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Abstract. Anisotropic thin sheets of materials possess intriguing properties because of their4
ability to modify the phase, amplitude and polarization of incident waves. Such sheets are usually5
modeled by imposing transmission conditions of resistive or conductive type on a surface called a6
screen. We start by analyzing this model, and show that the standard passivity conditions can be7
slightly strengthened to provide conditions under which the forward scattering problem has a unique8
solution. We then turn to the inverse problem and suggest a target signature for monitoring such9
films. The target signature is based on a modified far field equation obtained by subtracting an arti-10
ficial far field operator for scattering by a closed surface containing the thin sheet and parametrized11
by an artificial impedance. We show that this impedance gives rise to an interior eigenvalue prob-12
lem, and these eigenvalues can be determined from the far field pattern, so functioning as target13
signatures. We prove uniqueness for the inverse problem, and give preliminary numerical examples14
illustrating our theory.15
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1. Introduction. Ultra-thin sheets of materials such as graphene have been the19

subject of intensive research for several decades [28] because they can be tuned to20

modify the phase, amplitude and polarization of incident waves. More recently, the21

possibility of using thin sheets of meta-materials has expanded the range of possible22

behaviors of the sheet to include anisotropic surface surface properties (see for ex-23

ample [18, 16, 17, 22, 21]). Such ultra-thin structures, hereafter called screens, are24

usually modeled by imposing transmission conditions across the screen using a suit-25

able optical conductivity tensor [16]. This model can be derived as a limiting case26

of a thin penetrable material layer [15, 9] as the thickness tends to zero. The result-27

ing transmission problem contrasts to models of thin materials that have prescribed28

boundary conditions (for example [1, 24]), so that new theory needs to be derived.29

The first step in this paper is to study a general model for forward scattering by ultra-30

thin screens. More precisely, assuming a complete description of the screen, we want31

to predict how it scatters incoming radiation. We prove that the forward problem is32

well posed in the important case of a uniaxial passive metasurface, so connecting a33

strengthened form of the usual assumptions of passivity [16] to coercivity of certain34

sesquilinear forms, and hence using Fredholm theory, to the existence of a unique35

solution to the forward problem. We then move on to the inverse problem of detecting36

changes in the material properties of the isotropic or anisotropic screens using target37

signatures. In this context, target signatures are discrete quantities that can be38

computed from scattering data. Changes in these quantities could then be used to39

monitor or detect changes in the screen. Typically these quantities are eigenvalues of40

an interior problem. They arise by modifying the far field operator using an auxiliary41

far field operator generated by a suitable parameter dependent problem. Building42

on previous work for electromagnetism in two dimensions [11, 10], we suggest a new43

target signature derived by considering the injectivity of a modified far field operator44
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2 FIORALBA CAKONI AND PETER MONK

for the 3D Maxwell problem. We characterize the target signatures as eigenvalues of45

an interior problem where we suppose that the screen covers a part of the boundary46

of an artificial closed bounded domain in R3 on which the eigenvalue problem is47

defined. This target signature is simpler than our previous 2D signatures for thin48

screens in that the auxiliary scattering problem that contributes to the modified far49

field operator is independent of the details of the conducting screen.50

The paper is structured as follows. In Section 2 we introduce the function spaces used51

on this paper, and present the forward problem of scattering by a known screen. We52

derive an existence theory for such problems that encompasses models reported in the53

literature (e.g. [16]). In Section 3 we discuss the inverse problem of determining the54

surface impedance from far field data, and prove a uniqueness theorem for the problem55

suggesting that the data we use for target signature is rich enough to characterize the56

screen. We then define the modified far field operator and the target signatures for57

this paper. We prove a relationship between the target signatures and injectivity of58

the modified far field operator. In Section 4 we study the eigenvalue problem related59

to our target signatures called the Σ-Steklov eigenvalue problem. Section 5 presents60

a discussion on the determination of Σ-Steklov eigenvalues from far field data, and61

shows some preliminary numerical results illustrating our theory.62

2. Notation and the Forward Problem. We start this section by summa-63

rizing the function spaces needed for this paper. Then we move on to discuss the64

forward scattering problem for a thin resistive or conductive screen. This problem65

will underly our discussion of the inverse problem.66

The thin screen occupies a region Γ ⊂ R3 denoting a piecewise smooth, compact, open67

two dimensional manifold with boundary. We assume that Γ is simply connected and68

non self-intersecting such that it can be embedded as part of a piece-wise smooth69

closed boundary ∂D circumscribing a bounded connected region D ⊂ R3 having70

connected complement. This determines two sides of Γ and we choose the positive71

side using the unit normal vector ν on Γ that coincides with the normal direction72

outward of D. To be able to precisely define the scattering problem and for later use73

we recall the definition of several Sobolev spaces:74

2.1. Function spaces. Let Y be a domain in R3 then recall the standard space
of curl conforming vector functions on Y

H(curl,Y) :=
{
u ∈ (L2(Y))3 : curlu ∈ (L2(Y)3

}
and denote by Hloc(curl,R3) the space of u ∈ H(curl, BR) for all BR where BR is
a ball centered at the origin with radius R containing Γ containing Γ. Then, using
the space of L2 tangential vector fields on Γ denoted by L2

t (Γ), we define the Sobolev
space

X(curl, BR) := {u ∈ H(curl, BR) : uT ∈ L2
t (Γ)},

endowed with the natural norm

∥u∥2X(curl,BR) := ∥u∥2H(curl,BR) + ∥uT ∥2L2(Γ)

where uT = (ν × u) × ν. Next let D be a bounded region in R3 with piecewise
smooth boundary ∂D such that Γ ⊂ ∂D, chosen such that the positive side of Γ
coincide with the outward direction on ∂D. We can also define corresponding space
Hloc(curl,R3 \D). Obviously we also have

X(curl, D) := {u ∈ H(curl, D) : uT ∈ L2
t (Γ)},
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X(curl, BR \D) := {u ∈ H(curl, BR \D) : uT ∈ L2
t (Γ)},

and the correspondingly Xloc(curl,R3 \D). For later use we define additional Sobolev75

spaces on the piece-wise smooth boundary ∂D76

Hs
t (∂D) :=

{
µ ∈ Hs(∂D)3 : ν · µ = 0 a.e. on ∂D

}
,

Hs(div∂D, ∂D) := {µ ∈ Hs
t (∂D) : div∂D µ ∈ Hs(∂D)} ,

Hs(div0∂D, ∂D) := {µ ∈ Hs(div∂D, ∂D) : div∂D µ = 0 on ∂D} ,

H−1/2(curl∂D, ∂D) :=
{
µ ∈ H

−1/2
t (∂D) : curl∂D µ ∈ H−1/2(∂D)

}
,

77

where curl∂D and div∂D are the surface scalar curl and divergence operator, respec-78

tively, and s ∈ R. In addition we will denote by curl∂D the surface vectorial curl.79

We rename the spaces H0
t (∂D) and H0(div∂D, ∂D) by L2

t (∂D) and H(div∂D, ∂D), re-80

spectively. The space Hs
t (∂D) is equipped with the standard norm (see, for instance,81

[25]), whereas the spaces Hs(div∂D, ∂D) and H−1/2(curl∂D, ∂D) are endowed with82

their respective natural norms83

∥µ∥Hs(div∂D,∂D) := ∥µ∥2s,∂D + ∥ div∂D µ∥2s,∂D and84

85
∥µ∥2H−1/2(curl∂D,∂D) := ∥µ∥2−1/2,∂D + ∥ curl∂D µ∥2−1/2,∂D .86

Note that integration by parts in H(curl, D) (or H(curl, BR \ D)) defines a duality87

between the rotated tangential trace in H−1/2(div∂D, ∂D) and the tangential trace in88

H−1/2(curl∂D, ∂D). For more details about the norms and properties of this opera-89

tors, see for instance [25] for smooth boundaries and [3, 4] for Lipschitz boundaries.90

2.2. The forward problem. We now rigorously describe the forward scattering91

problem. We first define the time harmonic incident electric field e−iωtEi(x) at an-92

gular frequency ω to be a plane wave, where the spatially dependent part Ei satisfies93

the background Maxwell system in all space and is given by94

(2.1) Ei(x;κ,d,p) =
i

κ
curl curlpweiκd·x = iκ(d× p)× deiκd·x.95

Here the unit vector d ∈ R3, |d| = 1, is the direction of propagation and p ∈ C3 is96

the polarization. To satisfy the background Maxwell’s system, we must have |d| = 1,97

p ̸= 0 and d · p = 0. In addition, κ > 0 is the wave number that is related to the98

angular frequency ω of the radiation by κ = ω
√
ϵ0µ0 where ϵ0 and µ0 are electric99

permittivity and magnetic permeability of the homogenous background medium (free100

space). Other incident fields can also be used (for example those due to point sources).101

Following [9, 20, 27], the electromagnetic properties of a thin screen with central102

surface Γ are described by a matrix valued function Σ defined on Γ. This is a function103

of position on the screen, its thickness δ, and the physical properties of the screen104

such as electric permeability, magnetic permittivity and conductivity. We take it to105

be a 3× 3 piecewise smooth complex valued matrix function of position on Γ in order106

to model an anisotropic screen. The tensor Σ maps a vector tangential to Γ at a point107

x ∈ Γ to a vector tangential to Γ at the same point x ∈ Γ. To be more precise, on108

a smooth face of the surface Γ let ν(x) be the smooth outward unit normal vector109

function to Γ and let t̂1(x) and t̂2(x) be two perpendicular vectors in the tangent plane110

to Γ at the point x such that t̂1, t̂2,ν form a right hand coordinative system with111

This manuscript is for review purposes only.



4 FIORALBA CAKONI AND PETER MONK

origin at x. Using these coordinates, the matrix valued function Σ(x) is represented112

by the following dyadic expression113

(2.2) Σ(x) =
(
σ11(x)t̂1(x) + σ12(x)t̂2(x)

)
t̂1(x)+

(
σ21(x)t̂1(x) + σ22(x)t̂2(x)

)
t̂2(x).114

In general, for dispersive thin screens, Σ := Σ(x, ω) is frequency dependent, but we
omit the ω-dependance since our target signatures use scattering data at a single fixed
frequency. Note that, if ξ(x) = αt̂1(x) + βt̂2(x) for some α, β ∈ C, then Σ(x)ξ(x) is
the tangential vector given by

Σ(x)ξ(x) = (ασ11(x) + βσ21(x))t̂1(x) + (ασ12(x) + βσ22(x))t̂2(x)

and then115

(2.3) ξ(x)
⊤
· Σ(x)ξ(x) = |α|2σ11(x) + αβ σ12(x) + βασ21(x) + |β|2σ22(x).116

Generically, we assume that in the local coordinate system on Γ, Σ ∈ (L∞(Γ))2×2

(unless otherwise indicated) thus

Σ : L2
t (Γ) → L2

t (Γ) mapping ξ 7→ Σξ.

The screen causes a jump in the tangential component of the magnetic field. To117

describe this we need some notation: for any sufficiently smooth vector fieldW defined118

in R3\Γ let W+ = W|R3\D and W− = W|D. In addition, let W±
T = ν×(W±×ν) on119

Γ the tangential trace from inside and outside. Now, given the screen Γ and associated120

tensor Σ, as well as the incident field, the forward scattering problem for the screen121

is to determine the electric field E such that122

curl curlE− κ2E = 0 in R3 \ Γ,(2.4a)123

E = Es +Ei in R3 \ Γ,(2.4b)124

E+
T = E−

T on Γ,(2.4c)125

ν × (curlE+ − curlE−) = iκΣE+
T on Γ,(2.4d)126

lim
|x|→∞

(curlEs × x− iκ|x|Es) = 0.(2.4e)127

Here Es denotes the scattered electric field, and (2.4e) is the Silver-Müller radiation128

condition which holds uniformly in all directions x̂ = x/|x|. Equations (2.4c) and129

(2.4d) model the thin anisotropic conductive/resistive thin screen [9, 20, 27].130

First we need to impose conditions on Σ in order to guarantee the uniqueness of131

solutions of the forward problem (2.4a)-(2.4e). Formally, integrating by parts over a132

ball BR of radius R > 0 centered at the origin with D ⊂ BR, we have that133 ∫
BR

(curlEs · curlv − κ2Es · v) dV − iκ

∫
Γ

ΣEs
T · vT dA134

+

∫
∂BR

ν × curlEs · v dA = iκ

∫
Γ

ΣEi
T · vT dA.135

Now taking v = Es, and choosing Ei = 0 we obtain136

iκ

∫
∂BR

(ν ×E
s
) ·Hs dA =

∫
∂BR

ν × curlEs ·Es
dA137

=

∫
BR

(| curlEs|2 − κ2|Es|2 dV − iκ

∫
Γ

ΣEs
T ·Es

T dA138
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Thus Rellich’s Lemma [13, Theoem 6.10] implies the uniqueness of any solution of
(2.4a)-(2.4e) provided that

ℜ
∫
∂BR

(ν ×E
s
) ·Hs dA = −ℜ

∫
Γ

ΣEs ·Es
T dA ≤ 0.

To provide explicit conditions on the complex valued surface tensor for which the139

above equality holds, we impose the condition140

(2.5) ℜ
(
ξ(x)

⊤
· Σ(x)ξ(x)

)
≥ 0, ∀ complex fields ξ tangential to Γ a.a. x ∈ Γ141

where the quadratic form is given by (2.3). Setting

A := |α|2ℜ(σ11), C := |β|2ℜ(σ22), 2B := αβ (σ12 + σ21)

we see that (2.5) is satisfied if the Hermitian matrix

(
A B
B C

)
is non-negative, i.e.142

its eigenvalues are non-negative, which is the case provided143

(2.6) ℜ(σ11) ≥ 0 ℜ(σ22) ≥ 0 and ℜ(σ11)ℜ(σ22) ≥ 1/4|σ12 + σ21|2.144

It is easy to see that (2.6) can be equivalently written in the following form

ℜ(σ11) ≥ 0 ℜ(σ22) ≥ 0 and ℜ(σ11) + ℜ(σ22) ≥ |σ12 + σ21|

which is customarily found in the literature on meta-surfaces [2, 18].145

The proof of the existence of the solution of (2.4a)-(2.4e) follows the standard ap-146

proach of [8, 25]. Given Ei it is natural to look for the solution Es of (2.4a)-(2.4e) in147

Xloc(curl, BR) (since the tangential component of Es is continuous across Γ). Using148

the exterior Calderon operator, we can reduce the problem to the bounded domain149

BR. Then we seek Es ∈ X(curl, BR) such that150 ∫
BR

(curlEs · curlv − κ2Es · v) dV − iκ

∫
Γ

ΣEs
T · vT dA+ iκ

∫
∂BR

Ge(x̂×Es) · vT dA151

=

∫
Γ

iκηEi
T · vT dA− iκ

∫
∂BR

Ge(x̂×Ei) · vT dA ∀ v ∈ X(curl, BR).152

Here Ge is the exterior Calderon operator (c.f. [25]) which maps a tangential vector
field τ on ∂BR to (1/iκ)x̂ × curlE|∂BR

where the outgoing field E (i.e. satisfying
(2.4e)) is a solution of

∇×E− κ2E = 0 in R3 \BR, x̂×E = τ on ∂BR.

The analysis of the terms containing Ge follows exactly the lines of [5, Theorem 2.3]153

(see also [25, Theorem 10.2]) based on a Helmholtz decomposition and on the fact154

that the operator iκGe can be split into a compact part iκG1
e and a nonnegative part155

iκG2
e. To avoid repetition, we highlight here the only difference coming from the more156

general choice of the surface tensor Σ, which amounts to conditions on Σ for which157

a(W,W) =

∫
BR

(
| curlW|2 + |W|2

)
dA+ κ

∫
Γ

ℑ
(
ΣWT ·WT

)
dA158

− iκ

∫
Γ

ℜ
(
ΣWT ·WT

)
dA159
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is coercive in X(curl, BR), where we have ignored iκ
∫
∂BR

G2
e(x̂ ×W) ·WT dA > 0.

It is sufficient to find θ such that, for some C > 0,

ℜ
(
eiθa(W,W)

)
≥ C

(
∥W∥2

H(curl,BR\Γ) + ∥WT ∥2L2(Γ)

)
which, given (2.5), is satisfied if for some 0 ≤ θ ≤ π/2 and γ > 0 constant and for160

almost all x ∈ Γ,161

(cos θ)ℜ
(
ξ(x)

⊤
· Σ(x)ξ(x)

)
+ (sin θ)ℑ

(
ξ(x)

⊤
· Σ(x)ξ(x)

)
≥ γ∥ξ(x)∥2R3 .162

As before, this condition is satisfied if the eigenvalues of the matrix

(
Ã B̃

B̃ C̃

)
are

positive uniformly on Γ, where now

Ã := |α|2(ℜ(σ11) cos θ + ℑ(σ11) sin θ)), C̃ := |β|2(ℜ(σ22) cos θ + ℑ(σ22) sin θ))

B̃ := αβ

(
σ12 + σ21

2
cos θ +

σ12 − σ21

2i
sin θ

)
.

Thus the existence of the solution holds if for some 0 ≤ θ ≤ π/2 and γ > 0 constant163

and for almost all x ∈ Γ we have164

ℜ(σ11 + σ22) cos θ ≥ γ, ℑ(σ11 + σ22) sin θ ≥ γ,(2.7a)165

(ℜ(σ11) cos θ + ℑ(σ11) sin θ))(ℜ(σ22) cos θ + ℑ(σ22) sin θ))(2.7b)166

≥
∣∣∣∣σ12 + σ21

2
cos θ +

σ12 − σ21

2i
sin θ

∣∣∣∣2.167

Summarizing our requirements on Σ, throughout the paper we require that the surface168

tensor Σ satisfies the following assumption which guarantees that the forward scatter-169

ing problem (2.4a)-(2.4e) is well-posed, i.e. it has a unique solution in Xloc(curl,R3)170

depending continuously on the incident field.171

Assumption 1. The surface tensor Σ ∈ L∞(Γ)2×2 satisfies conditions (2.6) and172

(2.7).173

Note that Assumption 1 is quite general in that anisotropic surfaces are included in174

our analysis. If ℜ(Σ) is positive definite our assumptions include the so-called highly175

directional hyperbolic meta-surfaces, for which the ℑ(Σ) is not sign-definite, i.e. has176

one positive and one negative eigenvalue at each point on Γ. However, in the case of177

resistive screens, i.e. when ℜ(Σ) ≡ 0, we need ℑ(Σ) to be positive definite. Note also178

that we don’t assume any symmetry on the tensor Σ to possibly include symmetry179

breaking meta-surfaces (see e.g. [2, 17, 18, 16, 22] and the references therein).180

3. The Inverse Scattering Problem. For an incident plane wave181

Ei(x;d,p) := Ei(x;κ,d,p)182

given by (2.1) (since the wave number κ is fixed from now on we will drop the depen-183

dence of the fields on κ), the field far field pattern E∞(x̂;d,p) of the corresponding184

scattered field is defined from the following asymptotic behavior of the scattered field185

[13]186

Es(x̂;d,p) =
exp(iκr)

r

{
E∞(x̂;d,p) +O

(
1

r

)}
as r := |x| → ∞.(3.1)187

188
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Our first goal is to prove a uniqueness theorem for the general inverse problem of189

determining Σ from scattering data. For this we need the following lemma, where190

S :=
{
x ∈ R3 : ∥x∥ = 1

}
denotes the unit sphere in R3 :191

Lemma 3.1. Under Assumption 1, the set

Span
{
ET (· ;d,p)|Γ for all d ∈ S and p ∈ R3, d · p = 0

}
is dense in L2

t (Γ).192

Proof. Assume that ϕ ∈ L2
t (Γ) is such that∫

Γ

ϕ ·ET (· ;d,p) dA = 0 for all d ∈ S and p ∈ R3, d · p = 0.

Let U ∈ Xloc(curl, BR) be the unique radiating solution (i.e. it satisfies the Silver-193

Müller radiation condition) of194

curl curlU− κ2U = 0 in R3 \ Γ195

U+
T = U−

T on Γ196

ν × (curlU+ − curlU−)− iκΣ⊤U+
T = ϕ on Γ.197

Note that the transposed tensor ΣT satisfies Assumption 1 since it does not involve198

any conjugation. Thus, noting that U+ = U− on Γ and using the boundary condition199

for the total field E,200

0 =

∫
Γ

(
ν × curlU+ − ν × curlU− − iκΣ⊤UT

)
·ET dA201

=

∫
Γ

(
ν × curlU+ − ν × curlU−) ·ET − iκΣET ·UT dA202

=

∫
Γ

(
ν × curlU+ − ν × curlU−) ·ET −

(
ν × curlE+ − ν × curlE−) ·UT dA203

=

∫
Γ

(
ν × curlU+ − ν × curlU−) ·Es

T −
(
ν × curlEs+ − ν × curlEs−) ·UT dA204

+

∫
Γ

(
ν × curlU+ − ν × curlU−) ·Ei

T −
(
ν × curlEi+ − ν × curlEi−) ·UT dA.205

The first integral in the last sum is zero since both U and Es are in Xloc(curl, BR) (i.e206

their tangential traces across Γ are continuous) and are both radiating solutions to207

Maxwells equation. The second term in the second integral is also zero since curlEi208

doesn’t jump across Γ, but we keep it for use with integration by parts below. Thus209

noting that all jumps across ∂D \ Γ are zero, integrating by parts inside in D and210

BR \D, and using that U and Ei satisfy the same Maxwell’s equations, we arrive at211

0 =

∫
Γ

(
ν × curlU+ − ν × curlU−) ·Ei

T −
(
ν × curlEi+ − ν × curlEi−) ·UT dA212

=

∫
∂D

ν × curlU+ ·Ei
T − ν × curlEi ·UT dA213

−
∫
∂D

ν × curlU− ·Ei
T − ν × curlEi ·UT dA214

=

∫
BR

ν × curlU ·Ei
T − ν × curlEi ·UT dA215

= iκ

∫
∂BR

(x̂× curlU(x)) · (d× p)× de−iκd·x + iκx̂× (d× p)e−iκd·x ·UT (x) dAx216
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for all d ∈ S and p ∈ R3, d · p = 0, (note that p exp(−iκd · x) is an incident field).
Therefore we have (see e.g. [13, Theorem 6.9])

0 = d×
∫
∂BR

[
1

iκ
(x̂× curlU(x))× d+ (x̂×U)

]
· pe−iκd·x dA =

4π

iκ
U∞(x̂,d) · p.

Since this holds for all polarizations p we conclude that U∞ = 0. Rellich’s Lemma217

implies U = 0 in R3 \ Γ, whence ϕ = 0 which concludes the proof.218

Now we are ready to prove a uniqueness theorem for the tensor Σ.219

Theorem 3.2. Assume that Σ1 and Σ2 satisfy Assumption 1 and that Γ is a220

given piece-wise smooth open surface. Let E∞,1(x̂;d,p) and E∞,2(x̂;d,p) be the221

far field pattern corresponding to the scattered fields Es,1(·;d,p) and Es,2(·;d,p) in222

Xloc(curl,R3) satisfying (2.4a)-(2.4e) with Σ1 and Σ2 respectively, and incident plane223

wave Ei(·;d,p) given by (2.1). If E∞,1(·;d,p) = E∞,2(·;d,p) for all d ∈ S and224

p ∈ R3 with d · p = 0, then Σ1 = Σ2.225

Proof. Let U(x) := Es,1(x̂;d,p)−Es,2(x̂;d,p) = E1(x̂;d,p)−E2(x̂;d,p). From226

the assumption we have U∞(x̂) = 0 for x̂ ∈ S and hence by Rellich Lemma U(x) = 0227

for all x ∈ R3 \ Γ. Hence, noting that UT = 0, we have for almost all x ∈ Γ228

0 = ν × (curlU+ − curlU−) = iκΣ1E
1
T (x̂;d,p)− iκΣ2E

2
T (x̂;d,p)229

= iκ(Σ1 − Σ2)E
2
T (x̂;d,p).230

Viewing Σ1 − Σ2 as a linear operator on L2(Γ), the result follows from Lemma 3.1.231

Note that the proof of Theorem 3.2 shows that if Σ is a piece-wise continuous scalar232

function, then the far field pattern due to one incident plane waves uniquely deter-233

mines it. Nevertheless, our target signatures require the scattering data as stated in234

the next definition.235

Definition 3.3 (Inverse Problem). The inverse problem we are concerned with236

is, provided that the shape Γ of the surface is known, determine indicators of changes237

in the surface tensor Σ from the scattering data. The scattering data is the set of the238

far field patterns E∞(x̂;d,p) ∈ L2(S) for all observation directions x̂ and incident239

directions d on the unit sphere S and all p ∈ R3, d · p = 0 at a fixed wave number κ.240

Remark 1. It is important to emphasize that our theoretical study holds if the241

scattering data is given on a partial aperture, i.e. for observation directions x̂ ∈ Sr ⊂ S242

and incident directions d ∈ St ⊂ S and two linearly independent polarization p such243

that p · d = 0, where receivers location Sr and transmitters locations St are open244

subsets (possibly the same) of the unit sphere.245

The scattering data defines the far field operator F : L2
t (S) → L2

t (S) by246

(3.2) (Fg)(x̂) :=

∫
S
E∞(x̂;d,g(d))dsd, x̂ ∈ S.247

Note that F a linear operator since E∞ depends linearly on polarization p by the248

linearity of the forward problem and linear dependence of the incident wave on p.249

It is bounded and compact [7]. By superposition Fg is the electric far field pattern250

of the scattered field solving (2.4a)-(2.4e) with Ei := Ei
g where Ei

g is the electric251

Herglotz wave function with kernel g given by [13, Section 6.6]252

(3.3) Ei
g(x) = iκ

∫
S
eiκd·xg(d)dsd g ∈ L2

t (S)253
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which is an entire solution of the Maxwell’s equations. A knowledge of the scattering254

data in Definition 3.3, implies a knowledge of the far field operator data. From now255

on the far field operator F is the data for our target signatures. In the following256

we will denote by Eg, E
s
g and E∞

g the total electric field, the scattered electric field257

and the electric far field pattern, respectively, corresponding to the electric Herglotz258

incident field Ei
g.259

Our target signatures are based on a set of eigenvalues which can be determined from260

scattering data. This method makes use of a modification of the far field operator261

using an auxiliary impedance scattering problem, similar to that introduced in [11] for262

the Helmholtz equation. Given the particular features of Maxwell’s system, we adopt263

a slightly different approach to that used in [11] in order to avoid dealing with a mixed264

eigenvalue problem. Furthermore, to restore the compactness of the electromagnetic265

Dirichlet-to-Neumann operator, we include a smoothing operator following [12].266

To this end we recall the linear operator S first introduced in [12, 19]:267

(3.4)
S : H−1/2(curl∂D, ∂D) −→ H1/2(div0∂D, ∂D)

v 7−→ Sv := − curl∂D q ,
268

where q ∈ H1(∂D)/C is the solution of the problem269

∆∂Dq = curl∂D v on ∂D270

where ∆∂D is the surface Laplacian on ∂D also given by ∆∂Dq = curl∂D curl∂D q.271

In other words for v ∈ H−1/2(curl∂D, ∂D) by272

(3.5) Sv = −curl∂D∆−1
∂Dcurl∂Dv273

By using an eigensystem expansion (e.g. [23]) we see that curl∂D q ∈ H
1/2
t (∂D).274

Thus, Sv ∈ H
1/2
t (∂D), div∂D v = 0 and275

∥Sv∥H1/2(div0
∂D,∂D) = ∥Sv∥1/2,∂D = ∥ curl∂D q∥1/2,∂D ≤ CS∥ curl∂D v∥−1/2,∂D,276

which means that S is bounded linear operator. In addition, since curl∂D(curl∂D q−277

v) = 0, we can find φ ∈ H1/2(∂B) such that curl∂D q − v = ∇∂Dφ. Therefore, for278

all v ∈ H−1/2(curl∂D, ∂D), there exist q and φ such that v = curl∂D q −∇∂Dφ, or,279

equivalently, Sv = v +∇∂Dφ.280

We can now define the following auxiliary scattering problem for the field E(λ):281

curl curlE(λ) − κ2E(λ) = 0 in R3 \D,(3.6a)282

E(λ) = E(λ),s +Ei in R3 \D,(3.6b)283

ν × curlE(λ) − λSE(λ)
T = 0 on ∂D,(3.6c)284

lim
|x|→∞

(
curlE(λ),s × x− iκ|x|E(λ),s

)
= 0.(3.6d)285

Here E(λ),s denotes the scattered field for the above problem, and λ ∈ C is an auxiliary286

parameter which will play the role of the eigenvalue parameter used to find a target287

signature for Σ.288

To study the well-posedness of (3.6a)-(3.6d) we recall from [12, Lemma 3.1] that S289

satisfies290

(3.7)

∫
∂D

SuT ·wT ds =

∫
∂D

uT · SwT ds =

∫
∂D

SuT · SwT ds ,291
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for all u, w in H(curl, D) or H(curl, BR \D). Thus integrating by parts formally we292

have293 ∫
BR

(curlE(λ),s · curlv − κ2E(λ),s · v) dV − λ

∫
∂D

SEs
T · vT dA294

+

∫
∂BR

ν × curlEs · v dA = λ

∫
∂D

SEi
T · vT dA.(3.8)295

From (3.7) by taking v := E(λ),s and Ei = 0 in (3.8) in the same way as for the296

forward scattering problem we see that uniqueness is ensured if ℑ(λ) ≥ 0. Writing297 ∫
∂BR

ν × curlEs · v dA in terms of the exterior Calderon operator Ge (c.f. [25]), we298

obtain the existence of the solution E(λ) ∈ Hloc(curl,R3\D) by means of the Fredholm299

alternative [12, Theorem 3.3] stated in the theorem below.300

Theorem 3.4. Assume that λ ∈ C is such that ℑ(λ) ≥ 0. Then the auxiliary301

problem (3.6) has a unique solution E(λ) ∈ Hloc(curl,R3 \D) depending continuously302

on the incident field Ei.303

Let E(λ)(·;d,p) be the solution of (3.6a)-(3.6d) corresponding to the incident plane304

wave Ei := Ei(·;d,p) and let E(λ),∞(x̂;d,p) ∈ L2(S) denote its far field pattern.305

The corresponding far field operator F (λ) : L2
t (S) → L2

t (S) is306

(3.9) (F (λ)g)(x̂) :=

∫
S
E(λ),∞(x̂;d,g(d))dsd, x̂ ∈ S,307

which is the far field pattern E
(λ),∞
g of the solution E

(λ),s
g to (3.6) with incident field308

Ei := Ei
g the electric Herglotz wave function with kernel g given by (3.3).309

Next we define the modified far field operator F : L2
t (S) → L2

t (S) by310

(Fg)(x̂) : = (Fg)(x̂)− (F (λ)g)(x̂)(3.10)311

=

∫
S

[
E∞(x̂;d,g(d))−E(λ),∞(x̂;d,g(d))

]
dsd.312

The study of injectivity of F , allows us to arrive at an eigenvalue problem whose
eigenvalues are the target signature for the thin screen. Indeed, assume Fg = 0, for

some g ∈ L2
t (S), g ̸= 0, so that E∞

g = E
(λ),∞
g on S. By Rellich’s lemma, Es

g = E
(λ),s
g

in R3 \D, and the same holds true for the total fields Eg = E
(λ)
g . Using the boundary

condition (3.6c) for E
(λ)
g we obtain

ν × curlE+
g − λSE

+

gT = 0 on ∂D,

where again + and − indicate that we approach the boundary from outside and inside,
respectively. On the other hand, from (2.4c)-(2.4d) we have

E+
gT = E−

gT on ∂D, ν × curlE+
g = ν × curlE−

g on ∂D \ Γ,

and ν × curlE+
g = ν × curlE−

g + iκΣE+
gT on Γ.

We can eliminate E+
gT using the above three relations, yielding the following homo-313

geneous problem for the total field Eg from inside D:314

curl curlEg − κ2Eg = 0 in D,315

ν × curlEg + iκΣET = λSEgT on Γ,316

ν × curlEg = λSEgT on ∂D \ Γ.317
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For fixed κ we view this problem as an eigenvalue problem for λ. In particular, it is318

a modified Steklov type eigenvalue problem corresponding to the screen described by319

(Γ,Σ). If this homogeneous problem has only the trivial solution, then Eg = 0 in D320

and by continuity of the electromagnetic Cauchy data Eg = 0 in R3 \ Γ. The jump321

conditions (2.4c)-(2.4d) ensure that Eg solves Maxwell’s equations in R3 and, the fact322

that Eg ≡ 0 implies that Es
g = −Ei

g in R3. Hence the Herglotz function Ei
g ≡ 0 as an323

entire solution of Maxwell’s equations that satisfies the outgoing radiation condition,324

whence g = 0 (see e.g. [13, Chapter 6]).325

Definition 3.5 (Σ-Steklov Eigenvalues). Values of λ ∈ C with ℑ(λ) ≥ 0 for326

which327

curl curlw − κ2w = 0 in D,(3.11a)328

ν × curlw + iκΣw = λSwT on Γ,(3.11b)329

ν × curlw = λSwT on ∂D \ Γ,(3.11c)330

has non-trivial solution, are called Σ-Steklov eigenvalues.331

We have proven the following result.332

Theorem 3.6. Let Σ satisfies Assumption 1. If λ is not a Σ-Steklov eigenvalue,333

then the modified far field operator F : L2
t (S) → L2

t (S) is injective.334

Note that the converse is not true, i.e. if λ is a Σ-Steklov eigenvalue this doesn’t335

necessary imply that F is not injective. Next we study the range of the compact336

modified far field operator. To this end we need to compute the L2-adjoint F∗
Σ adjoint337

of the modified far field operator FΣ corresponding Σ.338

Lemma 3.7. The adjoint F∗
Σ : L2

t (S) → L2
t (S) is given by

F∗g = RFΣ⊤Rg

where FΣ⊤ is the modified far field operator corresponding to the scattering prob-339

lem (2.4a)-(2.4e) with the coefficient Σ⊤ (the transpose of the tensor Σ). Here340

R : L2
t (S) → L2

t (S) is defined by Rg(d) := g(−d).341

Proof. First, in the same way as in the proof of [13, Theorem 6.30], we can show342

that343

iκ4π
{
q ·E(λ),∞(x̂;d,p)− p ·E(λ),∞(−d;−x̂,q)

}
=344 ∫

∂BR

[
ν ×E(λ)(·;d,p) · curlE(λ)(·;−x̂,q)− ν × curlE(λ)(·;d,p) ·E(λ)(·;−x̂,q)

]
dA345

= 0.346

Then using the boundary condition (3.6c) and the fact that both fields satisfy the347

same Maxwell’s equations in BR \D we obtain348

iκ4π
{
q ·E(λ),∞(x̂;d,p)− p ·E(λ),∞(−d;−x̂,q)

}
(3.12)349

= λ

∫
∂D

[
E

(λ)
T (·;d,p) · SE(λ)

T (·;−x̂,q)− SE(λ)
T (·;d,p) ·E(λ)

T (·;−x̂,q)
]
dA = 0350

due to the symmetry of S. Then, the reciprocity relation

q ·E(λ),∞(x̂;d,p) = p ·E(λ),∞(−d;−x̂,q), for all d, x̂ in S and any two p,q in R3
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used in the same way as in [13, Theorem 6.37] shows that351

(3.13)
(
F (λ)

)∗
g = RF (λ)Rg.352

The above proof suggest that, since in general Σ is not symmetric, to compute the353

adjoint F ∗
Σ we must consider the scattering problem with transpose Σ⊤. Using argu-354

ments similar to the proof of (3.13), we can prove355

iκ4π
{
q ·E(λ),∞

Σ (x̂;d,p)− p ·E(λ),∞
Σ⊤ (−d;−x̂,q)

}
=356 ∫

∂BR

[
ν ×E

(λ)
Σ (·;d,p) · curlE(λ)

Σ⊤(·;−x̂,q)− ν × curlE
(λ)
Σ (·;d,p) ·E(λ)

Σ⊤(·;−x̂,q)
]
dA357

= 0.358

where the subscript Σ and Σ⊤ indicate that the fields correspond to the scattering359

problem (2.4a)-(2.4e) with Σ and Σ⊤, respectively. Again using the fact that both360

total fields solve the Maxwell’s equation in BR \ Γ together with the jump conditions361

(2.4c)-(2.4d) yield362

iκ4π
{
q ·E(λ),∞

Σ (x̂;d,p)− p ·E(λ),∞
Σ⊤ (−d;−x̂,q)

}
(3.14)363

=

∫
Γ

[
E

(λ)
Σ,T (·;d,p) · Σ

⊤E
(λ)

Σ⊤,T
(·;−x̂,q)− ΣE

(λ)
Σ,T (·;d,p) ·E

(λ)

Σ⊤,T
(·;−x̂,q)

]
dA = 0.364

Then, the reciprocity relation

q ·E(λ),∞
Σ (x̂;d,p) = p ·E(λ),∞

Σ⊤ (−d;−x̂,q), for all d, x̂ in S and any two p,q in R3

now gives365

(3.15) F ∗
Σg = RFΣ⊤Rg.366

Combining (3.13) and (3.15) proves the result of the lemma.367

Lemma 3.7 implies the following result about the range of the modified far field368

operator F . (Note that in what follows F denotes the modified operator corresponding369

to Σ.)370

Theorem 3.8. Let Σ satisfies Assumption 1. If λ is not a Σ⊤-Steklov eigenvalue,371

then the modified far field operator F : L2
t (S) → L2

t (S) has dense range.372

We close this section with some equivalent expression related to the operator S, for373

later use. From [13, Page 236] we have374

curl∂Dv = −∇∂D · (ν × v),375

and since the vector surface curl denoted curl∂D is the adjoint of the scalar surface376

curl, we have377

curl∂Dv = −ν ×∇∂Dv378

for a scalar function v on ∂D. We can then verify that379

curl∂Dcurl∂D = −∆∂D.380

This manuscript is for review purposes only.



TARGET SIGNATURES FOR SCREENS 13

Using these relations we see that an equivalent definition of S is381

(3.16) Sv = −ν ×∇∂D∆−1
∂D∇∂D · (ν × v)382

and this is the expression we use in our numerical experiments in Section 5. Note383

that for any surface tangential vector v ∈ H−1/2(curl∂D, ∂D)384

curl∂D(Sv − v) = (−curl∂Dcurl∂D∆−1
∂Dcurl∂Dv − curl∂Dv) = 0.385

From here we see that there exists a v ∈ H1/2(∂D) such that386

(3.17) Sv = v +∇∂Dv.387

4. The Σ-Steklov Eigenvalue Problem. We can write the Σ-Steklov eigen-388

value problem defined in Definition 3.5 in the equivalent variational form: Find389

w ∈ X(curl, D) such that390 ∫
D

curlw · curlv − κ2w · v dV(4.1)391

− iκ

∫
Γ

ΣwT · vT dA+ λ

∫
∂D

SwT · SvT dA = 0 ∀v ∈ X(curl, D),392

where we have used (3.7) and recall that the operator S : H−1/2(curl∂D, ∂D) →393

H1/2(div0∂D, ∂D).394

Proposition 1. Let Σ satisfy Assumption 1.395

1. If ℜ
(
ξ(x)

⊤
· Σ(x)ξ(x)

)
> 0 a.e. x ∈ Γ, ∀ξ tangential complex fields, then all396

Σ-Steklov eigenvalues λ satisfy ℑ(λ) ≥ 0. Real eigenvalues λ (if they exist)397

do not depend on Σ.398

2. If ℜ(Σ) = 0 (the zero matrix) almost everywhere on Γ then the eigenvalues399

maybe be real and complex. Complex eigenvalues appears in conjugate pairs.400

3. If ℜ(Σ) = 0 (the zero matrix) almost everywhere on Γ and ℑ(Σ) is symmetric401

then the eigenvalue problem is self-adjoint hence all eigenvalues are real.402

Remark 2. More generally if ℜ
(
ξ
⊤ · Σξ

)
> 0 in Γ0 ⊆ Γ, the proof of Case 1403

shows that real eigenvalues (if they exists) do not carry information on Σ in Γ0404

Proof. Suppose ℑ(λ) ≤ 0 and Case 1 holds. Letting v := w in (4.1) and taking
the imaginary part, yields wT = 0 on Γ. If ℑ(λ) < 0 we obtain

∫
∂D

|SwT |2 dA = 0
we obtain SwT = 0 on ∂D and from boundary condition also ν × curlw = 0 on Γ.
Hence w = 0 in D as a solution of the Maxwell’s equation with zero Cauchy data on
Γ. Furthermore, real λ are eigenvalues of the following problem

curl curlw − κ2w = 0 in D, ν × curlw = λSwT on ∂D,

(which from [12] it has an infinite sequence of real eigenvalues accumulating to +∞)405

with corresponding eigenvectors satisfying w|Γ = 0. Obviously, if they exists, do406

not depend on Σ. Case 2 follows form the fact that all operators are real and it is407

sufficient to work on real Hilbert spaces. Case 3 is obvious and is discussed later in408

this section.409

Using Helmholtz decomposition we have that

X(curl, D) = X(curl,div 0, D)⊕∇P where P :=
{
p ∈ H1(D); p = 0 on ∂D

}
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and X(curl,div 0, D) := {u ∈ X(curl, D) divu = 0 in D, ν · u = 0 on ∂D \ Γ} .

We can split w = w0 +∇w, w0 ∈ X(curl,div 0, D) and w ∈ P . Using the fact that410

curl(∇w) = 0 and that (∇w)T = 0 and taking in (4.1) the test function v = ∇ξ for411

ξ ∈ P we obtain that w satisfies
∫
D
∇w · ∇ξ = 0, implying that w = 0. Therefore we412

view (4.1) in X(curl,div 0, D). By means of Riesz representation theorem, we define413

AΣ,κ, Tκ, S : X(curl,div 0, D) → X(curl,div 0, D) by414

(AΣ,κw,v)X(curl,D) :=

∫
D

curlw · curlv +w · v dA− iκ

∫
Γ

ΣwT · vT dA,415

416

(Tκw,v)X(curl,D) := (κ2 − 1)

∫
D

w · v dV,417

418

(Sw,v)X(curl,D) :=

∫
∂D

SwT · SvT dA =

∫
∂D

SwT · vT dA,419

respectively. Then the eigenvalue problem of finding the kernel of

(AΣ,κ + Tκ + λS)w = 0 w ∈ X(curl,div 0, D).

Since Σ (not necessarily Hermitian) satisfies Assumption 1 we have that the operator420

(not necessarily selfadjoint) AΣ,κ is coercive hence invertible. The selfadjoint operator421

S : X(curl,div 0, D) → X(curl,div 0, D) is compact. Indeed let wj ⇀ w0 converges422

weakly to some w0 ∈ X(curl,div 0, D). By boundedness of the trace operator we have423

that (wj − w0)T ⇀ 0 in H−1/2(curl∂D, ∂D) and by the boundedness of S we have424

S(wj −w0)T converges to 0 weakly in H1/2(div0∂D, ∂D) and strongly in L2
t (∂D) by425

the compact embedding of the prior space to the latter. Then426

∥S(wj −w0)∥2X(curl,D) =

∫
∂D

S(wj −w0)T · S
(
S(wj −w0)

)
T
dA427

=

∫
∂D

S(wj −w0)T ·
(
S(wj −w0)

)
T
dA ≤ C∥S(wj −w0)T ∥L2

t (∂D) → 0 strongly,428

where we use the trace theorem and the fact that (wj−w0) is bounded inX(curl,div 0, D).429

The selfadjoint operator Tκ is also compact since X(curl,div 0, D) combined with the430

fact that ν × curlu ∈ L2(∂D) and curlu ∈ H(curl, D), is compactly embedded in431

L2(D) (see e.g. [14]). From the Analytic Fredholm Theory [13] we conclude that432

AΣ,κ+Tκ+λS has non-trivial kernel for at most a discrete set of λ ∈ C without finite433

accumulation points, and is invertible with bounded inverse for λ outside this set.434

From the above discussion, for the given wave number κ we can choose a constant α435

such that for f ∈ H1/2(div0∂D, ∂D) the problem436

curl curlw − κ2w = 0 in D,(4.2a)437

ν × curlw + iκΣwT = αSwT + f on Γ(4.2b)438

ν × curlw = αSwT + f on ∂D \ Γ.(4.2c)439

has a unique solution in X(curl, D). Note that if ℜ(ξ⊤ · Σξ) > 0 on some open set440

Γ0 ⊆ Γ, one can choose α = 0. We define the operator RΣ : H1/2(div0∂D, ∂D) →441

H1/2(div0∂D, ∂D) mapping f 7→ SwT where w solves (4.2).442

Lemma 4.1. RΣ : H1/2(div0∂D, ∂D) → H1/2(div0∂D, ∂D) is a compact operator.443
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Proof. This Lemma is proven in [12, Lemma 3.4] for a slightly different problem.444

We include it here for the reader convenience. Equation (4.2a) implies that curlw ∈445

H(curl,div0, D) and equations (4.2b) and (4.2c) imply that ν×curlw ∈ L2
t (Γ). From446

[14] we conclude that w ∈ H1/2(D) and ν · curlw ∈ L2(D) implying curl∂D wT =447

ν · curlw ∈ L2(∂D). But, by definition, there exists q ∈ H1(∂D)/C such that448

SwT := − curl∂D q ∈ H1/2(div0∂D, ∂D). Since curl∂D curl∂D q = curl∂D SwT =449

curl∂D wT ∈ L2(∂D) we obtain that curl∂D q ∈ H1
t (∂D). Hence SwT := − curl∂D q450

is in H1(div0∂D, ∂D). The proof is completed by recalling the compact embedding of451

H1(div0∂D, ∂D) into H1/2(div0∂D, ∂D).452

We have shown that (λ,w) is an eigen-pair of the Σ-Steklov eigenvalue problem if453

and only if
(

1
λ−α ,SwT

)
is an eigenpair of the compact operator RΣ.454

Lemma 4.2. Let Σ⊤ be the transpose of Σ. If λ is a Σ⊤-Steklov eigenvalue then455

1/(λ−α) is an eigenvalue of RΣ⊤ : H1/2(div0∂D, ∂D) → H1/2(div0∂D, ∂D) which maps456

h 7→ SvT where v ∈ X(curl, D) solves457

curl curlv − κ2v = 0 in D,(4.3a)458

ν × curlv + iκΣ⊤vT = αSvT + h on Γ(4.3b)459

ν × curlv = αSvT + h on ∂D \ Γ.(4.3c)460

Furthermore RΣ⊤ is the transpose (Banach adjoint) operator R⊤
Σ of RΣ, where we461

have identified the Sobolev space H1/2(div0∂D, ∂D) with its dual. In particular the set462

of Σ⊤-Steklov eigenvalues coincides with the set of Σ-Steklov eigenvalues.463

Proof. First note that if Σ satisfies Assumption 1 so does Σ⊤, hence the char-464

acterization of Σ⊤-Steklov eigenvalues follows form the above discussion. Next, let465

f ,h ∈ H1/2(div0∂D, ∂D) and w and v such that RΣf = SwT and RΣ⊤h = SvT , where466

w and v satisfy (4.2) and (4.3), respectively. Then we have467

0 =

∫
D

curlw · curlv − κ2w · v dV468

− iκ

∫
Γ

ΣwT · vT dA+ α

∫
∂D

SwT · SvT dA+

∫
∂D

f · SvT dA469

and470

0 =

∫
D

curlv · curlw − κ2v ·w dV471

− iκ

∫
Γ

Σ⊤vT ·wT dA+ α

∫
∂D

SvT · SwT dA+

∫
∂D

h · SwT dA.472

where we have used (3.17), the fact that div∂D f = div∂D h = 0 and the Helmholtz
orthogonal decomposition µ = curl∂Dq + ∇∂Dp for any tangential field µ on the
boundary. The above yields∫

∂D

f · SvT dA =

∫
∂D

h · SwT dA.

This proves that R⊤
Σ = RΣ⊤ . The fact that they have the same non-zero eigenvalues473

follows for the Fredholm theory for compact operators, more precisely that for η ̸= 0,474

the dimension of Kern(RΣ − ηI) and Kern(R⊤
Σ − ηI) coincide.475
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Thus we have shown that if Σ satisfies Assumption 1 then the set of Σ-Steklov ei-476

genvalues is discrete without finite accumulation points. The existence of (possibly477

complex) Σ-Steklov eigenvalues could be proven by adapting the approach in [19]. We478

don’t pursue this investigation here since it is out of the scope of the paper.479

The self-adjoint case. If Σ is symmetric and ℜ(Σ) = 0 a.e. in Γ, then RΣ480

is compact and self-adjoint. Note that Assumption 1 implies that ℑ(Σ) is positive481

definite. In this case Σ-Steklov eigenvalues {λj} form an infinite sequence of real482

numbers without finite accumulation point. We have seen that µj = 1
λj−α , where483

{µj ,ϕj} is an eigenpair of the compact self-adjoint operator RΣ, and that by Hilbert-484

Schmidt theorem the eigenfunctions ϕj form a orthonormal basis forH1/2(div0∂D, ∂D).485

To obtain additional estimates in this case we need the assumption486

Assumption 2. The wave number κ is such that the homogeneous problem487

curlw curlw − κ2w = 0 inD488

ν × curlw = 0 on ∂D \ Γ ν × curlw = ℑ(Σ)wT on Γ489

has only the trivial solution.490

Theorem 4.3. Under Assumption 2 there are finitely many positive Σ-Steklov491

eigenvalues, thus the eigenvalues accumulate to −∞.492

Proof. Assume to the contrary that there exists a sequence of distinct λj > 0493

converging to ∞. Denote by wj the solution of (4.2) in X(curl, D) with f := ϕj . We494

may normalize the sequence ∥wj∥X(curl,D) + ∥wj,T ∥L2(∂D) = 1. Furthermore since495

(λj − α)Swj,T = (λj − α)RΣϕj = ϕj we have496 ∫
D

| curlwj |2 − κ2|wj |2dV + κ

∫
Γ

ℑ(Σ)wj,T ·wj,T dA+ α

∫
∂D

Swj,T ·wj,T dA497

= (α− λj)

∫
∂D

Swj,T ·wj,T dA498

which from (3.7) gives499

(4.4)

∫
D

| curlwj |2 − κ2|wj |2dV + κ

∫
Γ

ℑ(Σ)wj,T ·wj,T dA = −λj

∫
∂D

|Swj,T |2 dA.500

Since the left-hand side is bounded we conclude that Swj,T → 0 in L2(∂D) as j → ∞.
Next, a subsequence of wj converges weakly to some w ∈ X(curl, D). Since for all
z ∈ X(curl, D) we have∫

D

curlwj · curl z− κ2wj · z dV + κ

∫
Γ

ℑ(Σ)wj,T · zT dA = −λj

∫
∂D

Swj,T · zT dA

we conclude that the weak limit satisfies the problem in Assumption 2, thus w = 0.
Using the Helmholtz decomposition and noting that divwj = 0 and κ2ν · wj =
ν × curlwj ∈ L2(∂D) we conclude that wj ⇀ 0 in H1/2(D) hence wj → 0 strongly
in L2(D). From (4.4) since ℑ(Σ) is positive and all λj > 0 we have that∫

D

| curlwj |2 − κ2|wj |2dV + κ

∫
Γ

ℑ(Σ)wj,T ·wj,T dA < 0,

thus curlwj → 0 is L2(D) and wj,T → 0 in L2(Γ) contradicting the normalization.501
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The above discussion suggests that if Assumption 2 is satisfied, α > 0 can be chosen
large enough such that all eigenvalues of RΣ are negative. Using the Fischer-Courant
max-min principle applied to the positive compact self-adjoint operator −RΣ, we have

µj = max
Uj−1∈Uj−1

min
f∈Uj ,f ̸=0

(RΣf , f)H1/2(div0
∂D,∂D)

∥f∥2
H1/2(div0

∂D,∂D)

where Uℓ is the set of all linear subspace of H1/2(div0∂D, ∂D) of dimension ℓ, ℓ =502

1, 2 · · · , which can be used to understand monotonicity of Σ-Steklov eigenvalues in503

terms of surface tensor Σ.504

5. Numerical Solution of the Inverse Problem. We propose a solution505

method for the inverse problem formulated in Definition 3.3. This method is based506

on a target signature that is computable from the scattering data defined in Definition507

3.3. The target signature is defined precisely below.508

Definition 5.1. [Target Signature for the Surface Tensor Σ] Given Γ piece-wise509

smooth and a domain D with Γ ⊂ ∂D the target signature for the unknown surface510

tensor Σ that satisfies Assumption 1, is the set of Σ-Steklov eigenvalues defined in511

Definition 3.5.512

This section is devoted to a discussion on how the target signature is determined513

from the scattering and presenting numerical experiments showing the viability of514

our approach. But, before providing preliminary numerical examples to illustrate our515

theory, we first give some general details about the results. Four pieces of software are516

needed for this purpose which we describe next. All finite element implementations517

were performed using NGSolve [26].518

5.1. Synthetic scattering data. We need to find F which in turn requires519

solving the forward and auxiliary-forward problem as follows:520

1. We use synthetic (computed) far field data so we need to approximate the521

forward problem (2.4). This is accomplished either using a standard edge522

finite element solver with a Perfectly Matched Layer (PML) to terminate the523

computational region.524

2. We need to solve the auxiliary forward problem (3.6) for many choices of the525

parameter λ. This is done using edge finite elements and the PML.526

5.2. Determination of Σ-Steklov eigenvalues from scattering data. We527

start by discussing the theoretical framework for the determination of Σ-Steklov eigen-528

values from a knowledge of the modified far field operator F . Note that F = F −F (λ)529

is available to us since F is known from the measured scattering data, whereas F (λ) for530

given Γ, is computed by solving the auxiliary problem (3.6) which does not involve531

the unknown Σ. Note that, in practice, when problems of nondestructive testing532

of thin inhomogeneities, F (λ) can be precomputed and stored for a set of λ ∈ C,533

ℑ(λ) ≤ 0, and this set may possibly be determined using a-priori information on the534

electromagnetic material properties encoded in Σ.535

In view of Theorem 3.8 and Lemma 4.2 we now have the following result which is536

the fundamental theoretical ingredient if the determination of Σ-eigenvalues from537

scattering data.538

Theorem 5.2. Let Σ satisfy Assumption 1. If λ ∈ C is not a Σ-Steklov eigen-539

value, then the modified far field operator F : L2
t (S) → L2

t (S) is injective and has540

dense range.541
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Using Theorem 5.2, an appropriate factorization F along with a denseness property542

of the total fields E
(λ)
g solutions to (3.6) with incident field Ei := Ei

g the Herglotz543

wave function and finally making use of the Fredholm property of the resolvent of544

the Σ-Steklov eigenvalue problem it is possible to show the following result. To avoid545

repetition, for the proof of this result, we refer the reader to [10] for the same problem546

but in the scalar case, to [12] for a slightly different problem but for the vectorial547

Maxwell’s equations, and to [6] for a comprehensive discussion of this matter. Let548

Ee,∞(x̂, z,q) denote the far field pattern of the electric dipole with source at z and549

with polarization q given by550

Ee,∞(x̂, z,q) =
iκ

4π
(x̂× q)× x̂ exp(−iκx̂ · z).551

Theorem 5.3. Let Σ satisfy Assumption 1 and Γ be a piece-wise smooth open552

surface embedded in a closed surface ∂D circumscribing a connected region D. The553

following dichotomy holds:554

(i) Assume that λ ∈ C is not a Σ-Steklov eigenvalue, and z ∈ D. Then there555

exists a sequence {gz
n}n∈N in L2

t (S) such that556

(5.1) lim
n→0

∥Fgz
n(x̂)−Ee,∞(x̂, z,q)∥L2

t (S) = 0557

and ∥Egz
n
∥X(curl,D) remains bounded.558

(ii) (i) Assume that λ ∈ C is a Σ-Steklov eigenvalue. Then, for every sequence559

{gz
n}n∈N satisfying (5.1), ∥Egz

n
∥X(curl,D) cannot be bounded for any z ∈ D,560

except for a nowhere dense set.561

This theorem suggest that an “approximate” solution g ∈ L2
t (S2) of the first kind562

integral equation563

(5.2) Fg(x̂) = Ee,∞(x̂, z,q) for all x̂ ∈ S, and z ∈ D564

becomes unbounded if λ ∈ C hits a Σ-Steklov eigenvalue. We remark that the proce-565

dure of computing {gz
n}n∈N with the particular behavior explained in Theorem 5.3,566

can be made rigorous by applying the so-called generalized linear sampling method [6,567

Chapter 5]. Equation (5.2) is ill-posed since F is compact, but can be solved approxi-568

mately using Tikhonov regularization for any choice of z and q. For the calculation of569

target signatures, we discretize (5.2) using the incident directions as quadrature points570

on ∂D, and chose x̂ to be the measurement points. In the results to be presented571

here we use 96 incoming plane wave directions and the same number of measurement572

points and assume that the polarization and phase of the far field pattern is available573

at each measurement point. Then assuming that D is a priori known, we take several574

random choices of z ∈ D (15 in our examples below). For each point, and for the575

three canonical polarizations we solve the far field equation (5.2) approximately using576

Tikhonov regularization and average the norms of the three resulting g for the random577

points z. This is solved for a discrete choice of λ in the interval in which it is desired578

to detect eigenvalues. Peaks in the averaged norm of g are expected to coincide with579

Σ-Steklov eigenvalues.580

5.3. Direct calculation of Σ-Steklov eigenvalues. To check the performance581

of our method for identifying Σ-Steklov eigenvalues, we also need to approximate the582

eigenvalue problem (3.11) and this is again accomplished using finite elements. For583

w ∈ X(curl, D) we introduce an auxiliary variable z ∈ H1(∂D)/C that satisfies584

∆∂Dz = ∇∂D · (ν ×w)585
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so Sw = −ν ×∇∂Dz. We rewrite (3.11) as the problem of finding z ∈ H1(D)/C and586

non-trivial w ∈ H(curl;D) and λ ∈ C such that587

curl curlw − κ2w = 0 in D,(5.3a)588

ν × curlw + iκΣwT = −λν ×∇∂Dz on Γ,(5.3b)589

ν × curlw = −λν ×∇∂Dz on ∂D \ Γ,(5.3c)590

∆∂Dz −∇∂D · (ν ×w) = 0 on ∂D.(5.3d)591

Multiplying (5.3a) by the complex conjugate of a test function v ∈ X(curl;D), inte-592

grating by parts and using the boundary conditions in (5.3), we obtain:593 ∫
D

(curlw · curlv − κ2w · v) dV − λ

∫
∂D

ν ×∇∂Dz · vT dA594

−iκΣ

∫
Γ

wT · vT dA = 0.595

So we define Aeig, beig : (X(curl, D)×H1(D)× C)× (X(curl, D)×H1(D)× C) → C596

by597

aeig((w, z, r), (v, q, s)) =

∫
D

(curlw · curlv − κ2w · v) dV − iκΣ

∫
Γ

wT · vT dA598

+

∫
∂D

∇∂Dz · ∇∂Dq dA−
∫
∂D

ν ×w · ∇∂Dq dA+

∫
∂D

zs− qr dA599

beig((w, z, r), (v, q, s)) =

∫
∂D

ν ×∇∂Dz · vT dA600

and seek non-trivial (w, z, r) ∈ X(curl, D)×H1(D)× C and λ ∈ C such that601

aeig((w, z, r), (v, q, s)) = λbeig((w, z, r), (v, q, s)),602

for all (v, q, s) ∈ X(curl, D) × H1(D) × C. This can be discretized using edge and603

vertex finite elements.604

5.4. Examples.605

A closed screen:. A closed spherical screen is a useful test case to check all steps606

of the algorithm since all problems can be solved analytically using special function607

expansions. In the results presented here we assume Σ = ∂B1. Because of constraints608

on the finite element solver, we choose a modest value κ = 1.9. We choose Σ to609

be the diagonal matrix Σ = (0.5i)I resulting in real Σ-Steklov eigenvalues. Then we610

solve the forward problem to generate scattering data which is corrupted by uniformly611

distributed random noise at each data point introducing 0.15% error in the computed612

far field pattern in the relative spectral norm (see [7] for more details). We also solve613

the auxiliary problem for 501 choices of η ∈ [−0.5, 1]. Results are shown in Fig. 1.614

We see clear detection of the three Σ-Steklov eigenvalues in this range that agree615

well with eigenvalues computed by the FEM (on the vertical scale used in Fig 1, the616

leftmost peak is barely visible).617

A hemispherical screen:. We next consider a hemispherical screen on the surface618

of the sphere of radius 1. We first set the scalar parameter Σ = 0.5iI and κ = 1.9.619

Solving the forward problem by FEM requires a finer mesh near the screen than is620

needed in the background media as shown in Fig. 2. This substantially increases the621

time for the forward solve, but of course does not affect the computation of target622
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Fig. 1. Target signatures for the full unit sphere at κ = 1.9 and Σ = (0.5i)I. We show results
computed from the far field pattern as the curve of the average norm of g against the auxiliary
parameter η. We also show the first three Σ-Steklov eigenvaues marked as ∗. Peaks of the avergae
norm of g correspond well to Σ-Steklov eigenvalues.

Fig. 2. A contour map of the real part of the third component of the scattered electric field in
the plane z = 0. Creeping waves along the screen are clearly visible. These waves have a shorter
wavelength than the field in the bulk, so imposing an additional computational burden on the forward
solver.

signatures once far field data for the auxiliary problem is computed. Using data623

computed by the FEM and corrupted by noise as for the sphere, the resulting predicted624

target signatures are shown in the left panel of Fig 3. The Σ-Steklov eigenvalues are625

changed compared to Fig. 1. The results for the leftmost cluster of signatures are626

smeared out compared to the two other group of eigenvalues (but the vertical scale627

does not emphasize this cluster).628

Next we consider an anisotropic surface conductivity on the hemispherical screen629

and take Σ and in order to define the anisotropic Σ we first define630

Σ̃ =

 σ1,1i 0 0
0 0.5i 0
0 0 σ3,3i

631

where σ1,1 and σ3,3 will be chosen later. Then for a tangential vector field v we set632

(5.4) Σv = PΓΣ̃v633
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Fig. 3. Predicted target signatures and computed Σ-Steklov eigenvalues for the hemisphere at
κ = 1.9. Left: scalar Σ = 0.5iI. Right: anisotropic Σ with σ1 = 0.5 and σ3 = 0.4. In each panel the
curve shows the average of the norm of g as the parameter λ varies, and the ∗ mark eigenvalues
computed by FEM.
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Fig. 4. Results of changing parameters in an anisotropic choice of Σ for the hemispherical
screen. We show changes in the smallest (in magnitude) target signatures as the parameters defining
Σ given by (5.4)) vary. Left panel: we set σ3,3 = 0.5 and vary σ1,1. Right panel: we set σ1,1 = 0.5
and vary σ3,3. Eigenvalues for different parameter values are shown as ∗.

where PΓ denotes projection on to the tangent plane of the sphere at each point of634

the hemisphere. For the example in this section, we set σ1,1 = 0.5 and σ3,3 = 0.4.635

Results are shown in the right panel of Fig. 3. Although the eigenvalues are changed,636

the far field only picks up the change in the rightmost eigenvalue. None-the-less the637

anisotropy is detected.638

Investigating eigenvalues. The eigensolver can be used to study the effects of639

changes in Σ on the Σ-Steklov eigenvalues and so predict the sensitivity of the target640

signature to changes in the surface properties. Using the finite element eigensolver641

discussed in Section 5.3 we can solve the eigenvalue problem for different choices of642

σ1,1 and σ3,3 and follow changes in the target signatures as a function of the surface643

parameters. Results are shown in Fig. 4644

6. Conclusion. We have shown preliminary results for the inverse problem of645

detecting changes in a thin anisotropic scatterer. We have provided a general existence646

theory for the forward problem, as well as a basic uniqueness result for the inverse647

problem. We also developed the idea of Σ-Steklov eigenvalues as target signatures for648
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the screen. At present the majority of the theory, and all the numerical results are649

for purely imaginary surface impedance (a lossless screen). Further work is needed650

to prove the existence of Σ-Steklov eigenvalues when Σ is a complex tensor, and651

numerical testing in this case is also needed.652
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