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Abstract

We consider the transmission eigenvalues for a bounded scatterer with a periodi-
cally varying index of refraction, and derive the first order corrections to the limiting
transmission eigenvalues. We assume the scatterer contrast to be of one sign, in which
case the transmission eigenvalue problem can be written in terms of operators cor-
responding to a fourth order PDE with periodic coefficients. We perform two-scale
asymptotics for this biharmonic type homogenization problem and show convergence
estimates which require a boundary corrector function, and this boundary corrector
function appears in the formula for the transmission eigenvalues correction.

1 Introduction

The transmission eigenvalue problem plays a fundamental role in scattering theory for inho-
mogeneous media. Transmission eigenvalues correspond to interrogating frequencies at which
there exists an incident field that does not scatter by the medium. Despite its deceptively
simple formulation—two elliptic PDEs in a bounded domain (one governing wave propaga-
tion in the scattering medium and the other in the background that occupies the support
of the medium) that share the same Cauchy data on the boundary—the problem presents
a remarkably intricate mathematical structure. In particular, it is a non-self-adjoint eigen-
value problem for a non-strongly elliptic operator, making the investigation of its spectral
properties highly challenging. We refer the reader to [4] for the significance of this problem
in scattering phenomena and inverse scattering theory.
More precisely, let n(x) denote the refractive index of an inhomogeneous medium of bounded
support, which is a perturbation of the homogeneous background medium with refractive
index scaled to one. Define D := supp(n− 1). The transmission eigenvalue problem is then
formulated as finding v ̸= 0 and w ̸= 0 satisfying

∆w + k2n(x)w = 0 in D,
∆v + k2v = 0 in D,

w − v = 0 on ∂D,
∂w

∂ν
− ∂v

∂ν
= 0 on ∂D,

(1)
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where k > 0 is the wave number, proportional to the interrogating frequency ω. In this
formulation, u := w − v corresponds to the scattered field, which by virtue of the boundary
conditions (provided ∂D has some regularity), can be extended by zero into the exterior of
D, whereas v is the restriction to D of the incoming incident wave. This formulation shows
that a necessary condition for an incident wave to remain unscattered by the inhomogeneity
(D,n) is the existence of a nontrivial solution to (1). The transmission eigenvalue problem is
known to be non-self-adjoint [4], and complex transmission eigenvalues may occur, although
only the real ones are physically relevant to non-scattering. Values of k ∈ C for which (1)
admits nontrivial solutions (w, v) are called transmission eigenvalues. Note that, it can be
shown that real transmission eigenvalues can be determined from measured scattering data
[4, 3, 16], hence they can be used to determine information about refractive index n when
solving the inverse scattering problem. There is a vast literature on the spectral analysis
of the transmission eigenvalue problem. The discreteness of the spectrum, completeness of
eigenfunctions, and Weyl’s asymptotics have been established under various assumptions on
n − 1 in [10, 15, 24, 27, 28]. In particular, if n − 1 has a fixed sign uniformly in D, then
there exists an infinite sequence of real transmission eigenvalues accumulating only at +∞.

In this work, we deal with the perturbation analysis of transmission eigenvalues when the
inhomogeneous medium (D,n), with D ⊂ Rd for d = 2, 3 bounded, is periodic and highly
oscillating. More precisely, let ϵ > 0 denote the characteristic size of the periodic unit cell,
which is assumed to be small relative to the size of D, and let Y = [0, 1]d be the rescaled
unit cell. We assume that the refractive index is given by

nϵ(x) := n(x/ϵ) ∈ L∞(D),

with n periodic in y = x/ϵ with period Y . Our concern is how the real transmission eigen-
values perturb as ϵ→ 0. The homogenization theory for the corresponding direct scattering
problem has been developed in [8, 5], while the convergence of the real transmission eigenval-
ues to those of the homogenized medium was proven in [6]. The main goal of this paper is to
provide an explicit first-order correction term in the asymptotic expansion of the real trans-
mission eigenvalue. Since the correction to the homogenized transmission eigenvalue can
be determined, the hope is that this correction term captures microstructural information
of the periodic medium. Such asymptotic analyses have been carried out for transmission
eigenvalue problems in media containing small-size perturbations as the perturbation size
tends to zero in [7, 9]. Our perturbation analysis is based on the work of [22], extended
to nonlinear eigenvalue problems in [19, 12]. In particular, our approach makes use of the
expression given in [12].

In this paper we formulate the transmission eigenvalue problem as a non-linear eigenvalue
problem for a fourth-order partial differential operator given by (10). Using two-scale asymp-
totics for the resolvent of the bi-Laplacian-type operator, we establish higher-order conver-
gence estimates as ϵ → 0. While homogenization for periodic higher-order PDEs is known
[11, 20, 21, 23], these higher order estimates including boundary corrector functions appear
to be new. We show first that the homogenized problem reduces to the eigenvalue problem
with cell-averaged refractive index n, recovering [6]. We then construct higher-order cor-
rectors: the first-order expansion includes only a boundary correction (consistent with the
homogenization of direct scattering problems [8, 5]), while higher orders involve both bulk
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and boundary terms. The resolvent estimates yield asymptotics for simple real transmission
eigenvalues, based on the formula in [12, Theorem 3.2]. The leading correction involves
the boundary corrector integrated against the scaled eigenfunction. The boundary corrector
satisfies a fourth-order boundary value problem with oscillatory coefficients, and it is highly
desirable to understand the limiting behavior of the boundary corrector as ϵ→ 0. This is a
delicate issue in the theory of homogenization, and for the state of the art of this question
for second-order PDEs is discussed in [13, 14, 17, 25]. Here, although we can prove that the
boundary corrector is L2-bounded with respect to ϵ, and thus admits weak subsequential
limit(s), we characterize its (non-zero) limit only in one dimension. We find that the first
order corrections are not unique and depend on the interaction of the boundary of the scat-
terer with the microstructure. The two and three-dimensional cases, which are technically
more involved, will be addressed in a subsequent paper.

2 Description of problem

We assume that the bounded domain D ⊂ Rd has C2 boundary, and as stated in the
introduction we assume that n(y) is a bounded periodic function of y in the cell Y = [0, 1]d.
Let H2

0 (D) denote the Sobolev space given by

H2
0 (D) :=

{
u ∈ H2(D) : u =

∂u

∂ν
= 0 on ∂D

}
.

or, equivalently, the H2 closure of C∞
0 (D) functions, equipped with the inner product

(u, v)H2
0 (D) = (∆u,∆v)L2(D).

Consider now the interior transmission eigenvalue problem (1) formulated above which has
a periodic coefficient with period ϵ > 0, small compared to its support D. Letting τ := k2,
we wish to find nontrivial w, v ∈ L2(D) with w − v ∈ H2

0 (D) satisfying

∆w + τn(x/ϵ)w = 0 in D (2)

∆v + τv = 0 in D (3)

w = v on ∂D (4)

∂w

∂ν
=
∂v

∂ν
on ∂D. (5)

Note that the boundary conditions are equivalent to saying that w − v ∈ H2
0 (D). Here

the eigenvalue parameter is τ := k2. As already mentioned, the transmission eigenvalue
problem is not self-adjoint, and in the spherical symmetric case it is known to have complex
eigenvalues [4, Chapter 6]. Here we are concerned only with the real transmission eigenvalue,
since they are the ones which can be measured from scattering data. More precisely, here
transmission eigenvalues refers to values of τ ∈ R+ for which the problem (2)-(5) has a
nontrivial solution. In this work we limit ourselves to the case when n(x/ϵ) − 1 is of one
sign, and for the calculations we assume that n(x/ϵ) − 1 ≥ c > 0, with c independent
of ϵ. In this case, an infinite number of real transmission eigenvalues are known to exist
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[1]. We are interested in the behavior of these transmission eigenvalues as the period size
ϵ approaches zero. It is known from the work [6] that the real transmission eigenvalues
{λϵ} (omitting indexing) converge to those corresponding to {λ0} for the ”homogenized”
transmission eigenvalue problem, that is, those corresponding to

∆w + τnw = 0 in D (6)

∆v + τv = 0 in D (7)

w = v on ∂D (8)

∂w

∂ν
=
∂v

∂ν
on ∂D. (9)

where n denotes the period cell average

n =
1

|Y |

∫
Y

n(y)dy.

Our motivation here is to find the next order term, i.e. the corrections τ (1) , where each

τϵ = τ0 + ϵτ (1) + o(ϵ).

From the work [1], for this setup we have that the transmission eigenvalue problem (2) is
equivalent to the fourth order nonlinear eigenvalue problem: Find τ such that there exist
nontrivial u = w − v ∈ H2

0 (D) such that

(∆ + τnϵ)
1

nϵ − 1
(∆ + τ)u = 0, (10)

where we use nϵ denote the periodic

nϵ = n(x/ϵ).

We can state this in variational form follows: Find u ∈ H2
0 (D) such that∫

D

1

nϵ − 1
(∆u+ τu)(∆ϕ+ τnϵϕ) dx = 0 for all ϕ ∈ H2

0 (D). (11)

Following [1], we rewrite this in terms of variationally defined operators. Let us define the
bounded bilinear forms on H2

0 (D)×H2
0 (D),

Aτ,ϵ(u, ϕ) =

(
1

nϵ − 1
(∆u+ τu), (∆ϕ+ τϕ)

)
L2(D)

+ τ 2(u, ϕ)L2(D) (12)

and
B(u, ϕ) = (∇u,∇ϕ)L2(D). (13)

By the Riesz Representation Theorem, these bilinear forms define bounded operators Aτ,ϵ :
H2

0 (D) → H2
0 (D) and B : H2

0 (D) → H2
0 (D) which are such that

Aτ,ϵ(u, ϕ) = (Aτ,ϵu, ϕ)H2
0 (D) and B(u, ϕ) = (Bu, ϕ)H2

0 (D) (14)
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for all u, ϕ ∈ H2
0 (D). We may also find it convenient to write these variationally defined

operators using pde notation. For given f ∈ H2(D) we have that

A−1
τ,ϵf =

(
(∆ + τ)

1

nϵ − 1
(∆ + τ) + τ 2

)−1

∆∆f

and
Bf = (∆∆)−1∆f

where the inverses of the fourth order operators have range in H2
0 (D), where solutions are

unique. We also note that the operator B : H2(D) → H2
0 (D) has a bounded extension on

L2(D); for any f ∈ L2(D), ∆f is understood in the sense of H−2(D), the dual of H2
0 (D). We

continue to use B to denote this operator B : L2(D) → H2
0 (D), so that B is clearly compact

from L2(D) to itself. Furthermore, Aτ,ϵ is invertible on H2
0 (D) for positive real τ , and the

coercivity constant is independent of τ [2]. The variational form (11) of the transmission
eigenvalue problem is equivalent to finding u ∈ L2(D) such that

(I − τA−1
τ,ϵB)u = 0. (15)

Define the linear operator Tϵ(τ) : L
2(D) → L2(D) for ϵ ≥ 0 and τ ∈ C such that

Tϵ(τ) := A−1
τ,ϵB, (16)

=

(
(∆ + τ)

1

nϵ − 1
(∆ + τ) + τ 2

)−1

∆

so we can write (15) as
τTϵ(τ)u = u, (17)

and its limiting problem
τT0(τ)u = u. (18)

Here T0 is defined as

T0(τ) := A−1
τ,0B, (19)

=

(
(∆ + τ)

1

n− 1
(∆ + τ) + τ 2

)−1

∆

where Aτ,0 is defined as in (14) but with nϵ replaced with its limiting value n0 = n.
We have now rephrased the problem as a nonlinear eigenvalue perturbation problem. That
is, a transmission eigenvalue τϵ is a value for τ such that there exists a nontrivial u ∈ L2(D)
satisfying

τϵTϵ(τϵ)u = u

for ϵ > 0. A limiting transmission eigenvalue is a value τ0 such that there exists nontrivial
u ∈ L2(D) such that

τ0T0(τ0)u = u.

In order to find a correction formula for the transmission eigenvalues of the perturbed prob-
lem in terms of the eigenvalues and eigenvectors of the background problem, we will apply
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a result in [19], an application of Osborn’s theorem for approximating the eigenvalues of
compact operators [22]. Let τϵ be the eigenvalue associated with the nonlinear eigenvalue
problem (17) and let τ0 be the eigenvalue corresponding to the limiting eigenvalue problem
(18). In this paper we will derive an expression for the next order correction term τ (1) in the
asymptotic expansion

τϵ = τ0 + ϵτ (1) + o(ϵ).

Remark 1. For sake of presentation, we present the calculations for the case when nϵ > 1
uniformly in D. Similar analysis can be done in the case 0 < nϵ < 1 uniformly in D. In this
case the definition of the coercive part (12) is replaced (see [4, Section 4.2])

Ãτ,ϵ(u, ϕ) =

(
1

1− nϵ

(∆u+ τnϵu), (∆ϕ+ τnϵϕ)

)
L2(D)

+ τ 2(nϵu, ϕ)L2(D)

with the corresponding operators defined accordingly.

3 Operator convergence: a fourth order homogeniza-

tion problem

In order to apply the eigenvalue correction theorem, we will need to explore the convergence
of Tϵ(τ) to T0(τ), or more precisely, we will need an asymptotic expansion with respect to
ϵ for Tϵ(τ) and corresponding norm estimates. We need to focus on A−1

τ,ϵ , since all of the ϵ
dependence is in this operator. Note that if

uϵ = A−1
τ,ϵf,

then uϵ ∈ H2
0 (D) is the variational solution to

(∆ + τ)
1

n(x/ϵ)− 1
(∆ + τ)uϵ + τ 2uϵ = ∆∆f in D (20)

where n(y) is periodic on the period cell Y . For simplicity of exposition, we let

a(x/ϵ) =
1

n(x/ϵ)− 1
(21)

and
h = ∆∆f,

so that uϵ ∈ H2
0 (D) solves

(∆ + τ)a(x/ϵ)(∆ + τ)uϵ + τ 2uϵ = h in D; (22)

the periodic homogenization problem which is the subject of this section. We note that such
fourth order periodic problems have been studied in the past, see for example, [23],[11], and
so the expansion of the main part of the operator is not new. Here we focus on obtaining high
enough order L2 norm estimates, which we will need to apply the eigenvalue perturbation
theorem. These estimates require the introduction and analysis of a fourth order boundary
corrector function.
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3.1 Formal asymptotics

We proceed by assuming that a(y) ≥ a0 > 0 is positive, bounded in L∞ and periodic, and
we do standard two-scale asymptotic expansions. Let y = x/ϵ so that from the chain rule

∇ = ∇x +
1

ϵ
∇y,

and assume the ansatz for the solution uϵ of (22)

uϵ ≈ u0(x, y) + ϵu(1)(x, y) + ϵ2u(2)(x, y) + . . . (23)

where each u(i) is periodic in the fast variable y in the sense ofH2
♯ (Y ), where H2

♯ (Y ) is defined
to be H2 functions on the torus, defined in terms of the decay of the Fourier coefficients.
Equivalently, this is all H2(Y ) functions which are also in H2 across the matching boundaries
(the closure of smooth functions on the torus in the H2 norm). We note that

∆ = ∆x +
2

ϵ
∇y · ∇x +

1

ϵ2
∆y.

We could proceed by plugging the ansatz (23) into (22), however, we will instead rewrite
(22) as a second order system. The use of a lower order system both simplifies the derivation
of the terms in the ansantz and potentially allows for lower regularity assumptions. To this
end, we let vϵ = a(x/ϵ)(∆ + τ)uϵ so that the pair (uϵ, vϵ) solves

a(x/ϵ)(∆ + τ)uϵ = vϵ (24)

(∆ + τ)vϵ + τ 2uϵ = h,

and so we also expand

vϵ ≈ v0(x, y) + ϵv(1)(x, y) + ϵ2v(2)(x, y) + . . . . (25)

We plug the ansatz into the system,

a(y)(∆x +
2

ϵ
∇y · ∇x +

1

ϵ2
∆y + τ)(u0 + ϵu(1) + ϵ2u(2) + . . .) = v0 + ϵv(1) + ϵ2v(2) + . . .

(∆x +
2

ϵ
∇y · ∇x +

1

ϵ2
∆y + τ)(v0 + ϵv(1) + ϵ2v(2) + . . .)

+ τ 2(u0 + ϵu(1) + ϵ2u(2) + . . .) = h, (26)

and set equal the coefficients of like powers of epsilon to obtain the equations

1

ϵ2
: a∆yu0 = 0 (27)

∆yv0 = 0

1

ϵ
: 2a∇x∇yu0 + a∆yu

(1) = 0 (28)

2∇x∇yv0 +∆yv
(1) = 0

7



ϵ0 : a(∆x + τ)u0 + 2a∇x · ∇yu
(1) + a∆yu

(2) = v0 (29)

(∆x + τ)v0 + 2∇x · ∇yv
(1) +∆yv

(2) + τ 2u0 = h

ϵ : a(∆x + τ)u(1) + 2a∇x · ∇yu
(2) + a∆yu

(3) = v(1) (30)

(∆x + τ)v(1) + 2∇x · ∇yv
(2) +∆yv

(3) + τ 2u(1) = 0

ϵ2 : a(∆x + τ)u(2) + 2a∇x · ∇yu
(3) + a∆yu

(4) = v(2) (31)

(∆x + τ)v(2) + 2∇x · ∇yv
(3) +∆yv

(4) + τ 2u(2) = 0,

and in general, for n ≥ 1, the equation corresponding to ϵn is

ϵn : a(∆x + τ)u(n) + 2a∇x · ∇yu
(n+1) + a∆yu

(n+2) = v(n) (32)

(∆x + τ)v(n) + 2∇x · ∇yv
(n+1) +∆yv

(n+2) + τ 2u(n) = 0.

First we observe that the first two sets of equations (27) and (28) imply that the first terms
do not depend on y, that is, u0 = u0(x), v0 = v0(x), u

(1) = u(1)(x), and v(1)(x) = v0(x).
Since v0(x) does not depend on y, the first equation in (29) suggests that we should take

u(2) = χ(y)(∆x + τ)u0 (33)

where
a+ a∆yχ = c

for some constant c. Periodicity implies that we must have c = a−1
−1
, leading to

∆yχ(y) = a−1
−1
/a− 1. (34)

We note that apriori u(2) could still have an additive function of x. Taking the Y cell average
of (29) and using the formula for χ we find the homogenized problem

(∆x + τ)a−1
−1
(∆x + τ)u0 + τ 2u0 = h, (35)

accompanied by

v0 = a−1
−1
(∆x + τ)u0. (36)

Now, if we take
u(3) = γ⃗(y) · ∇x(∆x + τ)u0 (37)

where the vector γ⃗ has cell average zero and solves

−∆yγ⃗ = 2∇yχ(y), (38)

we see that the first equation of (30) is satisfied with

u(1) = v(1) = 0.
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The second equation of (30) is also satisfied if we take

v(2) = v(3) = 0.

If we do this, to satisfy the first equation of (31) we can take

u(4) = α(y)(∆x + τ)(∆x + τ)u0 +Bij(y)(D
2
x)ij(∆x + τ)u0 (39)

where the α(y) has cell average zero and solves

−∆yα = χ, (40)

and matrix B(y) has components with cell average zero satisfying

−∆yBij = 2
∂γi
∂yj

. (41)

In (39) Einstein summation notation is employed, with D2 denoting the Hessian. We find
then to satisfy the second equation in (31) we need a nonzero v(4), and taking

v(4) = τ 2α(y)(∆x + τ)u0 (42)

will work. To summarize, we have thus far derived

uϵ ≈ u0 + ϵ2u(2) + ϵ3u(3) + ϵ4u(4) · · ·

vϵ ≈ v0 + ϵ4v(4) + · · · ,
with u(2), u(3),u(4), v0, and v

(4) given by (33), (37), (39), (36), and (42) respectively. We need
to emphasize, however, that beyond second order these choices are not necessarily optimal;
there may be other third and fourth order terms necessary if one wanted estimates of higher
order.
Our solutions uϵ and u0 are in H2

0 (D), but due to the corrections, our approximation to uϵ
is no longer in H2

0 (D). Hence in order to obtain high enough order convergence estimates,

will need the boundary corrector functions at each order. Let θ
(n)
ϵ denote the unique H2(D)

solution to

(∆x + τ)a(x/ϵ)(∆ + τ)θ(n)ϵ + τ 2θ(n)ϵ = 0 in D (43)

θ(n)ϵ = −ϵu(n) on ∂D

∂θ
(n)
ϵ

∂ν
= −ϵ∂u

(n)

∂ν
on ∂D,

and define its second order system counterpart

ψ(n)
ϵ = a(x/ϵ)(∆ + τ)θ(n)ϵ . (44)

Then the pair (θ
(n)
ϵ , ψ

(n)
ϵ ) solves

a(x/ϵ)(∆ + τ)θ(n)ϵ = ψ(n)
ϵ (45)

(∆ + τ)ψ(n)
ϵ + τ 2θ(n)ϵ = 0.
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Remark 2. Since for our transmission eigenvalue problem a = 1/(n− 1), we have that

∆yχ(y) =
n(y)− n

n− 1
, (46)

which means that

χ =
β

n− 1
,

where β is the first order cell function from the homogenization of the standard transmission
problem corresponding to n; which is Y -periodic, has cell average zero, and solves

∆yβ(y) = n(y)− n, (47)

see for example [5],[8].

3.2 Norm estimates

The following Lemma will be useful for showing convergence estimates.

Lemma 1. Assume that zϵ, ηϵ are in H2
0 (D) and L2(D) respectively, and that they satisfy

the second order system

a(x/ϵ)(∆ + τ)zϵ − ηϵ = e (48)

(∆ + τ)ηϵ + τ 2zϵ = f.

Then there exists C independent of ϵ such that

∥zϵ∥H2
0 (D) ≤ C(∥e∥L2(D) + ∥f∥H−2(D)). (49)

Proof. Consider∫
D

a(∆ + τ)zϵ(∆ + τ)zϵ =

∫
D

ηϵ(∆ + τ)zϵ +

∫
D

e(∆ + τ)zϵ

=

∫
D

(∆ + τ)ηϵzϵ +

∫
D

e(∆ + τ)zϵ

= −τ 2
∫
D

zϵzϵ +

∫
D

fzϵ +

∫
D

e(∆ + τ)zϵ

where in the second line we integrated by parts and used the fact that zϵ has zero boundary
data. Using ellipticity and Cauchy-Schwartz we have

c∥zϵ∥2H2
0 (D) ≤

∫
D

a(∆ + τ)zϵ(∆ + τ)zϵ + τ 2
∫
D

zϵzϵ

=

∫
D

fzϵ +

∫
D

e(∆ + τ)zϵ

≤ ∥f∥H−2(D)∥zϵ∥H2
0 (D) + ∥e∥L2(D)∥zϵ∥H2

0 (D). (50)

Dividing through by ∥zϵ∥H2
0 (D) the result follows.
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The next result gives us first order convergence in ϵ, which we will need to show convergence
of the operators.

Proposition 1. Let uϵ, u0 ∈ H2
0 (D) be the solutions to

(∆x + τ)a(x/ϵ)(∆ + τ)uϵ + τ 2uϵ = h (51)

and
(∆x + τ)a−1

−1
(∆ + τ)u0 + τ 2u0 = h (52)

respectively. Then

∥uϵ − (u0 + ϵ2u(2) + ϵθ(2)ϵ )∥H2
0 (D) ≤ Cϵ∥u0∥H4(D)

where u(2) is given by (33) and where the boundary correction θ
(2)
ϵ is defined by (43) for

n = 2.

Proof. Let
zϵ = uϵ − (u0 + ϵ2u(2) + ϵθ(2)ϵ )

and
ηϵ = vϵ − (v0 + ϵψ(2)

ϵ )

where ψ
(2)
ϵ is given by (44) and we recall that v0 is given by (36). Thanks to the boundary

corrections, zϵ ∈ H2
0 (D). We calculate

a(x/ϵ)(∆ + τ)zϵ − ηϵ = −2ϵa∇x · ∇yu
(2) − ϵ2a(∆x + τ)u(2) (53)

and
(∆ + τ)ηϵ + τ 2zϵ = −ϵ2τ 2u(2). (54)

The residual contains derivatives of u0 of fourth order or lower, and so the result follows
from Lemma 1 .

Corollary 1. Let uϵ, u0 ∈ H2
0 (D) be the solutions to

(∆x + τ)a(x/ϵ)(∆ + τ)uϵ + τ 2uϵ = h (55)

and
(∆x + τ)a−1

−1
(∆ + τ)u0 + τ 2u0 = h (56)

respectively. Then the boundary correction θ
(2)
ϵ given by (43) with n = 2 satisfies

∥θ(2)ϵ ∥H2(D) ≤ Cϵ−1/2∥u0∥H4(D)

and hence
∥uϵ − u0 − ϵ2u(2)∥H2(D) ≤ Cϵ1/2∥u0∥H4(D).

where u(2) is given by (33).
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Proof. From direct calculation of derivatives on the boundary and standard interpolation we
get that

∥ϵu(2)∥H3/2(∂D) ≤ Cϵ−1/2∥u0∥H4(D)

and

∥ϵ∂u
(2)

∂ν
∥H1/2(∂D) ≤ Cϵ−1/2∥u0∥H4(D),

and so the bound on the boundary corrector follows from standard elliptic estimates. The
result then follows from Proposition 1.

To get higher order estimates we need to use further terms in the asymptotic expansion.

Proposition 2. Let uϵ, u0 ∈ H2
0 (D) be the solutions to

(∆x + τ)a(x/ϵ)(∆ + τ)uϵ + τ 2uϵ = h (57)

and
(∆x + τ)a−1

−1
(∆ + τ)u0 + τ 2u0 = h (58)

respectively. Then

∥uϵ − (u0 + ϵ2u(2) + ϵθ(2)ϵ + ϵ3u(3) + ϵ2θ(3)ϵ )∥H2
0 (D) ≤ Cϵ2∥u0∥H5(D)

where u(2) and u(3)are given by (33) and (37), and where the boundary corrections θ
(n)
ϵ are

defined by (43) for n = 2, 3.

Proof. Let
zϵ = uϵ − (u0 + ϵ2u(2) + ϵθ(2)ϵ + ϵ3u(3) + ϵ2θ(3)ϵ )

and
ηϵ = vϵ − (v0 + ϵψ(2)

ϵ + ϵ2ψ(3)
ϵ )

where ψ
(2)
ϵ is given by (44) and we recall that v0 is given by (36). Thanks to the boundary

corrections, zϵ ∈ H2
0 (D). We calculate

a(x/ϵ)(∆ + τ)zϵ − ηϵ = −2ϵ2a∇x · ∇yu
(3) − ϵ2a(∆x + τ)u(2) − ϵ3a(∆x + τ)u(3) (59)

and
(∆ + τ)ηϵ + τ 2zϵ = −ϵ2τ 2u(2). (60)

Again the residual contains up to fifth derivatives of u0, and so the result follows again from
Lemma 1.

We have that the boundary corrector terms, ϵn−1θ
(n)
ϵ , with θ

(n)
ϵ given by (43), are of order

ϵn−1 in general.

Lemma 2. The boundary correctors θ
(n)
ϵ given by (43) for n = 2, 3 satisfy

∥θ(n)ϵ ∥L2(D) ≤ C∥u0∥Hn+2(D)

where C is independent of ϵ and u0.
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Proof. We prove this for n = 2, the proof for n = 3 follows in the same way. Given any
f ∈ L2(D), consider the solution wϵ ∈ H2

0 (D) of

(∆x + τ)a(x/ϵ)(∆ + τ)wϵ + τ 2wϵ = f in D (61)

wϵ = 0 on ∂D
∂wϵ

∂ν
= 0 on ∂D. (62)

Using the equations for θ
(2)
ϵ and wϵ and the second Green’s identity twice, we obtain∫

D

θ(2)ϵ f =

∫
D

[
(∆x + τ)a(x/ϵ)(∆ + τ)wϵ + τ 2wϵ

]
θ(2)ϵ dx

=

∫
∂D

θ(2)ϵ

∂

∂ν
(a(x/ϵ)(∆ + τ)wϵ)− a(x/ϵ)(∆ + τ)wϵ

∂θ
(2)
ϵ

∂ν
ds. (63)

The boundary conditions for θ
(2)
ϵ then yield∫

D

θ(2)ϵ f =

∫
∂D

ϵχ(x/ϵ)(∆ + τ)u0
∂

∂ν
(a(x/ϵ)(∆ + τ)wϵ)

−
∫
∂D

ϵa(x/ϵ)(∆ + τ)wϵ
∂

∂ν
(χ(x/ϵ)(∆ + τ)u0) ds. (64)

From Proposition 1 applied to the homogenization problem for wϵ, we get have that

∥wϵ − w0 − ϵ2w(2) − ϵθfϵ ∥H2(D) ≤ Cϵ∥w0∥H4(D) (65)

where w0 is the homogenized solution for (61), w(2) is the corresponding bulk correction, and
θfϵ is its corresponding boundary corrector (for order n = 2). From line (53) in the proof of
the same Proposition, we have that ηϵ is O(ϵ) in L

2. Likewise, ∆ηϵ is also bounded by the
same right hand side in L2(D) from (54). Hence we have that

∥ηϵ∥L2(D,∆) ≤ Cϵ∥w0∥H4(D),

where we use the space (see for example [26])

L2(D,∆) = {v ∈ L2(D)|∆v ∈ L2(D)}

with norm
∥v∥L2(D,∆) = ∥v∥L2(D) + ∥∆v∥L2(D).

It is known, (see Appendix 7.2), that L2(D,∆) has bounded boundary traces in H−1/2 and
bounded normal derivative boundary traces in H−3/2. From this and the proof of Proposition
1 we can conclude that

∥a(∆ + τ)wϵ − a−1
−1
(∆ + τ)w0 − ϵa(∆ + τ)θfϵ ∥H−1/2(∂D) ≤ Cϵ∥w0∥H4(D) (66)

and

∥ ∂
∂ν

(a(∆ + τ)wϵ)− a−1
−1 ∂

∂ν
(∆ + τ)w0 − ϵ

∂

∂ν
(a(∆ + τ)θfϵ )∥H−3/2(∂D) ≤ Cϵ∥w0∥H4(D). (67)
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Thanks to these estimates, we can replace the wϵ terms in (64), with the remainder bounded
by

Cϵ2∥χ(x/ϵ)(∆ + τ)u0∥H3/2(∂D)∥w0∥H4(D)

for the first term and

Cϵ2∥ ∂
∂ν
χ(x/ϵ)(∆ + τ)u0∥H1/2(∂D)∥w0∥H4(D)

for the second term. Both of these are bounded by Cϵ1/2∥u0∥H4(D)∥w0∥H4(D), where we abuse
notation and continue to use C for the constant. Since we have assumed that D is smooth,
we use the standard elliptic estimate that

∥w0∥H4(D) ≤ C∥f∥L2(D),

so the remainder is bounded by Cϵ1/2∥f∥L2(D)∥u0∥H4(D). Hence (64) becomes∫
D

θ(2)ϵ f =

∫
∂D

ϵχ(x/ϵ)(∆ + τ)u0
∂

∂ν

(
a−1

−1
(∆ + τ)w0

)
ds∫

∂D

ϵ2χ(x/ϵ)(∆ + τ)u0
∂

∂ν

(
a(x/ϵ)(∆ + τ)θfϵ

)
ds

−
∫
∂D

ϵa−1
−1
(∆ + τ)w0

∂

∂ν
(χ(x/ϵ)(∆ + τ)u0) ds

−
∫
∂D

ϵ2a(x/ϵ)(∆ + τ)θfϵ
∂

∂ν
(χ(x/ϵ)(∆ + τ)u0) ds+ o(1)

= I + II + III + IV + o(1) (68)

where the tail is bounded in absolute value by Cϵ1/2∥f∥L2(D)∥u0∥H4(D). The first term I
is clearly bounded by the same, as it in fact goes to zero O(ϵ). For the third term III,
the normal derivative produces a 1/ϵ when applied to χ, which cancels with the ϵ, yielding
that the absolute value of III is bounded by C∥f∥L2(D)∥u0∥H4(D). For the other two terms,
we note that a(x/ϵ)(∆ + τ)θfϵ is bounded by Cϵ−1/2∥w0∥H4(D) in L2(D,∆) by Corollary 1
and the equation for θfϵ . Hence we have by trace estimates for L2(D,∆) (see for example
Appendix 7.2) that

∥a(x/ϵ)(∆ + τ)θfϵ ∥H−1/2(∂D) ≤ Cϵ−1/2∥f∥L2(D)

and

∥ ∂
∂ν
a(x/ϵ)(∆ + τ)θfϵ ∥H−3/2(∂D) ≤ Cϵ−1/2∥f∥L2(D).

Using the duality pairing,

|II| ≤ ϵ2∥χ(∆ + τ)u0∥H3/2(∂D)∥
∂

∂ν
a(x/ϵ)(∆ + τ)θfϵ ∥H−3/2(∂D)

≤ Cϵ2ϵ−3/2∥u0∥H4(D)ϵ
−1/2∥f∥L2(D) (69)
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and

|IV | ≤ ϵ2∥ ∂
∂ν
χ(∆ + τ)u0∥H1/2(∂D)∥a(x/ϵ)(∆ + τ)θfϵ ∥H−1/2(∂D)

≤ Cϵ2ϵ−3/2∥u0∥H4(D)ϵ
−1/2∥f∥L2(D) (70)

from which we can conclude that∣∣∣∣∫
D

θ(2)ϵ f

∣∣∣∣ ≤ C∥u0∥H4(D)∥f∥L2(D)

from which the result follows.

Corollary 2. Let uϵ, u0 ∈ H2
0 (D) be the solutions to

(∆x + τ)a(x/ϵ)(∆ + τ)uϵ + τ 2uϵ = h (71)

and
(∆x + τ)a−1

−1
(∆ + τ)u0 + τ 2u0 = h (72)

respectively. Then
∥uϵ − (u0 + ϵθ(2)ϵ )∥L2(D) ≤ Cϵ2∥u0∥H5(D)

and
∥uϵ − u0∥L2(D) ≤ Cϵ∥u0∥H4(D).

where the boundary correction θ
(2)
ϵ is given by (43) with n = 2.

Proof. The first estimate follows from Proposition 2 and Lemma 2 applied to θ
(3)
ϵ , and the

second follows from Proposition 1 and Lemma 2 applied to θ
(2)
ϵ .

4 Transmission eigenvalue expansions

The following result about nonlinear eigenvalue perturbations is an extension of a special
case of the results in [22]. This is a slight modification of Corollary 4.1 in [19] for the case
where we assume only that the operators themselves converge point-wise (strongly), without
assuming convergence of the adjoints. The necessary modifications were shown in [12].

Theorem 1. Let X be a Hilbert space with sesquilinear inner product ⟨, ⟩ and {Tϵ(τ) :
X → X} be a set of compact linear operator valued functions of τ which are analytic in a
region U of the complex plane, such that Tϵ(τ) → T0(τ) pointwise as ϵ → 0 uniformly for
τ ∈ U , and that {Tϵ(τ)} are collectively compact, uniformly in U . Let τ0 ̸= 0, τ0 ∈ U be a
simple nonlinear eigenvalue of T0, define DT0(τ0) to be the derivative of T0 with respect to τ
evaluated at τ0, and let ϕ be a normalized eigenfunction. Then for any ϵ small enough, there
exists τϵ a simple nonlinear eigenvalue of Tϵ, such that if

1 + τ 20 ⟨DT0(τ0)ϕ, ϕ⟩ ̸= 0

there exists a constant C independent of ϵ such that∣∣∣∣τϵ − (
τ0 +

τ 20 ⟨(T0(τ0)− Tϵ(τ0))ϕ, ϕ⟩
1 + τ 20 ⟨DT0(τ0)ϕ, ϕ⟩

)∣∣∣∣ ≤ C sup
τ∈U

∥(T0(τ)− Tϵ(τ))|R(E)∥2 (73)

where R(E) is the one dimensional eigenspace spanned by ϕ.
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Now let us consider our operators

Tϵ(τ) : L
2(D) → L2(D), Tϵ(τ) = A−1

τ,ϵB (74)

where A−1
τ,ϵ : H

2
0 (D) → H2

0 (D) is given by

A−1
τ,ϵf =

(
(∆ + τ)

1

nϵ − 1
(∆ + τ) + τ 2

)−1

∆∆f

and B : L2(D) → H2
0 (D)

Bf = (∆∆)−1∆f

so that

Tϵ(τ)f =

(
(∆ + τ)

1

nϵ − 1
(∆ + τ) + τ 2

)−1

∆f (75)

and

T0(τ)f =

(
(∆ + τ)

1

n− 1
(∆ + τ) + τ 2

)−1

∆f. (76)

where the inverses of the fourth order operators have range in H2
0 (D). We note that Tϵ(τ)

and T0(τ) are well defined and compact on L2(D). This follows because ∆f makes sense in
H−2(D), the dual of H2

0 (D), so that the range of both operators is in H2
0 (D), which embeds

compactly in L2. We can therefore take X = L2(D), with the usual inner product, when
applying the above theorem.
For the denominator in the correction theorem, we must compute the derivative of T0(τ)
with respect to τ , DT0(τ). In fact, this derivative is computed in [9], and we include the
computations in Appendix 7.1 for the reader’s convenience. In our case, the formula (89)
simplifies since our n0 = n is constant. In particular, the derivative DT0(τ) : L2(D) → L2(D)
is given by DT0(τ)u = −v where v ∈ H2

0 (D) solves

∆∆Aτ,0v =
2

n̄− 1
(∆ + τ n̄)A−1

τ,0Bu. (77)

Note that the range of T0(τ) and its derivative is H2
0 (D). Next we compute ⟨DT0(τ0)ϕ, ϕ⟩

where ϕ is an eigenvector corresponding τ0. To this end, let us denote by Lτ,0 : H2
0 (D) →

H−2(D) the mapping

Lτ,0u =

(
(∆ + τ)

1

n− 1
(∆ + τ) + τ 2

)
u (78)

Thus, we have
T0(τ) = L−1

τ,0∆.

Note that Lτ,0 is coercive, which means that ⟨Lτ,0u, u⟩H−2,H2
0
≥ α∥u∥H2

0
, and its inverse is

well defined with range in H2
0 (Ω). Recalling also that A−1

τ0,0
= L−1

τ,0∆∆, we have Aτ0,0 =
(∆∆)−1Lτ,0, and equation (77) becomes

Lτ,0v =
2

n̄− 1
(∆ + τ n̄)T0(τ)u (79)
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and hence

DT0(τ)u = −L−1
τ,0

2

n̄− 1
(∆ + τ n̄)T0(τ)u. (80)

If we now take τ = τ0 and u = ϕ to be the L2-normalized homogenized transmission eigen-
function corresponding to the transmission eigenvalue τ0, this gives

DT0(τ0)ϕ = − 1

τ0

2

n̄− 1
L−1
τ0,0

(∆ + τ0n̄)ϕ,

since we know that
ϕ = τ0T0(τ0)ϕ.

The above calculations yield

1 + τ 20 ⟨DT0(τ0)ϕ, ϕ⟩ = 1− 2τ0
n̄− 1

⟨L−1
τ0,0

(∆ + τ0n̄)ϕ, ϕ⟩ (81)

= 1− 2τ0
n̄− 1

⟨T0(τ0)ϕ, ϕ⟩ −
2τ 20 n̄

n̄− 1
⟨L−1

τ0,0
ϕ, ϕ⟩

= 1− 2

n̄− 1
− 2τ 20 n̄

n̄− 1
⟨L−1

τ0,0
ϕ, ϕ⟩

=
1

n̄− 1

(
n̄− 3− 2τ0n̄⟨L−1

τ0,0
ϕ, ϕ⟩

)
.

This expression is obviously non-zero if 1 < n̄ ≤ 3, since L−1
τ0,0

is nonnegative and τ0 > 0.

To compute L−1
τ0,0
ϕ for the given transmission eigen-pair (τ0, ϕ) of the homogenized problem,

one must solve

(∆ + τ0)
1

n− 1
(∆ + τ0)w + τ 20w = ϕ for w ∈ H2

0 (D).

Thus it is easy to numerically check if (n̄− 3− 2τ0n̄⟨w, ϕ⟩) ̸= 0. In order to evaluate the
numerator we use the asymptotic estimate developed above. To this end we have

T0(τ0)ϕ− Tϵ(τ0)ϕ = L−1
τ0,0

∆ϕ− L−1
τ0,ϵ

∆ϕ

where uϵ := L−1
τ0,ϵ

∆ϕ and u0 := L−1
τ0,0

∆ϕ and uϵ := L−1
τ0,ϵ

∆ϕ are the solutions of

(∆ + τ)
1

n(x/ϵ)− 1
(∆ + τ0)uϵ + τ 20uϵ = ∆ϕ

and

(∆ + τ)
1

n̄− 1
(∆ + τ0)u0 + τ 20u0 = ∆ϕ,

respectively. From Corollary 2 we have that

⟨T0(τ0)ϕ− Tϵ(τ0)ϕ, ϕ⟩ = −⟨ϵθϵ, ϕ⟩+O(ϵ2) (82)
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where θϵ is the solution of

(∆ + τ0)
1

n(x/ϵ)− 1
(∆ + τ0)θ

(2)
ϵ + τ 20 θ

(2)
ϵ = 0 in D (83)

θ(2)ϵ = −ϵu(2) on ∂D

∂θ
(2)
ϵ

∂ν
= −ϵ∂u

(2)

∂ν
on ∂D,

with u(2) =
1

τ0
χ(y)(∆x + τ0)ϕ χ =

β

n− 1

where β is Y -periodic, has cell average zero, and solves

∆yβ(y) = n(y)− n,

where we used that u0 = ϕ/τ0.

Theorem 2. Assume nϵ := n(x/ϵ) ∈ L∞(D) is periodic in y := x/ϵ for y ∈ Y = [0, 1]d,
and n(y) − 1 is positive uniformly in Y . Let τ0 be a simple transmission eigenvalue of the
homogenized problem with constant refractive index n̄, and ϕ the corresponding eigenfunction
normalized such that ∥ϕ∥L2(D) = 1. We assume that ∂D is smooth enough so that ϕ ∈ H5(D).
Then for any ϵ > 0 sufficiently small, there exists a simple transmission eigenvalue τϵ > 0
of the periodic media with refractive index n(x/ϵ), which satisfies the following asymptotic
expansion

τϵ = τ0 + ϵ
τ 20 (1− n̄)

〈
θ
(2)
ϵ , ϕ

〉
L2(D)

n̄− 3− 2τ0n̄⟨L−1
τ0,0
ϕ, ϕ⟩L2(D)

+O(ϵ2) (84)

provided that ⟨L−1
τ0,0
ϕ, ϕ⟩L2(D) ̸= n̄−3

2τ0n̄
, where θ

(2)
ϵ is given by (83) and Lτ0,0 is given by (78).

Proof. First we note that Corollary 2 gives us that for any given f ∈ L2(Ω),

∥(Tϵ(τ)− T0(τ))f∥L2(Ω) ≤ Cτ ϵ. (85)

For τ given in a bounded region of the complex plane, Cτ can be bounded inependently
of τ from the explicit coercivity of of the fourth order operator [2]. Hence we have strong
pointwise convergence of the operators in L2(Ω). Furthermore, the operators {Tϵ(τ)} are
collectively compact, since {uϵ = Tϵ(τ)f} satisfy

∥uϵ∥H2(Ω) ≤ C∥f∥L2(Ω)

where C is independent of ϵ and τ . Hence we can apply Theorem 1. Furthermore, (85) says
that the right hand side of (73) is O(ϵ2), since the eigenspace R(E) is finite dimensional (in
fact one dimensional in our case). We have already calculated the expressions on the left
hand side of (73); the denominator is given by (81) and the numerator is given by (82). The
result follows from inserting these formulas into (73).
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Remark 3. It would be desirable to have the correction value in formula (88) be independent

of ϵ. Note that from Lemma 2 we have that the term
〈
θ
(2)
ϵ , ϕ

〉
is bounded with respect to ϵ,

so any sequence of ϵk → 0 will have subsequential limits. We would like to characterize its
limit points, or at least rewrite it in a more explicit form. For similar eigenvalue problems
in second order homogenization in bounded domains [13, 14, 17, 18, 25], the precise value of
the boundary corrector limit is complicated by two factors (i) The limit may not be unique
if the domain has boundary with flat parts of rational or infinite slope. We expect that
the limit will be unique for smooth D in which the boundary has no flat parts. (ii) Even
when the limit is unique, there is no known explicit characterization of the limit. It may
very well be the case that the first order transmission eigenvalue corrections exhibit both of
these complications. One needs to study the behavior of the boundary correctors for fourth
order homogenization problems, and this is the subject of future work. In the next section
we consider the one-dimensional case, which is easier to analyze, and demonstrates that the
corrector is not generically zero. Furthermore, if the scatterer has flat parts with rational or
infinite slope, the one dimensional study suggests that the corrector will depend on how the
boundary cuts the microstructure.

5 The one dimensional case.

Although we explicitly took the dimension d = 2 or d = 3, the same results clearly hold for
d = 1. Let us take D = (0, 1) for simplicity, while noting that the following can easily be
extended with small modifications general intervals (a, b). Recalling that the eigenfunction

has zero Cauchy data at the boundary, the one dimensional boundary corrector function θ
(2)
ϵ

here satisfies(
d2

dx2
+ τ0

)
1

n(x/ϵ)− 1

(
d2

dx2
+ τ0

)
θ(2)ϵ + τ 20 θ

(2)
ϵ = 0 on (0, 1) (86)

θ(2)ϵ (0) = −ϵ β(0)

τ0(n− 1)

d2ϕ

dx2
(0)

θ(2)ϵ (1) = −ϵ β(1/ϵ)

τ0(n− 1)

d2ϕ

dx2
(1)

(θ(2)ϵ )′(0) = − 1

τ0(n− 1)

dβ

dy
(0)

d2ϕ

dx2
(0)− ϵ

β(0)

τ0(n− 1)

d3ϕ

dx3
(0)

(θ(2)ϵ )′(1) = − 1

τ0(n− 1)

dβ

dy
(1/ϵ)

d2ϕ

dx2
(1)− ϵ

β(1/ϵ)

τ0(n− 1)

d3ϕ

dx3
(1).

In the limit, the boundary terms with ϵ will disappear, and so the limit will be dominated
by the first terms of the Neumann data. Notice that as ϵ→ 0, this first term is fixed on the
left but changing with ϵ on the right. We see here that the limit of this boundary data is
not unique, and depends on the sequence ϵk → 0. Assume that

ϵk =
1

Nk + δ
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where Nk → ∞ are integers, so that 1/ϵk − ⌊1/ϵk⌋ = δ, and

dβ

dy
(1/ϵk) =

dβ

dy
(δ)

due to periodicity. The sequences ϵk for which the boundary corrector has a limit are those
for which this cutoff δk has a limit δ. We see that for fixed cutoff the equation for the
corrector becomes a standard fourth order homogenization problem. Hence the corrector
converges in L2 at order ϵ to θ∗, the solution to(

d2

dx2
+ τ0

)
1

n− 1

(
d2

dx2
+ τ0

)
θ∗ + τ 20 θ

∗ = 0 on (0, 1) (87)

θ∗(0) = 0

θ∗(1) = 0

(θ∗)′(0) = − 1

τ0(n− 1)

dβ

dy
(0)

d2ϕ

dx2
(0)

(θ∗)′(1) = − 1

τ0(n− 1)

dβ

dy
(δ)

d2ϕ

dx2
(1).

We therefore have an explicit formula for the transmission eigenvalue corrector in one di-
mension, summarized in the following Theorem.

Theorem 3. Assume the dimension d = 1 with period cell Y = [0, 1], and nϵ := n(x/ϵ) ∈
L∞(D) is periodic in y := x/ϵ such that n(y) − 1 is positive uniformly in Y . Let τ0 be a
simple transmission eigenvalue of the homogenized problem with constant refractive index n̄,
and ϕ the corresponding eigenfunction normalized such that ∥ϕ∥L2(D) = 1. Assume

ϵk =
1

Nk + δ

where Nk → ∞ are integers. Then for any k sufficiently large, there exists a simple trans-
mission eigenvalue τϵ > 0 of the periodic media with refractive index n(x/ϵ), which satisfies
the following asymptotic expansion

τϵ = τ0 + ϵ
τ 20 (1− n̄) ⟨θ∗, ϕ⟩L2(D)

n̄− 3− 2τ0n̄⟨L−1
τ0,0
ϕ, ϕ⟩L2(D)

+O(ϵ2) (88)

provided that ⟨L−1
τ0,0
ϕ, ϕ⟩L2(D) ̸= n̄−3

2τ0n̄
, where θ∗ is given by (87) and Lτ0,0 is given by (78).

6 Conclusions

In this manuscript we derived an asymptotic expansion for the transmission eigenvalues of
a scatterer with periodically varying index of refraction in the case when the contrast does
not change sign. In this situation, we were able to use the fourth order formulation for
the transmission eigenvalue problem, and its analysis required us to study a fourth order
homogenization problem. The two scale asymptotics reveal a boundary corrector as the
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largest microstructure effect, and this boundary corrector appears in the correction formula
for the transmission eigenvalues. It appears that this boundary corrector function may
exhibit all of the difficulties of the boundary correctors in many second order homogenization
problems; in particular the lack of an explicit formula for its limit for dimension d ≥ 2, even
in the case of smooth domains. An explicit formula would allow us to determine what
information about the microstructure of the medium can be extracted from the transmission
eigenvalues. The analysis of these fourth order boundary correctors is therefore of great
interest, and is the subject of our future work.

7 Appendix: Technical Lemmas

In this section, we will collect the technical lemmas that are necessary for the results in this
paper.

7.1 Derivative of T0(τ) with respect to τ

This Section is taken from [9] for the reader’s convenience. To apply the theorem, we need
to compute the derivative of T0(τ) = A−1

τ,0B with respect to τ , evaluated at a function u.

However, since B does not depend on τ , this problem is equivalent to the derivative of A−1
τ,0

evaluated at Bu. Thus it is only necessary to compute DA−1
τ,0. With that in mind, for

u ∈ H2
0 (D) we define the solution map Lτ to variational problem:

∆∆Aτ,0Lτu = ∆

(
1

n0 − 1
A−1

τ,0u

)
+

1

n0 − 1
∆A−1

τ,0u+ 2τ

(
1

n0 − 1
+ 1

)
A−1

τ,0u (89)

which exists and is bounded due to Riesz Representation. Further, define for u ∈ H2
0 (D),

uτ = A−1
τ,0u. (90)

Notice that by construction,

(Aτ,0Lτu, ϕ)H2
0 (D) =

(
1

n0 − 1
uτ ,∆ϕ

)
L2(D)

+

(
1

n0 − 1
∆uτ , ϕ

)
L2(D)

+ 2τ

((
1

n0 − 1
+ 1

)
uτ , ϕ

)
L2(D)

(91)

Proposition 3. Let L be defined by and τ > 0. Then the derivative of A−1
τ,0 with respect to

τ is −Lτ , that is, DA−1
τ,0 = −Lτ .

21



Proof. Observe since Aτ+h,0uτ+h = Aτ,0uτ = u,

(Aτ+h,0(uτ+h − uτ + hLτu), ϕ) =(Aτ+h,0uτ+h − Aτ+h,0uτ + hAτ+h,0Lτu, ϕ)H2
0 (D)

=(Aτ,0uτ − Aτ+h,0uτ + hAτ+h,0Lτuτ , ϕ)H2
0 (D)

=− (2th+ h2)

∫
D

(
1

n0 − 1
+ 1

)
uτϕ dx

− h

∫
D

1

n0 − 1
(uτ∆ϕ+∆uτϕ) dx

+ h(Aτ+h,0Lτu, ϕ)H2
0 (D). (92)

From the definition of the bilinear form, there exists a constant depending on τ and D such
that

(Aτ+h,0u, ϕ)H2
0 (D) = (Aτ,0u, ϕ)H2

0 (D) + h

(
∆u+ τu,

1

n0 − 1
ϕ

)
L2(D)

+ h

(
1

n0 − 1
u,∆ϕ+ τϕ

)
L2(D)

+ 2h(τ + h)

((
1

n0 − 1
+ 1

)
u, ϕ

)
L2(D)

= (Aτ,0u, ϕ)H2
0 (D) +O(h∥u∥H2

0 (D)∥ϕ∥H2
0 (D)) (93)

where the above estimate uses that H2
0 is embedded in C0. Using the above inequality and

(91), we obtain

(Aτ+h,0Lτu, ϕ)H2
0 (D) =

(
1

n0 − 1
uτ ,∆ϕ

)
L2(D)

+

(
1

n0 − 1
∆uτ , ϕ

)
L2(D)

+ 2τ

((
1

n0 − 1
+ 1

)
uτ , ϕ

)
L2(D)

+O
(
h∥uτ∥H2

0 (D)∥ϕ∥H2
0 (D)

)
. (94)

Substituting this into (92) yields

(Aτ+h,0(uτ+h − uτ + hLτu), ϕ) =− h2
∫
D

(
1

n0 − 1
+ 1

)
uτϕdx+O(h2∥ϕ∥H2

0 (D))

≤ Ch2
(

1

n0 − 1
+ 1

)
∥uτ∥L2(D)∥ϕ∥H2

0 (D)

+O
(
h2∥uτ∥H2

0 (D)∥ϕ∥H2
0 (D)

)
. (95)

Of course, we have the bound

∥uτ∥L2(D) ≤ C∥uτ∥H2
0 (D) ≤ C∥A−1

τ,0∥L(H2
0 (D))∥u∥H2

0 (D). (96)

Choosing ϕ = uτ+h − uτ + hLτu, we have by coercivity that

C∥uτ+h − uτ + hLhu∥H2
0 (D) = O

(
h2∥u∥H2

0 (D)

)
(97)

where C can be chosen to be independent of τ . To finish, we divide by h∥u∥H2
0 (D)C and take

the supremum over u ∈ H2
0 (D),

∥A−1
τ+h,0 − A−1

τ,0 + hLτ∥L(H2
0 (D))

h
= O(h). (98)

Therefore the Frechet derivative DA−1
τ,0(τ) = −Lτ .
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7.2 A trace theorem

We define here the traces of the Cauchy data of functions on L2
∆(D), where

L2
∆(D) :=

{
u ∈ L2(D) : ∆u ∈ L2(D)

}
.

More precisely their trace and their normal derivative on the boundary live in H− 1
2 (∂D)

and H− 3
2 (∂D), respectively. Indeed if u ∈ L2

∆(D) then its trace u ∈ H− 1
2 (∂D) is defined by

duality using the identity

⟨u, τ⟩
H− 1

2 (∂D),H
1
2 (∂D)

=

∫
D

(u∆w − w∆u) dx

where w ∈ H2(D) is such that w = 0 and ∂w/∂ν = τ . Similarly, the trace of ∂u/∂ν ∈
H− 3

2 (∂D) is defined by duality using the identity〈
∂u

∂ν
, τ

〉
H− 3

2 (∂D),H
3
2 (∂D)

= −
∫
D

(u∆w − w∆u) dx

where w ∈ H2(D) is such that w = τ and ∂w/∂ν = 0. The above shows that the trace
operator

u ∈ L2
∆(D) 7→

(
u∂D,

∂u

∂ν
|∂D

)
∈ H− 1

2 (∂D)×H− 3
2 (∂D)

has continuous right inverse, i.e

∥u∥
H− 1

2 (∂D)
+

∥∥∥∥∂u∂ν
∥∥∥∥
H− 3

2 (∂D)

≤ C
(
∥∆u∥L2(D) + ∥u∥L2(D)

)
with C > 0 independent of u.
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