groups. Fix an integer n. The Baumslag-Solitar group
BS(1,n) is given by the presentation (a,b | bab~' = a"). There is an injective
homomorphism p: BS(1, ) — Homeo,(R) defined by setting

pa)x) = x +1,
p(b)(x) = nx.

The following construction of left-orderings on BS(1, n) is due to Smirnov [Smi66].
For any a € R \ Q we can define a corresponding P, € LO(BS(1, n)) by declaring

g€eP, &= p)Na)>a.

Note that the map R\ Q — LO(BS(1, n)) is injective. In fact, for different irrational
numbers a < 8, we can find some g € BS(1, n) such that g € Pg \ P, or g € Py \ Pg.
To see this, we argue by cases:

Casel. § > 0: Letq € (o, /)N Q" and let g € BS(1, n) such that p(g)(x) = qqilx -1.
It is immediate to check that p(g)(8) >  and p(g)(a) < a, therefore g € Pg
and g ¢ P,.

Case2. $ <0: Let g € (a,B) N Q and let ¢ € BS(1, n) such that p(g)(x) = qqix -
1. Similarly to the previous cases, one can check that p(g)(a) < a and
p(8)(B) < B, therefore g € P, and g ¢ Pg.

It is well known that the conjugacy action BS(1, n) ~ LO(BS(1, n)) in not gener-
ically ergodic, however with our new technique we can easily prove the following;:

Corollary 3.8. Forn > 1and G = BS(1, n), the conjugacy relation E\o(G) is not smooth.

Proof. By Proposition 3.7 is suffices to prove that for any a € R\Q, the positive cone
P, belongs the free part of the conjugacy action. To see this, assume that hP,h~! =
P,. One checks that hP,h~! = Ppynya), and therefore Py(n)a) = Pa, which gives
p(h)(a) = a. However, for every h # 1, the order-preserving homeomorphism p(h)
has only rational fixed points. Therefore, it must hold that & = 1 as desired. o

It is worth pointing out that Corollary 3.8 also follows from Proposition 2.2 and
the work of Rivas and Tessera [RT16, Proposition 2.12]. However, our analysis of
the free part of BS(1,2) ~ LO(BS(1, 2)) allows us to further prove the following:

Corollary 3.9. Eo(BS(1,2)) is hyperfinite.
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Proof. LetT' = BS(1,2). The setY = {P, | « € R\ Q} is Borel because it is the
image of a Borel set through a one-to-one Borel map (see [Kec95, Theorem 15.1]),
and moreover Y is invariant under conjugacy. Therefore Y with the standard
Borel structure induced by LO(T) is a free standard Borel I'-space. Moreover,
Rivas [Riv10, Theorem 4.2] establishes that LO(I') \ Y is countable. It follows
that Eix(T') ~g EY, and the latter equivalence relation is hyperfinite by [CJM*ar,
Corollary 7.4]. O

To the best of our knowledge Corollary 3.9 provides the first example of finitely
generated left-orderable group, whose conjugacy equivalence relation is not smooth,
yet hyperfinite.

3.5. Thompson’s group F. Thompson’s group F may be defined by the presenta-
tion

F={(a,b|[abt,a 'ba],[ab!, a"%ba?)).

There is an injective homomorphism p: F — PL.([0, 1]) whose image consists of
all piecewise linear homeomorphisms of [0, 1] having dyadic rational breakpoints,

and whose linear segments have slopes that are integral powers of two.

Given an interval [ = [Zﬂq, pz—:l] c [0,1], we can define functions b}, b; : [0,1] —

[0, 1] that lie in the image of p and whose support is equal to I, as follows. First,
the function b} is given by

e P
bi(t) = t+ 5 1f2—q+24+2StS7+

1 p+1 14 1 /4
§t+qﬂ+1 1f2—q+2q+1 Sts_q
t ifl <<t

It is clear from this description that b} lies in the image of p. On the interval I, the
graph of b} appears as in Figure 1(A). We can analogously define b, which is the
identity outside of I and whose graph appears as in Figure 1(B).

Proposition 3.10. Let S C [0, 1] be finite, and choose x,y € [0,1] \ S with x # y. Then
there exists g € F such that p(g)(s) = s forall s € S, p(g)(x) > x, and p(g)(y) < y.

Proof. As the dyadic rational numbers are dense, we may choose disjoint intervals
I, ] with dyadic rational endpoints, satisfying I NS =] NS = 0, with x € I and
y € ]. Now set f = b} o by, then f satisfies f(s) = s forall s € S, and f(x) > x
while f(y) < y. Moreover, f is in the image of p, so the proposition follows. ]

Fix an enumeration e: N — Q N (0, 1), writing e(i) = r;. Every enumeration of
Q can be used to define a positive cone P, C F in the usual way: Given g € F, let r;
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(a) bf (8) by

Ficure 1. The graphs of the functions b;” and b} on the interval I.

denote the first rational number in the enumeration satisfying p(g)(r;) # r;. Then
declare g € P, if and only if p(g)(r;) > r;.
Theorem 1.2 now follows from the following:

Proposition 3.11. For every enumeration e: N — Q N (0, 1), we have P, € LO((F)).

Proof. Leth € F\{id} and suppose that p(h)(r;) = r; foralli < N, while p(h)(rn) #
rn. Set S = {ry,...,*¥n-1}, x = ry and y = p(h)(rn). Apply Proposition 3.10 to
arrive at ¢ € F with p(g)(r;) = r; for all i < N and p(g)(rn) > rn, so that g € P,.
On the other hand, p(h~1gh)(r;) = r; for alli < N, while p(g)(p(h)(rn)) < p(h)(rn)
holds by our choice of g, which is equivalent to p(h~gh)(ry) < rn. Thus h™1gh ¢
P,, meaning ¢ ¢ hP.h~'. Thus P, # hP,h!. m]

From this, we conclude:

Corollary 3.12. Ej(F) is not smooth.

4. OPEN PROBLEMS

Theorem 3.2 shows that for a left-orderable group G, the property of Eo(G)
being smooth transfers to relatively convex subgroups. It is natural to ask if the
analogue is true for hyperfiniteness.

Question 4.1. Is it true that if there is a relatively convex C < G such that E(C) is not
hyperfinite, then E\o(G) is not hyperfinite?

The results of this paper and our previous work produce several techniques to
handle the problem whether Ejo(G) is smooth. The next degree of Borel complexity
is that of hyperfinite equivalence relations that are not smooth. Since every Borel
equivalence relation with countable classes is hyperfinite on a comeager set, it is
generally very difficult to show that a given equivalence relation is hyperfinite. So
we pose the following open questions, which are likely to require new techniques.
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Question 4.2. Is Eio(BS(1, 1)) hyperfinite for n > 22

Question 4.3. Is Ey,(F) hyperfinite?
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