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TARGET SIGNATURES FOR ANISOTROPIC SCREENS IN
ELECTROMAGNETIC SCATTERING

FIORALBA CAKONI * AND PETER MONK 1

Abstract. Anisotropic thin sheets of materials possess intriguing properties because of their
ability to modify the phase, amplitude and polarization of incident waves. Such sheets are usually
modeled by imposing transmission conditions of resistive or conductive type on a surface called a
screen. We start by analyzing this model, and show that the standard passivity conditions can be
slightly strengthened to provide conditions under which the forward scattering problem has a unique
solution. We then turn to the inverse problem and suggest a target signature for monitoring such
films. The target signature is based on a modified far field equation obtained by subtracting an arti-
ficial far field operator for scattering by a closed surface containing the thin sheet and parametrized
by an artificial impedance. We show that this impedance gives rise to an interior eigenvalue prob-
lem, and these eigenvalues can be determined from the far field pattern, so functioning as target
signatures. We prove uniqueness for the inverse problem, and give preliminary numerical examples
illustrating our theory.

Key words: Scattering by thin objects, anisotropic media, resistive screen, Maxwell’s
equations, spectral target signature
AMS subject classifications: 35R30, 35J25, 35P25, 35P05

1. Introduction. Ultra-thin sheets of materials such as graphene have been the
subject of intensive research for several decades [28] because they can be tuned to
modify the phase, amplitude and polarization of incident waves. More recently, the
possibility of using thin sheets of meta-materials has expanded the range of possible
behaviors of the sheet to include anisotropic surface surface properties (see for ex-
ample [18, 16, 17, 22, 21]). Such ultra-thin structures, hereafter called screens, are
usually modeled by imposing transmission conditions across the screen using a suit-
able optical conductivity tensor [16]. This model can be derived as a limiting case
of a thin penetrable material layer [15, 9] as the thickness tends to zero. The result-
ing transmission problem contrasts to models of thin materials that have prescribed
boundary conditions (for example [1, 24]), so that new theory needs to be derived.
The first step in this paper is to study a general model for forward scattering by ultra-
thin screens. More precisely, assuming a complete description of the screen, we want
to predict how it scatters incoming radiation. We prove that the forward problem is
well posed in the important case of a uniaxial passive metasurface, so connecting a
strengthened form of the usual assumptions of passivity [16] to coercivity of certain
sesquilinear forms, and hence using Fredholm theory, to the existence of a unique
solution to the forward problem. We then move on to the inverse problem of detecting
changes in the material properties of the isotropic or anisotropic screens using target
signatures. In this context, target signatures are discrete quantities that can be
computed from scattering data. Changes in these quantities could then be used to
monitor or detect changes in the screen. Typically these quantities are eigenvalues of
an interior problem. They arise by modifying the far field operator using an auxiliary
far field operator generated by a suitable parameter dependent problem. Building
on previous work for electromagnetism in two dimensions [11, 10], we suggest a new
target signature derived by considering the injectivity of a modified far field operator
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2 FIORALBA CAKONI AND PETER MONK

for the 3D Maxwell problem. We characterize the target signatures as eigenvalues of
an interior problem where we suppose that the screen covers a part of the boundary
of an artificial closed bounded domain in R?® on which the eigenvalue problem is
defined. This target signature is simpler than our previous 2D signatures for thin
screens in that the auxiliary scattering problem that contributes to the modified far
field operator is independent of the details of the conducting screen.

The paper is structured as follows. In Section 2 we introduce the function spaces used
on this paper, and present the forward problem of scattering by a known screen. We
derive an existence theory for such problems that encompasses models reported in the
literature (e.g. [16]). In Section 3 we discuss the inverse problem of determining the
surface impedance from far field data, and prove a uniqueness theorem for the problem
suggesting that the data we use for target signature is rich enough to characterize the
screen. We then define the modified far field operator and the target signatures for
this paper. We prove a relationship between the target signatures and injectivity of
the modified far field operator. In Section 4 we study the eigenvalue problem related
to our target signatures called the Y-Steklov eigenvalue problem. Section 5 presents
a discussion on the determination of ¥-Steklov eigenvalues from far field data, and
shows some preliminary numerical results illustrating our theory.

2. Notation and the Forward Problem. We start this section by summa-

rizing the function spaces needed for this paper. Then we move on to discuss the
forward scattering problem for a thin resistive or conductive screen. This problem
will underly our discussion of the inverse problem.
The thin screen occupies a region I' C R? denoting a piecewise smooth, compact, open
two dimensional manifold with boundary. We assume that I is simply connected and
non self-intersecting such that it can be embedded as part of a piece-wise smooth
closed boundary OD circumscribing a bounded connected region D C R? having
connected complement. This determines two sides of I' and we choose the positive
side using the unit normal vector v on I' that coincides with the normal direction
outward of D. To be able to precisely define the scattering problem and for later use
we recall the definition of several Sobolev spaces:

2.1. Function spaces. Let ) be a domain in R? then recall the standard space
of curl conforming vector functions on )

H(curl,Y) := {u € (L*(Y))? : curlu € (L2(y)3}

and denote by Hj,.(curl,R?) the space of u € H(curl, Bg) for all B where Bg is
a ball centered at the origin with radius R containing I' containing I'. Then, using
the space of L? tangential vector fields on I' denoted by L?(I"), we define the Sobolev
space

X (curl, Bg) := {u € H(curl, Bg) : ur € L3},

endowed with the natural norm

||u||§((curl,BR) = HUH%‘I(CHI‘],BR) + HuTH%Q(F)

where ur = (v x u) x v. Next let D be a bounded region in R® with piecewise
smooth boundary 9D such that I' C 0D, chosen such that the positive side of T’
coincide with the outward direction on 9D. We can also define corresponding space
Hjoe(curl, R3\ D). Obviously we also have

X(curl, D) := {u € H(curl, D) : ur € L}I)},

This manuscript is for review purposes only.
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TARGET SIGNATURES FOR SCREENS 3

X(curl, B\ D) := {u € H(curl, B \ D) : ur € L}(I")},

and the correspondingly Xj,.(curl,R3\ D). For later use we define additional Sobolev
spaces on the piece-wise smooth boundary 9D

H;(0D) :={p € H*(OD)* : v- p=0a.e. on D} ,
H?(divpp,0D) :={p € H}(0D) : divgp p € H*(0D)} ,
H*(div)p,dD) := {u € H*(divgp,dD) : divep =0 on D} ,

H~'2(curlpp, dD) := {y, € HY*(0D) : curlop p € H_1/2((‘3D)} ,

where curlyp and divgp are the surface scalar curl and divergence operator, respec-
tively, and s € R. In addition we will denote by curlyp the surface vectorial curl.
We rename the spaces H_(0D) and H°(divop,dD) by L?(8D) and H (divap, dD), re-
spectively. The space H;(0D) is equipped with the standard norm (see, for instance,
[25]), whereas the spaces H*(divop,dD) and H~/?(curlyp,dD) are endowed with
their respective natural norms

lell 17+ (aivon,op) = 1l op + IIdivan 2 op and

HHHif—l/z(curlaD,aD) = ||H||2—1/2,8D + [ curlop /J'||2—1/2,8D'

Note that integration by parts in H(curl, D) (or H(curl, Bg \ D)) defines a duality
between the rotated tangential trace in H~'/?(divsp,dD) and the tangential trace in
H~1/2 (curlpp, D). For more details about the norms and properties of this opera-
tors, see for instance [25] for smooth boundaries and [3, 4] for Lipschitz boundaries.

2.2. The forward problem. We now rigorously describe the forward scattering
problem. We first define the time harmonic incident electric field e=*?Ef(x) at an-
gular frequency w to be a plane wave, where the spatially dependent part E? satisfies
the background Maxwell system in all space and is given by
(2.1) E'(x;x,d,p) = écurl curl pwe™ 4> = ik(d x p) x de™"dx,

Here the unit vector d € R?, |d| = 1, is the direction of propagation and p € C? is
the polarization. To satisfy the background Maxwell’s system, we must have |d| = 1,
P # 0 and d-p = 0. In addition, x > 0 is the wave number that is related to the
angular frequency w of the radiation by x = w,/€gug where €g and pg are electric
permittivity and magnetic permeability of the homogenous background medium (free
space). Other incident fields can also be used (for example those due to point sources).
Following [9, 20, 27], the electromagnetic properties of a thin screen with central
surface I' are described by a matrix valued function X defined on I". This is a function
of position on the screen, its thickness 4, and the physical properties of the screen
such as electric permeability, magnetic permittivity and conductivity. We take it to
be a 3 x 3 piecewise smooth complex valued matrix function of position on I' in order
to model an anisotropic screen. The tensor Y maps a vector tangential to I at a point
x € I" to a vector tangential to I'" at the same point x € I'. To be more precise, on
a smooth face of the surface T' let v(x) be the smooth outward unit normal vector
function to I' and let t; (x) and t2(x) be two perpendicular vectors in the tangent plane
to I' at the point x such that t;,ts,» form a right hand coordinative system with
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4 FIORALBA CAKONI AND PETER MONK

origin at x. Using these coordinates, the matrix valued function ¥(x) is represented
by the following dyadic expression

(2.2) ¥(x) = (all(x)le(x) + Ulg(x)fzg(x)) f:l(x)—l—(agl(x)f:l(x) + Ugg(x)fg(x)) ta(x).

In general, for dispersive thin screens, ¥ := ¥(x,w) is frequency dependent, but we
omit the w-dependance since our target signatures use scattering data at a single fixed
frequency. Note that, if £(x) = aty(x) + Bto(x) for some «, 3 € C, then ¥(x)&(x) is
the tangential vector given by

E(x)&(x) = (agll(x) + 5021(X))E1(X) + (Oéﬂlz(x) + 5022(X))£2(X)
and then
23) EX) - SX)EX) = [afo11(x) + @B o1a(x) + Ba oo (x) + |B]2022(x).

Generically, we assume that in the local coordinate system on I', ¥ € (L*°(T"))
(unless otherwise indicated) thus

2X2

¥ LAT) — LA(T) mapping £— XE.

The screen causes a jump in the tangential component of the magnetic field. To
describe this we need some notation: for any sufficiently smooth vector field W defined
in R3\T let W = W|gs 5 and W~ = W|p. In addition, let Wi = v x (W*xv) on
I" the tangential trace from inside and outside. Now, given the screen I' and associated
tensor X, as well as the incident field, the forward scattering problem for the screen
is to determine the electric field E such that

(2.4a) curlcurl E — k*E =0 in R\ T,
(2.4b) E=E'+E’ in R3\ T,
(2.4c) E; =E; on T,
. v X (cur —curlkb) =11k on
(2.4d) (curl ET 1E7) = ikXES T,
(2.4e) | l‘im (curl E® x x —ik|x|E®) = 0.
X|—00

Here E® denotes the scattered electric field, and (2.4e) is the Silver-Miiller radiation
condition which holds uniformly in all directions X = x/|x|. Equations (2.4c) and
(2.4d) model the thin anisotropic conductive/resistive thin screen [9, 20, 27].

First we need to impose conditions on ¥ in order to guarantee the uniqueness of
solutions of the forward problem (2.4a)-(2.4e). Formally, integrating by parts over a
ball By of radius R > 0 centered at the origin with D C Bpg, we have that

/ (curl E* - curl v — k*E* - %) dV — i/{/ YET -vrdA
Br r

+/ uxcurlES-vdA:m/inT.deA.
OBr r
Now taking v = ES, and choosing E* = 0 we obtain
iﬁ;/ (vxE)-H*dA = vxcurlE®*-E dA
OBRr OBRr

:/ (|cur1ES|2—/i2|Es|2dV—m/EE%-E;dA
Bgr N
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TARGET SIGNATURES FOR SCREENS 5

Thus Rellich’s Lemma [13, Theoem 6.10] implies the uniqueness of any solution of
(2.4a)-(2.4e) provided that

R[ (wxE) HdA= _;R/ZES B dA <.
dBr r

To provide explicit conditions on the complex valued surface tensor for which the

above equality holds, we impose the condition

(2.5) % (S(X)T . Z(x){(x)) >0, V complex fields £ tangential to I" a.a. x € T

where the quadratic form is given by (2.3). Setting
A= |C¥|2§R(0'11)7 C:= ‘ﬂIQ%(UQQ), 2B := 56 (0'12 +521)

A B
we see that (2.5) is satisfied if the Hermitian matrix ( B C ) is non-negative, i.e.

its eigenvalues are non-negative, which is the case provided

(2.6) R(o11) >0 R(c22) >0 and R(o11)R(o22) > 1/4|010 + Fa1 |

It is easy to see that (2.6) can be equivalently written in the following form
R(o11) >0 R(o22) >0 and R(o11) + R(0o22) > |o12 + Ta1 |

which is customarily found in the literature on meta-surfaces [2, 18].

The proof of the existence of the solution of (2.4a)-(2.4e) follows the standard ap-
proach of [8, 25]. Given E! it is natural to look for the solution E® of (2.4a)-(2.4e) in
Xioc(curl, Bg) (since the tangential component of E® is continuous across I'). Using
the exterior Calderon operator, we can reduce the problem to the bounded domain
Bpr. Then we seek E® € X (curl, Bg) such that

/ (curl E* - curl v — k?E* - %) dV — m/ YES -V dA + ik G.(x xE®)-vpdA
Br r OBr
:/im;EiT-VTdA—m G (X xEY-¥pdA  Vve X(curl, Bg).
r OBRr
Here G, is the exterior Calderon operator (c.f. [25]) which maps a tangential vector
field 7 on OBpR to (1/ik)x x curl E|sp, where the outgoing field E (i.e. satisfying
(2.4e)) is a solution of

VXE-k’E=0 in R*\Bg, ¢xE=7 on OBg.

The analysis of the terms containing G. follows exactly the lines of [5, Theorem 2.3]
(see also [25, Theorem 10.2]) based on a Helmholtz decomposition and on the fact
that the operator ikG, can be split into a compact part ixGL and a nonnegative part
ikG?. To avoid repetition, we highlight here the only difference coming from the more
general choice of the surface tensor Y, which amounts to conditions on ¥ for which

a(W, W) = /

(Jcurl W|* + [W|?) dA + n/ S (EWr - Wrq) dA
Br

r

fm/m(szWT) aA
T
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6 FIORALBA CAKONI AND PETER MONK

is coercive in X (curl, Bg), where we have ignored i [, GZ(%X x W) -WrdA > 0.
It is sufficient to find 6 such that, for some C > 0, '

R (e7a(W, W) = C (W12 oy + Wrla )

which, given (2.5), is satisfied if for some 0 < § < 7/2 and v > 0 constant and for
almost all x € T,
) are

A = |a)*(R(0o11) cos O + S(o11) sin h)), C = |B|*(R(0og2) cos O + I(0og2) sin 6))

(cosO)R (E3x) - S(0)(x)) + (5in0)3 (E3x) - S(0€(x)) > V€G-

UJ" h
Qr o

As before, this condition is satisfied if the eigenvalues of the matrix <

positive uniformly on I', where now

2

Thus the existence of the solution holds if for some 0 < 6 < 7/2 and v > 0 constant
and for almost all x € I' we have

B:=af <M0080+ Wsin&) .
i

(2.7a) R(o11 + 022) cosf > 7, S(o11 + 022) sin @ >,
(27b) (%(0—11) cos 0 + %(0'11) sin 9))(%(0’22) cos 0 + %(0'22) sin 9))
> mcos@—i—m%@sine ,
1

2

Summarizing our requirements on Y, throughout the paper we require that the surface
tensor ¥ satisfies the following assumption which guarantees that the forward scatter-
ing problem (2.4a)-(2.4e) is well-posed, i.e. it has a unique solution in X, (curl, R?)
depending continuously on the incident field.

ASSUMPTION 1. The surface tensor ¥ € L>(T')2*? satisfies conditions (2.6) and
(2.7).
Note that Assumption 1 is quite general in that anisotropic surfaces are included in
our analysis. If ®(X) is positive definite our assumptions include the so-called highly
directional hyperbolic meta-surfaces, for which the &(X) is not sign-definite, i.e. has
one positive and one negative eigenvalue at each point on I'. However, in the case of
resistive screens, i.e. when R(X2) = 0, we need I(X) to be positive definite. Note also
that we don’t assume any symmetry on the tensor ¥ to possibly include symmetry
breaking meta-surfaces (see e.g. [2, 17, 18, 16, 22] and the references therein).

3. The Inverse Scattering Problem. For an incident plane wave
E‘(x;d,p) := E(x; x,d, p)

given by (2.1) (since the wave number « is fixed from now on we will drop the depen-
dence of the fields on k), the field far field pattern Eo,(%X;d, p) of the corresponding
scattered field is defined from the following asymptotic behavior of the scattered field
[13]

(3.1) E*(x;d,p) = M {E‘X’(ic;d,p) +0 C)} as 1 = |x| = co.

This manuscript is for review purposes only.



189
190
191

193
194

195
196
197

198
199
200

201

216

TARGET SIGNATURES FOR SCREENS 7

Our first goal is to prove a uniqueness theorem for the general inverse problem of
determining ¥ from scattering data. For this we need the following lemma, where
S:={x€R?: |[x|| = 1} denotes the unit sphere in R? :

LEMMA 3.1. Under Assumption 1, the set
Span {ET(-;d,p)|p foralldeS andpeR?, d-p = 0}
is dense in L?(T).
Proof. Assume that ¢ € LZ(T) is such that
/¢~ET(~;d,p)dA:0 foralld€Sand peR3, d-p=0.
r

Let U € Xj,c(curl, Bg) be the unique radiating solution (i.e. it satisfies the Silver-
Miiller radiation condition) of

curlcurl U — £°U = 0 in R3\ T
U; =U;, on Tl
v x (curlUT — carl U™) —iwX UL = ¢ onT.

Note that the transposed tensor X7 satisfies Assumption 1 since it does not involve
any conjugation. Thus, noting that Ut = U~ on I" and using the boundary condition
for the total field E,

0= /F (V xcurlUT — v x curl U™ — iliETUT) -ErdA
:/F(churlU'*'—uxcurlU_)~ET—mEET~UTdA
:/F(churlU'*'—uxcurlU_)~ET—(churlE+—chur1E_)~UTdA
:/F(churlU'*'—churlU_)~E§«—(churlEs+—churlEs_)-UTdA

+ / (1/ x curlUT — v x curlU_) E%« — (V x curl E'T — v x curlEi_) -UrdA.
r
The first integral in the last sum is zero since both U and E? are in Xj,.(curl, Bg) (i.e
their tangential traces across I' are continuous) and are both radiating solutions to
Maxwells equation. The second term in the second integral is also zero since curl E*
doesn’t jump across I', but we keep it for use with integration by parts below. Thus

noting that all jumps across D \ T are zero, integrating by parts inside in D and
Bgr \ D, and using that U and E* satisfy the same Maxwell’s equations, we arrive at

0:/(uxcur1U+—V><cur1U*)~EiT—(churlE”—churlEi*)~UTdA
r
:/ vxculUT-EL — v x cwrl EY - Up dA
aD
—/ vxcurlU -EY —v x curl E - Up dA
aD
:/ vxcurlU-EY —v x curlE - Up dA
Br

= i/{/ (% x curl U(x)) - (d x p) x de” ¥ 4 jkx x (d x p)e” "% . Up(x) dAy
9Br
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8 FIORALBA CAKONI AND PETER MONK

foralld € S and p € R3, d-p = 0, (note that pexp(—ixd - x) is an incident field).
Therefore we have (see e.g. [13, Theorem 6.9])

1 . 4
0=dx / { (% x curlU(x)) x d + (% x U)| - pe”"4*dA = ,—WU"O(?{, d) - p.
9B LK ik
Since this holds for all polarizations p we conclude that U* = 0. Rellich’s Lemma
implies U = 0 in R3 \ T, whence ¢ = 0 which concludes the proof. 0

Now we are ready to prove a uniqueness theorem for the tensor X.

THEOREM 3.2. Assume that X1 and Yo satisfy Assumption 1 and that T' is a
given piece-wise smooth open surface. Let EY(X;d,p) and E®2(X;d,p) be the
far field pattern corresponding to the scattered fields E*'(-;d,p) and E*2(-;d,p) in
Xioe(curl, R3) satisfying (2.4a)-(2.4¢) with $1 and Xy respectively, and incident plane
wave E'(-;d,p) given by (2.1). If E1(;d,p) = E®2(;d,p) for all d € S and
pEeR3 withd -p=0, then ¥; = Xs.

Proof. Let U(x) := E®!(x;d,p) —E*?(X;d,p) = E'(x;d,p) —E?(X;d,p). From
the assumption we have U (x) = 0 for x € S and hence by Rellich Lemma U(x) =0
for all x € R?\ T'. Hence, noting that Uz = 0, we have for almost all x € T

0=vx (curlUT — curlU™) = ixX  EL(%x;d, p) — inX2E2(%;d, p)
= ir(31 — o) EB7(%:d, p).

Viewing ¥; — X5 as a linear operator on L?(T"), the result follows from Lemma 3.1.0

Note that the proof of Theorem 3.2 shows that if ¥ is a piece-wise continuous scalar
function, then the far field pattern due to one incident plane waves uniquely deter-
mines it. Nevertheless, our target signatures require the scattering data as stated in
the next definition.

DEFINITION 3.3 (Inverse Problem). The inverse problem we are concerned with
is, provided that the shape I' of the surface is known, determine indicators of changes
in the surface tensor 3 from the scattering data. The scattering data is the set of the
far field patterns E*(x;d,p) € L?(S) for all observation directions X and incident
directions d on the unit sphere S and allp € R?, d-p = 0 at a fired wave number k.

REMARK 1. It is important to emphasize that our theoretical study holds if the
scattering data is given on a partial aperture, i.e. for observation directions X € S, C S
and incident directions d € S; C S and two linearly independent polarization p such
that p - d = 0, where receivers location S, and transmitters locations S; are open
subsets (possibly the same) of the unit sphere.

The scattering data defines the far field operator F : L?(S) — L2(S) by
(3.2) (Fe)®) = [ B¥(x:d g()dsa, X €5.
]

Note that F' a linear operator since E*° depends linearly on polarization p by the
linearity of the forward problem and linear dependence of the incident wave on p.
It is bounded and compact [7]. By superposition F'g is the electric far field pattern
of the scattered field solving (2.4a)-(2.4e) with E’ := E} where Ef is the electric
Herglotz wave function with kernel g given by [13, Section 6.6]

(3.3) E(x) =i /S erdxg(d)dsq g€ L(S)
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TARGET SIGNATURES FOR SCREENS 9

which is an entire solution of the Maxwell’s equations. A knowledge of the scattering
data in Definition 3.3, implies a knowledge of the far field operator data. From now
on the far field operator F' is the data for our target signatures. In the following
we will denote by Eg, E; and Eg the total electric field, the scattered electric field
and the electric far field pattern, respectively, corresponding to the electric Herglotz
incident field Ej.

Our target signatures are based on a set of eigenvalues which can be determined from
scattering data. This method makes use of a modification of the far field operator
using an auxiliary impedance scattering problem, similar to that introduced in [11] for
the Helmholtz equation. Given the particular features of Maxwell’s system, we adopt
a slightly different approach to that used in [11] in order to avoid dealing with a mixed
eigenvalue problem. Furthermore, to restore the compactness of the electromagnetic
Dirichlet-to-Neumann operator, we include a smoothing operator following [12].

To this end we recall the linear operator S first introduced in [12, 19]:

(3.4) S : H '2(curlyp,dD) — HY?(divy,,dD)
' v +—Sv :=—curlypgq,

where ¢ € H'(dD)/C is the solution of the problem

Aspq = curlygp v on 9D

where Agp is the surface Laplacian on 0D also given by Agpq = curlyp curlyp q.
In other words for v € H~'/2(curlpp,dD) by

(3.5) Sv = —curlypAj}curlyppv

By using an eigensystem expansion (e.g. [23]) we see that curlyp ¢ € Htl/z(é‘D).
Thus, Sv € Htl/Q(aD), divgp v =0 and

1SVl 172109, .00) = 1SVI1/2,00 = [ cutlop qlli /2,00 < Cs|l curlop v|-1/2,6p,

which means that S is bounded linear operator. In addition, since curlsp(curlypp g —
v) = 0, we can find ¢ € HY?(9B) such that curlyp ¢ — v = Vgpep. Therefore, for
all v.€ H='/2(curlyp,dD), there exist ¢ and ¢ such that v = curlyp ¢ — Vape, or,
equivalently, Sv = v + Vypp.

We can now define the following auxiliary scattering problem for the field EX):

(3.6a) curlcurlEM — 2EN =0 in R*\ D,
. = * 4+ E'  in ,
3.6b EXM = EM* 4 E R*\ D
(3.6¢) v x curlEY — ASEQ) =0 on 8D,
(3.6d) lim (curlE(/\)’s X X — i/{|x|E(’\)’5) =0.
[x| =00

Here E™)# denotes the scattered field for the above problem, and A € C is an auxiliary
parameter which will play the role of the eigenvalue parameter used to find a target
signature for 3.

To study the well-posedness of (3.6a)-(3.6d) we recall from [12, Lemma 3.1] that S
satisfies

(3.7 Sur -wWrds = / ur-Swrds = Sur - Swrds,
oD 8D oD
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for all u, w in H(curl, D) or H(curl, B \ D). Thus integrating by parts formally we
have

/ (curl EX* . curl v — k2EN* . 5) dV — A SE% -vrdA
Br aD

. + v X cur -V = 4 VT .
3.8 1E* - ¥dA=) | SEL -vrdA
8Br oD

From (3.7) by taking v := E?M)»* and E! = 0 in (3.8) in the same way as for the
forward scattering problem we see that uniqueness is ensured if $(A) > 0. Writing
faBR v x curl E® - ¥ dA in terms of the exterior Calderon operator G, (c.f. [25]), we

obtain the existence of the solution E®) € Hy,.(curl, R\ D) by means of the Fredholm
alternative [12, Theorem 3.3] stated in the theorem below.

THEOREM 3.4. Assume that A € C is such that S(\) > 0. Then the auziliary

problem (3.6) has a unique solution EX) € Hy,.(curl, R\ D) depending continuously
on the incident field E.

Let EN(-;d,p) be the solution of (3.6a)-(3.6d) corresponding to the incident plane
wave Ef 1= Ez( d,p) and let EX) Oo( d ,P) € L?(S) denote its far field pattern.
The corresponding far field operator FV) = L2(S) — LZ(S) is

(3.9) (FNg)(x) := /S EM>*(x;d,g(d))dsq, xes,

which is the far field pattern Eé )% of the solution E()‘)’ to (3.6) with incident field
E’ := E} the electric Herglotz wave function with kernel g given by (3.3).

Next we define the modified far field operator F : L?(S) — L2(S) by
(3.10) (Fe)(%) : = (Fg)(%) - (FMVg)(%)
- / [Ew(x; d,g(d)) — EM=(x:d,g(d))] dsa.
s

The study of injectivity of F, allows us to arrive at an eigenvalue problem whose
eigenvalues are the target signature for the thin screen. Indeed, assume Fg = 0, for

some g € L2(S), g # 0, so that Eg = Eg\)’oo on S. By Rellich’s lemma, Eg = E(g’\)’s
in R*\ D, and the same holds true for the total fields Eg = Eg‘). Using the boundary
condition (3.6¢) for E(gA) we obtain

vx cwlEf ~ASEgz =0 ondD,

where again + and — indicate that we approach the boundary from outside and inside,
respectively. On the other hand, from (2.4c)-(2.4d) we have

E;‘T =Eg; on 0D, v x curl E;‘ =v xcurlEg on 9D\ T,
and v X curl E; = v X curl E; + inZE'g"T on I'.

We can eliminate E;‘T using the above three relations, yielding the following homo-
geneous problem for the total field E, from inside D:

curlcurl Eg — /12Eg =0 in D,
v X curl Eg + ikXEr = ASEgr onI,
v x curl Eg = ASEgp on OD\T.
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For fixed k we view this problem as an eigenvalue problem for A. In particular, it is
a modified Steklov type eigenvalue problem corresponding to the screen described by
(', X). If this homogeneous problem has only the trivial solution, then Eg = 0 in D
and by continuity of the electromagnetic Cauchy data Eg = 0 in R3\ T. The jump
conditions (2.4c)-(2.4d) ensure that Eg solves Maxwell’s equations in R? and, the fact
that Eg = 0 implies that E5 = —EZ in R®. Hence the Herglotz function E} = 0 as an
entire solution of Maxwell’s equations that satisfies the outgoing radiation condition,
whence g = 0 (see e.g. [13, Chapter 6]).

DEFINITION 3.5 (X-Steklov Eigenvalues). Values of A € C with S(\) > 0 for
which

(3.11a) curlcurl w — k?w = 0 in D,
(3.11b) v X curlw + ikXw = ASwrp on T,
(3.11c) v x curlw = ASwr on 0D\ T,

has non-trivial solution, are called X-Steklov eigenvalues.
We have proven the following result.

THEOREM 3.6. Let X satisfies Assumption 1. If \ is not a X-Steklov eigenvalue,
then the modified far field operator F : L#(S) — L%(S) is injective.

Note that the converse is not true, i.e. if A is a 3-Steklov eigenvalue this doesn’t
necessary imply that F is not injective. Next we study the range of the compact
modified far field operator. To this end we need to compute the L2-adjoint JF3, adjoint
of the modified far field operator Fy corresponding X..

LEMMA 3.7. The adjoint F35, : L3(S) — LZ(S) is given by
F'g = RFy  RE
where Fxyv is the modified far field operator corresponding to the scattering prob-

lem (2.4a)-(2.4¢) with the coefficient X7 (the transpose of the tensor ¥). Here
R: L2(S) — L3(S) is defined by Rg(d) := g(—d).

Proof. First, in the same way as in the proof of [13, Theorem 6.30], we can show
that

kAT {q . E(/\)"’O(fc; d,p)—p- E(/\)’OO(—d; —X, Q)} =
/ [V x EV(;d,p) - curlEV(:; —%, q) — v x curl EN (- d, p) - EX(+; =%, q)} dA

OBRr
= 0.

Then using the boundary condition (3.6¢) and the fact that both fields satisfy the
same Maxwell’s equations in By \ D we obtain

(3.12) ik {q EM=(x;d,p) — p- EM>®(—d; %, q)}
=A[ B p) - SBY( % @) - SEY (1 p) BV (s % q)] dA = 0
D

due to the symmetry of S. Then, the reciprocity relation

q- EO‘)’O"(X; d,p)=p- E()‘)’oo(fd; —%,q), foralld, X in S and any two p,q in R?
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used in the same way as in [13, Theorem 6.37] shows that
(3.13) (FW) g = RFVRg.
The above proof suggest that, since in general ¥ is not symmetric, to compute the
adjoint Iy, we must consider the scattering problem with transpose ¥ 7. Using argu-
ments similar to the proof of (3.13), we can prove
k4T {q . E(E)‘)’Oo(f(; d,p)—p- E;/\T)’Oo(—d§ —X, Q)} =
/ |:V X E(E/\)(-; d,p) ~cur1E(E/\T)(-; —X,q) — vV X curlE(Z/\)(-; d,p)- E(Z/\T)(-; -X, q)] dA
OBr
=0.
where the subscript ¥ and X7 indicate that the fields correspond to the scattering
problem (2.4a)-(2.4e) with ¥ and X7, respectively. Again using the fact that both
total fields solve the Maxwell’s equation in Br \ I" together with the jump conditions
(2.4c)-(2.4d) yield
(3.14) ikdm {q . E(ZA)’OO(X; d,p)—p- E(EAT)’OO(—d; —%, q)}
2/ [E(Q)T(ﬁd,p) - ETE(Q%T(-; ~%,q) — SEQ(+d, p) -E(;T),T(-; —fc,q)} dA =0.
r
Then, the reciprocity relation

q- E(E'\)’oo(fc; d,p)=p- E(E)‘T)’Oo(—d; —%,q), foralld, X in S and any two p,q in R?

now gives
(3.15) Fyg = RFxTRg.
Combining (3.13) and (3.15) proves the result of the lemma. d

Lemma 3.7 implies the following result about the range of the modified far field
operator F. (Note that in what follows F denotes the modified operator corresponding
to X.)

THEOREM 3.8. Let X satisfies Assumption 1. If X is not a X7 -Steklov eigenvalue,
then the modified far field operator F : L#(S) — L#(S) has dense range.

We close this section with some equivalent expression related to the operator S, for
later use. From [13, Page 236] we have

curlppv = —Vop - (v X v),

and since the vector surface curl denoted curlyp is the adjoint of the scalar surface
curl, we have
curlspv = —v x Vgpo

for a scalar function v on dD. We can then verify that

curlgppeurlyp = —Asp.
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Using these relations we see that an equivalent definition of S is
(3.16) Sv=—vxVapA,5HVap - (v x V)

and this is the expression we use in our numerical experiments in Section 5. Note
that for any surface tangential vector v € H~'/2(curlyp, D)

curlpp(Sv —v) = (—curlaDcurlaDAgll)curlapv —curlgpv) = 0.
From here we see that there exists a v € H'/2(9D) such that
(3.17) Sv=v+ Vypu.

4. The ¥-Steklov Eigenvalue Problem. We can write the X-Steklov eigen-
value problem defined in Definition 3.5 in the equivalent variational form: Find
w € X (curl, D) such that

(4.1) / curl w - curl v — w?w - vdV
D
—m/EwT~deA+/\/ Swr - SvrdA =0 Vv € X(curl, D),
r aD

where we have used (3.7) and recall that the operator S : H~?(curlyp,dD) —
HY2(divyp, D).
PROPOSITION 1. Let ¥ satisfy Assumption 1.

1. If R (E(x)—r . E(x){(x)) >0 a.e. x € I', V& tangential complex fields, then all

3 -Steklov eigenvalues A satisfy S(A) > 0. Real eigenvalues A (if they exist)
do not depend on X.
2. If R(X) = 0 (the zero matriz) almost everywhere on I' then the eigenvalues
maybe be real and complex. Complex eigenvalues appears in conjugate pairs.
3. If R(X) = 0 (the zero matriz) almost everywhere on T and (X)) is symmetric
then the eigenvalue problem is self-adjoint hence all eigenvalues are real.

REMARK 2. More generally if R (ET - E£> > 0 in 'y C T, the proof of Case 1
shows that real eigenvalues (if they exists) do not carry information on ¥ in T'g

Proof. Suppose $(A\) < 0 and Case 1 holds. Letting v := w in (4.1) and taking
the imaginary part, yields wp = 0 on I'. If S(X) < 0 we obtain [, |[Swrp[*dA =0
we obtain Swp = 0 on 9D and from boundary condition also v x curlw = 0 on T
Hence w = 0 in D as a solution of the Maxwell’s equation with zero Cauchy data on
T". Furthermore, real A are eigenvalues of the following problem

2

curlcurlw — k*w =0 in D, v X curlw = A\Swr on 0D,

(which from [12] it has an infinite sequence of real eigenvalues accumulating to +00)
with corresponding eigenvectors satisfying w|r = 0. Obviously, if they exists, do
not depend on ¥. Case 2 follows form the fact that all operators are real and it is
sufficient to work on real Hilbert spaces. Case 3 is obvious and is discussed later in
this section. ]

Using Helmholtz decomposition we have that

X(curl, D) = X(curl,div0,D) VP  where P:={pe H'(D);p=0 ondD}
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and X(curl,div0,D) := {u € X(curl, D) divu=0in D, v-u=0 on 0D\ T}.

We can split w = wg + Vw, wg € X(curl,div0, D) and w € P. Using the fact that
curl(Vw) = 0 and that (Vw)r = 0 and taking in (4.1) the test function v = V¢ for
& € P we obtain that w satisfies fD Vw - V& =0, implying that w = 0. Therefore we
view (4.1) in X (curl,div0, D). By means of Riesz representation theorem, we define
Ay ., T, S: X(curl,div0, D) — X (curl,div 0, D) by

curlw - curlv+w -vdA — z'/s/ Ywr - VrdA,

(AE,KWvV)X(curl,D) = / r

D

(e V) = (62 = 1) [ w-vav.

(SW, V)X(curl,D) = / SWT ' SVT dA = SWT -V dA7
oD oD

respectively. Then the eigenvalue problem of finding the kernel of
(As x + T, +AS)w =0 w € X (curl,div0, D).

Since ¥ (not necessarily Hermitian) satisfies Assumption 1 we have that the operator
(not necessarily selfadjoint) Ay, ,, is coercive hence invertible. The selfadjoint operator
S : X(curl,div0, D) — X (curl,div0, D) is compact. Indeed let w; — wq converges
weakly to some wq € X (curl,div 0, D). By boundedness of the trace operator we have
that (w; — wo)r — 0 in H’1/2(curlap, 0D) and by the boundedness of S we have
S(w; — wo)r converges to 0 weakly in H'/2(divy,,dD) and strongly in LZ(0D) by
the compact embedding of the prior space to the latter. Then

18w, = o) Beeunpy = | Stows = wo)r - (8Tw; — o)) dA
aD T

= BDS(W]‘ — WO)T . (S(Wj — WO))T dA < C”S(W] — WO)THL%’(BD) —0 StI'OIlgly,
where we use the trace theorem and the fact that (w;—wy) is bounded in X (curl, div 0, D).J]
The selfadjoint operator T, is also compact since X (curl, div 0, D) combined with the

fact that v x curlu € L?(dD) and curlu € H(curl, D), is compactly embedded in
L?(D) (see e.g. [14]). From the Analytic Fredholm Theory [13] we conclude that
Ay .+ Ty + AS has non-trivial kernel for at most a discrete set of A € C without finite
accumulation points, and is invertible with bounded inverse for A\ outside this set.

From the above discussion, for the given wave number x we can choose a constant «
such that for f € H'/2(divy,,dD) the problem

(4.2a) curl curlw — k?w = 0 in D,
(4.2b) v x curlw + ikXwr = aSwp + f onT
(4.2¢) v x curlw = aSwrp + f on O0D\T.

has a unique solution in X (curl, D). Note that if %(ET - ¥€) > 0 on some open set
I'o C T, one can choose a = 0. We define the operator Ry : HY/?(div),,dD) —
Hl/Q(ding, 0D) mapping f — Swg where w solves (4.2).

LEMMA 4.1. Ry : H'/?(div)y, dD) — HY?(divyp, dD) is a compact operator.
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Proof. This Lemma is proven in [12, Lemma 3.4] for a slightly different problem.
We include it here for the reader convenience. Equation (4.2a) implies that curlw €
H(curl,div’, D) and equations (4.2b) and (4.2c) imply that v x curlw € L?(T'). From
[14] we conclude that w € H'/2(D) and v - curlw € L?(D) implying curlgp wr =
v-curlw € L?(0D). But, by definition, there exists ¢ € H'(dD)/C such that
Swr = — curlypq € HY?(div),,dD). Since curlyp curlyp g = curlypp Swr =
curlyp wr € L2(0D) we obtain that curlyp g € H} (0D). Hence Swr := — curlyp q
isin H 1(divg s 0D). The proof is completed by recalling the compact embedding of
H'(div9 ), dD) into HY/?(div%p, D). u|

We have shown that (A, w) is an eigen-pair of the X-Steklov eigenvalue problem if

1

S SWT) is an eigenpair of the compact operator Ry.

and only if (

LEMMA 4.2. Let ©7 be the transpose of X. If X is a X7 -Steklov eigenvalue then
1/(A—a) is an eigenvalue of Ry : HY?(divyp, dD) — HY/?(divY ), D) which maps
h — Svp where v € X (curl, D) solves

(4.3a) curl curl v — k?v = 0 in D,
(4.3b) v x curlv 4+ ikX vy = aSvr + h onT
(4.3c) v xcurlv=aSvr+h on OD\T.

Furthermore Rxr is the transpose (Banach adjoint) operator Rg of Ry, where we
have identified the Sobolev space HY?(divYy, dD) with its dual. In particular the set
of X7 -Steklov eigenvalues coincides with the set of ¥.-Steklov eigenvalues.

Proof. First note that if ¥ satisfies Assumption 1 so does ¥ T, hence the char-
acterization of ¥ T-Steklov eigenvalues follows form the above discussion. Next, let
f.he Hl/z(ding, 0D) and w and v such that Ryf = Swr and Ry,rh = Svr, where
w and v satisfy (4.2) and (4.3), respectively. Then we have

O:/ curlw - curlv — k2w - vdV
D
fiH/EWT~VTdA+Oz/ SWT~SdeA+/ f-SvrdA
r aD oD

and
0 :/ curl v - curlw — k?v - wdV
D

—m/ETvT~wTdA+oz SVT-SWTdA+/ h-SwrdA.
r

oD oD

where we have used (3.17), the fact that divep f = divogp h = 0 and the Helmholtz
orthogonal decomposition g = curlygpq + Vgpp for any tangential field g on the
boundary. The above yields

/ f-SvpdA= h-Swp dA.
oD oD

This proves that Ry = Rs7. The fact that they have the same non-zero eigenvalues
follows for the Fredholm theory for compact operators, more precisely that for n # 0,
the dimension of Kern(Rx — nl) and Kern(Ry, — nI) coincide. d
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Thus we have shown that if ¥ satisfies Assumption 1 then the set of X-Steklov ei-
genvalues is discrete without finite accumulation points. The existence of (possibly
complex) X-Steklov eigenvalues could be proven by adapting the approach in [19]. We
don’t pursue this investigation here since it is out of the scope of the paper.

The self-adjoint case. If ¥ is symmetric and R(X) = 0 a.e. in T, then Ry
is compact and self-adjoint. Note that Assumption 1 implies that (X) is positive
definite. In this case X-Steklov eigenvalues {);} form an infinite sequence of real
numbers without finite accumulation point. We have seen that p; = )\i%a, where
{u;, d)j} is an eigenpair of the compact self-adjoint operator Ry, and that by Hilbert-
Schmidt theorem the eigenfunctions ¢; form a orthonormal basis for H 12(div, OD).
To obtain additional estimates in this case we need the assumption

ASSUMPTION 2. The wave number k is such that the homogeneous problem

curlweurlw — k?>w =0 nD

vxculw=0 on OD\T vxcurlw =(X)wpr on T

has only the trivial solution.

THEOREM 4.3. Under Assumption 2 there are finitely many positive 3-Steklov
eigenvalues, thus the eigenvalues accumulate to —oo.

Proof. Assume to the contrary that there exists a sequence of distinct A; > 0
converging to co. Denote by w; the solution of (4.2) in X (curl, D) with f := ¢;. We
may normalize the sequence ||W;||x(cur,0) + W, 7|lz2(opy = 1. Furthermore since
(Aj —a)Swir = (\j — @)Rsd; = ¢; we have

/ |curlw;|? — k?|w;[2dV + Ii/ S(E)wjr - wjrdA+ g Swjr-wj;rdA
D r D

= (Oé - )\J) / SWj’T Wi dA
aD
which from (3.7) gives
(44) / |cur1 Wj‘2 — H2|Wj|2dV + I{/ %(Z)Wj7’1" “WyT dA = —)\j / |SWj)T|2 dA.
D r oD
Since the left-hand side is bounded we conclude that Sw;r — 0 in L?(0D) as j — oo.

Next, a subsequence of w; converges weakly to some w € X(curl, D). Since for all
z € X (curl, D) we have

/ curlwj - curlz — n2wj ~zdV + Ii/ S(X)wjr-zrdA=—)\; / Swjr-zrdA
D r oD

we conclude that the weak limit satisfies the problem in Assumption 2, thus w = 0.
Using the Helmholtz decomposition and noting that divw; = 0 and x*v - w; =
v x curlw; € L?(9D) we conclude that w; — 0 in H'/?(D) hence w; — 0 strongly
in L?(D). From (4.4) since (X)) is positive and all A\; > 0 we have that

/ |curlw;|? — k?|w;[2dV + n/ S(E)wjr-wirdA <O,
D r

thus curlw; — 0 is L?(D) and w7 — 0 in L?(I') contradicting the normalization.O
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The above discussion suggests that if Assumption 2 is satisfied, @ > 0 can be chosen
large enough such that all eigenvalues of Ry are negative. Using the Fischer-Courant

max-min principle applied to the positive compact self-adjoint operator — Ry, we have

(Rt £) y1/2aivs, o)

Wi = max min

N RYE v S
where U is the set of all linear subspace of H/2(div%,,dD) of dimension ¢, ¢ =
1,2---, which can be used to understand monotonicity of »-Steklov eigenvalues in
terms of surface tensor X.

5. Numerical Solution of the Inverse Problem. We propose a solution
method for the inverse problem formulated in Definition 3.3. This method is based
on a target signature that is computable from the scattering data defined in Definition
3.3. The target signature is defined precisely below.

DEFINITION 5.1. [Target Signature for the Surface Tensor | Given I' piece-wise
smooth and a domain D with T' C 0D the target signature for the unknown surface
tensor X that satisfies Assumption 1, is the set of ¥-Steklov eigenvalues defined in
Definition 3.5.

This section is devoted to a discussion on how the target signature is determined
from the scattering and presenting numerical experiments showing the viability of
our approach. But, before providing preliminary numerical examples to illustrate our
theory, we first give some general details about the results. Four pieces of software are
needed for this purpose which we describe next. All finite element implementations
were performed using NGSolve [26].

5.1. Synthetic scattering data. We need to find F which in turn requires
solving the forward and auxiliary-forward problem as follows:

1. We use synthetic (computed) far field data so we need to approximate the
forward problem (2.4). This is accomplished either using a standard edge
finite element solver with a Perfectly Matched Layer (PML) to terminate the
computational region.

2. We need to solve the auxiliary forward problem (3.6) for many choices of the
parameter \. This is done using edge finite elements and the PML.

5.2. Determination of X-Steklov eigenvalues from scattering data. We
start by discussing the theoretical framework for the determination of ¥-Steklov eigen-
values from a knowledge of the modified far field operator F. Note that F = F — F()
is available to us since F is known from the measured scattering data, whereas FM for
given T, is computed by solving the auxiliary problem (3.6) which does not involve
the unknown Y. Note that, in practice, when problems of nondestructive testing
of thin inhomogeneities, F» can be precomputed and stored for a set of A € C,
$(A) <0, and this set may possibly be determined using a-priori information on the
electromagnetic material properties encoded in .

In view of Theorem 3.8 and Lemma 4.2 we now have the following result which is
the fundamental theoretical ingredient if the determination of Y-eigenvalues from
scattering data.

THEOREM 5.2. Let ¥ satisfy Assumption 1. If A € C is not a X-Steklov eigen-
value, then the modified far field operator F : LZ(S) — L%(S) is injective and has
dense range.
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18 FIORALBA CAKONI AND PETER MONK

Using Theorem 5.2, an appropriate factorization F along with a denseness property
of the total fields E,(;‘) solutions to (3.6) with incident field E := E, the Herglotz
wave function and finally making use of the Fredholm property of the resolvent of
the 3-Steklov eigenvalue problem it is possible to show the following result. To avoid
repetition, for the proof of this result, we refer the reader to [10] for the same problem
but in the scalar case, to [12] for a slightly different problem but for the vectorial
Maxwell’s equations, and to [6] for a comprehensive discussion of this matter. Let
E. »(X,2,q) denote the far field pattern of the electric dipole with source at z and
with polarization q given by
K .
E. (X,2,q) = E(fc X q) X Xexp(—ikx - z).

THEOREM 5.3. Let ¥ satisfy Assumption 1 and T' be a piece-wise smooth open
surface embedded in a closed surface 0D circumscribing a connected region D. The
following dichotomy holds:

(i) Assume that A € C is not a X-Steklov eigenvalue, and z € D. Then there

exists a sequence {gZ},cy i L7(S) such that

(5.1) i [ 7 (%) — Be oo (%,2.0) [ 130) = 0

and ||Eg: || x (cur1,py remains bounded.

(i1) (i) Assume that A € C is a X-Steklov eigenvalue. Then, for every sequence
{g:}en satisfying (5.1), [|Eg:z ||x (curt,py cannot be bounded for any z € D,
except for a nowhere dense set.

This theorem suggest that an “approximate” solution g € L?(S?) of the first kind
integral equation

(5.2) Fg(x) =E. (X,2,q) forallx €S, and 2 € D

becomes unbounded if A € C hits a X-Steklov eigenvalue. We remark that the proce-
dure of computing {g}}, .y With the particular behavior explained in Theorem 5.3,
can be made rigorous by applying the so-called generalized linear sampling method [6,
Chapter 5]. Equation (5.2) is ill-posed since F is compact, but can be solved approxi-
mately using Tikhonov regularization for any choice of z and q. For the calculation of
target signatures, we discretize (5.2) using the incident directions as quadrature points
on 0D, and chose X to be the measurement points. In the results to be presented
here we use 96 incoming plane wave directions and the same number of measurement
points and assume that the polarization and phase of the far field pattern is available
at each measurement point. Then assuming that D is a priori known, we take several
random choices of z € D (15 in our examples below). For each point, and for the
three canonical polarizations we solve the far field equation (5.2) approximately using
Tikhonov regularization and average the norms of the three resulting g for the random
points z. This is solved for a discrete choice of A in the interval in which it is desired
to detect eigenvalues. Peaks in the averaged norm of g are expected to coincide with
¥-Steklov eigenvalues.

5.3. Direct calculation of X-Steklov eigenvalues. To check the performance
of our method for identifying X-Steklov eigenvalues, we also need to approximate the
eigenvalue problem (3.11) and this is again accomplished using finite elements. For
w € X (curl, D) we introduce an auxiliary variable z € H*(9D)/C that satisfies

A{)Dz = V{)D . (V X W)
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so Sw = —v x Vgpz. We rewrite (3.11) as the problem of finding z € H*(D)/C and
non-trivial w € H(curl; D) and A € C such that

(5.3a) curl curlw — k?w = 0 in D,

(5.3b) v x curlw + ikXwr = —Av X Vypz on T,
(5.3¢) v xcurlw = —Av X Vypz on 0D\ T,
(5.3d) Agpz—Vsp - (v x w)=0on 0D.

Multiplying (5.3a) by the complex conjugate of a test function v € X (curl; D), inte-
grating by parts and using the boundary conditions in (5.3), we obtain:

/(cur1w~curlvf/£2w~7)dvf)\/ v X Vopz-VrdA
D oD

—z’nE/ wr -V dA = 0.
Iy

So we define A®& b°e : (X (curl, D) x H'(D) x C) x (X (curl, D) x H(D) x C) — C
by

a®®((w, z,7), (v,q,s)) :/

(curlw - curl v — k?*w - %) dV — inE/ wr - VpdA
D r

+/ Veopz VopqdA — VXW-V@DQdA-I-/ 25 —qrdA
oD

oD oD

beig((w7z7r)’ (V7Q73)) = / v X Vypz-VrdA
oD

and seek non-trivial (w, z,7) € X (curl, D) x H'(D) x C and X € C such that
a®8((w,z,1),(v,q,5)) = \b°8((w, z,7), (v, q,5)),

for all (v,q,s) € X(curl,D) x H'(D) x C. This can be discretized using edge and
vertex finite elements.

5.4. Examples.

A closed screen:. A closed spherical screen is a useful test case to check all steps
of the algorithm since all problems can be solved analytically using special function
expansions. In the results presented here we assume 3 = 0B;. Because of constraints
on the finite element solver, we choose a modest value k = 1.9. We choose X to
be the diagonal matrix ¥ = (0.5¢)I resulting in real X-Steklov eigenvalues. Then we
solve the forward problem to generate scattering data which is corrupted by uniformly
distributed random noise at each data point introducing 0.15% error in the computed
far field pattern in the relative spectral norm (see [7] for more details). We also solve
the auxiliary problem for 501 choices of n € [—0.5,1]. Results are shown in Fig. 1.
We see clear detection of the three 3-Steklov eigenvalues in this range that agree
well with eigenvalues computed by the FEM (on the vertical scale used in Fig 1, the
leftmost peak is barely visible).

A hemispherical screen:. We next consider a hemispherical screen on the surface
of the sphere of radius 1. We first set the scalar parameter ¥ = 0.5¢] and x = 1.9.
Solving the forward problem by FEM requires a finer mesh near the screen than is
needed in the background media as shown in Fig. 2. This substantially increases the
time for the forward solve, but of course does not affect the computation of target
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-5 -45 -4 -35 -3 25 -2 -15 -1 -0.5 0
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Fi1c. 1. Target signatures for the full unit sphere at k = 1.9 and ¥ = (0.5¢)I. We show results
computed from the far field pattern as the curve of the average morm of g against the auziliary
parameter n. We also show the first three 3-Steklov eigenvaues marked as *. Peaks of the avergae
norm of g correspond well to X-Steklov eigenvalues.

0.8

Fic. 2. A contour map of the real part of the third component of the scattered electric field in
the plane z = 0. Creeping waves along the screen are clearly visible. These waves have a shorter
wavelength than the field in the bulk, so imposing an additional computational burden on the forward
solver.

signatures once far field data for the auxiliary problem is computed. Using data
computed by the FEM and corrupted by noise as for the sphere, the resulting predicted
target signatures are shown in the left panel of Fig 3. The X-Steklov eigenvalues are
changed compared to Fig. 1. The results for the leftmost cluster of signatures are
smeared out compared to the two other group of eigenvalues (but the vertical scale
does not emphasize this cluster).

Next we consider an anisotropic surface conductivity on the hemispherical screen
and take X and in order to define the anisotropic X we first define

B 0'1)12' 0 0
Y= 0 05 0
0 0 0'373Z‘

where 01,1 and o3 3 will be chosen later. Then for a tangential vector field v we set

(5.4) Yv = PrYv
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F1G. 3. Predicted target signatures and computed X-Steklov eigenvalues for the hemisphere at
k = 1.9. Left: scalar ¥ = 0.5iI. Right: anisotropic ¥ with o1 = 0.5 and o3 = 0.4. In each panel the
curve shows the average of the norm of g as the parameter \ varies, and the x mark eigenvalues
computed by FEM.
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F1a. 4. Results of changing parameters in an anisotropic choice of ¥ for the hemispherical
screen. We show changes in the smallest (in magnitude) target signatures as the parameters defining
Y given by (5.4)) vary. Left panel: we set 033 = 0.5 and vary o1,1. Right panel: we set 01,1 = 0.5
and vary 03,3. Eigenvalues for different parameter values are shown as *.

where Pr denotes projection on to the tangent plane of the sphere at each point of
the hemisphere. For the example in this section, we set 017 = 0.5 and 033 = 0.4.
Results are shown in the right panel of Fig. 3. Although the eigenvalues are changed,
the far field only picks up the change in the rightmost eigenvalue. None-the-less the
anisotropy is detected.

Investigating eigenvalues. The eigensolver can be used to study the effects of
changes in ¥ on the »-Steklov eigenvalues and so predict the sensitivity of the target
signature to changes in the surface properties. Using the finite element eigensolver
discussed in Section 5.3 we can solve the eigenvalue problem for different choices of
011 and o3 3 and follow changes in the target signatures as a function of the surface
parameters. Results are shown in Fig. 4

6. Conclusion. We have shown preliminary results for the inverse problem of
detecting changes in a thin anisotropic scatterer. We have provided a general existence
theory for the forward problem, as well as a basic uniqueness result for the inverse
problem. We also developed the idea of ¥-Steklov eigenvalues as target signatures for
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the screen. At present the majority of the theory, and all the numerical results are
for purely imaginary surface impedance (a lossless screen). Further work is needed
to prove the existence of 3-Steklov eigenvalues when ¥ is a complex tensor, and
numerical testing in this case is also needed.
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