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1. Introduction
The theory of scattering poles, also referred to as resonances, constitutes a rich and beautiful
aspect of scattering theory. For an extensive exploration of the subject, we direct the reader to
the monograph [1]. The concept of scattering poles is inherently dynamic, as it captures physical
information about waves by associating the rate of oscillations with the real part of a pole and the
rate of decay with its imaginary part. However, an elegant mathematical formulation arises when
considering them as the poles of the meromorphic extension of the scattering operator [2,3]. For
a broad class of scattering problems, it is known that scattering poles exist and are complex with
negative imaginary parts. Various properties of scattering poles, such as estimates of their density
and bounds for obstacle scattering or inhomogeneous media, including dissipative systems, can
be found in the literature (e.g. [4–11]; this list is by no means exclusive). Numerical methods for
computing scattering poles have also been proposed in the literature (e.g. [12–14] and references
therein). Scattering poles have been proposed as a tool for solving the inverse scattering problem,
and radar identification often relies on the study of these resonant frequencies [15,16]. Uniqueness
and stability results for recovering impenetrable obstacles from knowledge of scattering poles
have been proven, as seen in [6,17,18]. However, a practical challenge associated with inverse
scattering is the difficulty in measuring the scattering poles, as they are complex while the
interrogating frequency in an experiment is real.

At a scattering pole, there is a non-zero scattered field in the absence of the incident field.
This property precisely enables the capturing of scattering poles as an eigenvalue problem. On
the flip side of this characterization of scattering poles, one might inquire whether there are
frequencies for which an incident field exists that does not scatter due to the scattering object. The
answer to this question leads to an interior eigenvalue problem associated with the support of
the scatterer. In the case of scattering by a bounded impenetrable obstacle, such as with Dirichlet
boundary conditions, this is simply the Dirichlet eigenvalue problem for a symmetric elliptic
operator. A more intriguing situation arises in the scattering by an inhomogeneous medium
where a new eigenvalue problem emerges, referred to as the transmission eigenvalue problem
[19]. This is a non-self-adjoint eigenvalue problem formulated in the support of inhomogeneity for
two homogeneous elliptic partial differential equations sharing the same Cauchy data. Exploiting
mathematically the fact that at an interior eigenvalue, there are normalized incident fields that
produce arbitrarily small scattered fields, it is possible to show that the interior eigenvalues can
be determined from the (measured) relative scattering operator corresponding to the physical
scattering experiment [19–21]. This analysis has led to computable algorithms for determining
the interior eigenvalues by the generalized linear sampling method (GLSM) in inverse scattering
theory [19,22]. In order to transfer these techniques to the computation of scattering poles, the
authors in [23] introduced a duality argument between scattering poles and interior eigenvalues
for a Dirichlet obstacle and an inhomogeneous medium of bounded support. In particular, the
scattering poles are studied in connection with the kernel of an operator that plays the same
role as the relative scattering operator in relation to the Dirichlet eigenvalues and transmission
eigenvalues, respectively. This duality is revealed by flipping the roles of interior and exterior
domains and has led to a new way of defining the scattering poles. However, [23] fell short of
turning this new characterization into a computable algorithm. Our current paper can be seen
as a continuation of [23], with the main goal being to develop and implement an algorithm for
computing the scattering poles based on this dual characterization using the GLSM.

Our paper is organized as follows. In §2, we summarize the analytical results obtained
in [23] regarding the duality between the scattering poles for a Dirichlet obstacle and the
corresponding Dirichlet eigenvalues. Based on these results, we derive the GLSM, leading to
an implementable algorithm for computing the scattering poles. We then outline a particular
implementation procedure in the two-dimensional case. In §3, we develop the theory for the
duality of the scattering poles for an impedance obstacle (also known as an obstacle with
Robin boundary conditions) and the corresponding impedance eigenvalues. This aspect was
not included in [23], and here in addition, we provide a GLSM computational algorithm. The
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Robin boundary conditions model the scattering by an impenetrable scatterer coated with a
thin layer of lossy and/or dispersive material. Section 4 presents a preliminary numerical
study. Although not included here, our algorithm can be used to compute the scattering
poles for an inhomogeneous medium of bounded support (possibly absorbing and dispersive)
based on the analysis developed in [23]. We emphasize that our algorithm for computing
the scattering poles is universal for any physical scattering problem involving bounded
scatterers, provided that the interior scattering operator is given. To compute the interior
scattering operator, one uses the model governing the scattering phenomenon through the
solution of the interior scattering problem. Regarding the use of scattering poles in inverse
scattering problems, a primary concern of our method is whether access to the interior
scattering operator is feasible, either experimentally or computationally, based on scattering
measurements.

2. Scattering poles for a Dirichlet obstacle
Let D be a bounded simply connected region in R

m (m = 2, 3) with Lipschitz boundary ∂D. We
denote by ν the outward unitary normal vector on ∂D. The scattering problem for a Dirichlet
obstacle is formulated as: given an incident field v which is solution of the Helmholtz equation
�v + k2v = 0 in R

m (except for possibly a subset of measure zero in the exterior of D), find the
scattered field us ∈ H1

loc(Rm \ D) such that

�us + k2us = 0 in R
m \ D

us = −v on ∂D

lim
r→∞ r(m−1)/2

(
∂us

∂r
− ikus

)
= 0.

(2.1)

This problem is well-posed for k ∈ C with �(k) ≥ 0. Let B ⊂ R
m be a bounded region such that

D ⊂ B with Lipschitz boundary ∂B, and consider incident waves v := vg which are superposition
of point sources located at y ∈ ∂B (otherwise referred to as surface potential) given by

vg(x) =
∫
∂B

g(y)Φk(x, y) ds(y), (2.2)

where Φk(·, ·) is the fundamental solution of the Helmholtz equation defined by

Φk(x, y) := i
4

H(1)
0 (k|x − y|) for m = 2 and Φk(x, y) = eik|x−y|

4π |x − y| for m = 3.

By linearity of the direct scattering problem, the corresponding scattered field us := us
g is given by

us
g(x) =

∫
∂B

g(y)us(x, y) ds(y), (2.3)

where us(·, y) is the scattered field due to a point source located at y ∈ ∂B, i.e. us(·, y) solves (2.1)
with v :=Φ(·, y). In this framework, we define the relative scattering operator (aka near field
operator) Sk : L2(∂B) → L2(∂B) mapping

Sk : g �→ us
g|∂B, (2.4)

where us
g is given by (2.3). The interior eigenvalues arise from the study of the injectivity of the

relative scattering operator Skg = 0, in other words looking for an incident field vg that does not
scatter by the Dirichlet obstacle D. One can easily check that Skg = 0 if k is a Dirichlet eigenvalue of
the negative Laplacian in D and with corresponding eigenfunction of the form given by (2.2). We
call such k non-scattering wave numbers. In general, the Dirichlet eigenfunction is defined only in
D, and may not even be extendable outside D as solution of the Helmholtz equation. Therefore,
not all Dirichlet eigenvalues are non-scattering wavenumbers. In order to explore further this
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connection of Dirichlet eigenvalues with non-scattering wavenumbers, we consider the forward
problem with more general Dirichlet data, namely

�w + k2w = 0 in R
m \ D

w = −v on ∂D

lim
r→∞ r(m−1)/2

(
∂w
∂r

− ikw
)

= 0, (2.5)

where v ∈ Hinc(D) defined by

Hinc(D) := {v ∈ H1(D) : �v + k2v = 0} equipped with H1(D)-norm.

We obviously have

Skg = −WkHg,

where

Wk : v ∈ Hinc(D) �→ w|∂B ∈ L2(∂B),

with w solving (2.5)

and H : g �→ vg|D, L2(∂B) → Hinc(D).

Hence Wkv = 0 if and only if k is a Dirichlet eigenvalue with v the corresponding eigenfunctions.
Since {Hg, g ∈ L2(∂B)}H1(D) = Hinc(D) [23, Lemma 2.7], we can conclude that k ∈ R is a Dirichlet
eigenvalue if and only if there exists a sequence of gj ∈ L2(∂B) such that the sequence Hgj
converges to a non-zero v ∈ Kern Wk in H1(D)-norm. The above characterization of Dirichlet
eigenvalues is used to compute them merely from a knowledge of the relative scattering operator
Sk using the linear sampling and generalized linear sampling methods [19,20].

In [23, Section 2], a similar characterization of the scattering poles in terms of the kernel of a
new scattering operator is introduced, which can be viewed as dual to the above characterization
of the Dirichlet eigenvalues. Indeed, let us denote by j� the spherical Bessel function of order �, by
h(1)
� the spherical Hankel function of the first kind of order �, and by Y� a spherical harmonic

of order � (see [24, Section 2.3, §2.4]). If we consider the scattering of v = j�(k|x|)Y�(x̂) (which
is a superposition of point sources located at infinity) by a Dirichlet ball of radius one in R

3

we have that the Dirichlet eigenvalues are the zeros of j�(k) = 0 (for such k, j�(k|x|)Y�(x̂) is the
corresponding eigenfunction), where the scattering poles are the zeros of h(1)

� (k) = 0. We note that

h(1)
� (k|x|)Y�(x̂) are superposition of point sources located at the origin [24]. This duality motivates

the consideration of an appropriate interior scattering problem inside D which will be the basis of
our characterization of scattering poles in the similar but dual to the Dirichlet eigenvalues stated
above. For the sake of the reader’s convenience in the following, we sketch this construction
in [23, Section 2] and summarize the main theoretical results, which will be the basis of our
computational algorithm.

To this end, for a generic m − 1 dimensional closed Lipschitz manifold ∂O enclosing a bounded
region O, we recall the definition of the single-layer potential SLk

∂O : Hs−1/2(∂O) → Hs+1
loc (Rm \ ∂O)

(see [25] for the mapping properties)

SLk
∂O(ψ)(x) :=

∫
∂D
ψ(y)Φk(x, y) dsy, x ∈ R

m \ ∂O, (2.6)

and double layer potential DLk
∂O : Hs+1/2(∂O) → Hs+1

loc (Rm \ ∂O)

DLk
∂O(ψ)(x) :=

∫
∂O
ψ(y)

∂Φk(x, y)
∂νy

dsy, x ∈ R
m \ ∂O, (2.7)

where −1 ≤ s ≤ 1 (this is the range for Lipschitz ∂O, for smooth manifold the above mapping
properties hold for larger |s|).
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One then can prove that the scattering problem (2.5) is equivalent to seeking w ∈ H1
loc(Rm \ D)

such that ⎧⎪⎨
⎪⎩
�w + k2w = 0 in R

m \ D
w = f on ∂D

w = SLk
∂D

(
∂w
∂ν

)
− DLk

∂D(w) in R
m \ D,

(2.8)

which again has a unique solution for k ∈ C with �(k) ≥ 0. This formulation allows us to define the
scattering poles.

Definition 2.1. k ∈ C is a scattering pole of the Dirichlet scattering problem for D if the
homogeneous problem (2.8), i.e. with f = 0, has a non-trivial solution.

This definition is equivalent to the one given in [26, Theorem 7.11]. It is well known that
these scattering poles lie in the complex lower half-plane C− := {z ∈ C, �(z)< 0} and form a
discrete set without accumulation points. The dual notion mentioned above for the case of a
ball motivated the introduction of the following interior scattering problem. Assume that k> 0
is not a Dirichlet eigenvalue (since we are interested in the scattering poles which are complex
this assumption does not present any restrictions). Then for a point z ∈ D, let us(·, z) ∈ H1(D) be
the unique solution of {

�us(·, z) + k2us(·, z) = 0 in D
us(·, z) = −Φk(·, z) on ∂D.

(2.9)

Next consider a region C ⊂ D in R
m inside D with smooth Lipschitz boundary ∂C and define the

interior scattering operator Nk : L2(∂C) → L2(∂C)

Nkϕ(x) =
∫
∂C
ϕ(z)us(x, z) ds(z). x ∈ ∂C. (2.10)

The operator Nk is compact, symmetric (see [23, Lemma 2.5]) and maps

Nk : ϕ �→ us
ϕ |∂C , (2.11)

where us
ϕ ∈ H1(D) is the unique solution of

�us
ϕ + k2us

ϕ = 0 in D

and us
ϕ = −SLk

∂C(ϕ) on ∂D

⎫⎬
⎭ (2.12)

with SLk
∂C(ϕ) given by (2.6). The scattering poles are related to the injectivity of Nk, which plays

the same role that Sk plays with respect to the Dirichlet eigenvalues. More precisely, let us define
the space of exterior incident fields

He
inc(D) := {w ∈ H1

loc(Rm \ D), w satisfies (2.14)} (2.13)

and {
�w + k2w = 0 in R

m \ D

w = SLk
∂D

(
∂w
∂ν

)
− DLk

∂D(w) in R
m \ D.

(2.14)

This space can be equipped with the norm

||w||He
inc(D) :=

(
||w||2H1/2(∂D) +

∥∥∥∥∂w
∂ν

∥∥∥∥2

H−1/2(∂D)

)1/2

.

We define the operator Gk : He
inc(D) → L2(∂C) as the mapping w �→ uw|∂C with uw the unique

solution of
�uw + k2uw = 0 in D and uw = −w on ∂D. (2.15)

Note that He
inc(D) and Gk with respect to the scattering poles play the same role that Hinc(D)

and Wk play with respect to the Dirichlet eigenvalues. Thus, we have a new characterization
of scattering poles for a Dirichlet obstacle in terms of the kernel of Gk. To this end, let C−
denote the complex half-place of complex numbers with negative imaginary parts. The following
equivalence is proven in [23].
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Proposition 2.2. k ∈ C− is a scattering pole for a Dirichlet obstacle if and only if Gk is not injective.

We remark that this definition uses the operator Gk, hence it still involves the solution of the
exterior scattering problem. Again in a similar fashion as for the Dirichlet eigenvalues, we want
to use only the scattering operator Nk in the characterization and computation of the scattering
poles. The following theorem states a collection of results proven in [23, Section 2].

Theorem 2.3. Consider k ∈ C−. Then

1. The operator Nkϕ = GkSLk
∂C(ϕ) for all ϕ ∈ L2(∂C).

2. The set {SLk
∂C(ϕ); ϕ ∈ L2(∂C)} is dense in He

inc(D).
3. The following holds:

(1) (i)If k is not a scattering pole, then the operators Nk and Gk are injective. Furthermore,
Φk(·, z) is in the range of Gk if and only if z ∈ R

m \ D.
(2) (ii)If k is a scattering pole, then Φk(·, z) cannot be in the range of Gk for a dense set of points

z in a ball Ω ⊂ R
m \ D.

The third item of this theorem contains a characterization of the scattering poles in terms
of the range of the operator Gk. It indicates that the equation Gkvz =Φk(·, z) has a solution for
all points z ∈ R

m \ D if and only if k is not a scattering pole. This is what we would like to
exploit numerically. To this end, motivated by item 2 in the theorem, we use a parametrization
of the unknown function as vz 
 SLk

∂C(ϕz) for some ϕz ∈ L2(∂C). The advantage of doing so is to
transform the equation Gkvz =Φk(·, z) into Nkϕz 
Φk(·, z) thanks to item 1 in the theorem, which
is numerically cheaper. But the intricate point is then to give a precise definition of the 
 in
the previous identities. The GLSM [22] allows to rigorously define this approximate solution by
formulating the equation Nkϕz 
Φk(·, z) as the minimization of a least-square misfit functional
with a penalty term that ensures vz 
 SLk

∂C(ϕz). In the following, we describe this procedure in
details. For ϕ ∈ L2(∂C), we set for short notation

Pk(ϕ) := ||SLk
∂C(ϕ)||2He

inc(D).

We then define
Jε(ϕ,ψ) := εPk(ϕ) + ||Nkϕ(·, z) − ψ ||2L2(∂C),

and set
jzε := inf

ϕ∈L2(∂C)
Jε(ϕ,Φk(·, z)).

We then consider ϕk
ε (·, z) to be the minimizing sequence satisfying

Jε(ϕk
ε (·, z),Φk(·, z)) ≤ jzε + p(ε),

where p(ε)/ε→ 0 as ε→ 0. Then, we have the following theorem.

Theorem 2.4. Let k ∈ C−. Then for any ball Ω ⊂ R
m \ D

lim
ε→0

||Nkϕ
k
ε (·, z) −Φk(·, z)||2L2(∂C) → 0 and lim sup

ε→0
Pk(ϕk

ε (·, z))<∞, (2.16)

for a dense set of points z ∈Ω if and only if k is not a scattering pole.

If k is not a scattering pole then the proof of theorem 2.4 follows from the abstract framework
of the GLSM provided in [19, Theorem 2.9] with B = (SLk

∂C)∗SLk
∂C , along with the injectivity and

dense range of Nk and theorem 2.3(i). In the case when k is a scattering pole, the proof of theorem
2.4 follows the lines of [23, Theorem 2.12].

Theorem 2.4 provides the theoretical foundation of our algorithm for computing the scattering
poles from a knowledge of the (computed or measured if possible) interior scattering operator
Nk : L2(∂C) → L2(∂C). Next, we explain the underlying ideas of the algorithm. To this end, let Ñk
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be an approximation of Nk that serves as a regularizer for Nk
−1 (see the numerical section below

for an example). Based on this theorem, if we set

ϕk(·, z) := Ñk
−1
Φk(·, z),

where Ñk
−1

is the pseudo-inverse of Ñk, then one expects the quantity

||Nkϕ
k(·, z) −Φk(·, z)||2L2(∂C) + Pk(ϕk(·, z)),

to have large values at scattering poles for z inΩ ⊂ R
m \ D. The numerical evaluation of Pk(ϕk(·, z))

may be time consuming and numerical experiments show that its behaviour with respect to z
is similar to the behaviour of the L2-norm of the density ϕk(·, z). The misfit term ||Nkϕ

k(·, z) −
Φk(·, z)||2L2(∂C) is in the majority of the cases small and does not have a significant contribution.
Given these observations, we suggest to use the following numerical indicator function to identify
the scattering poles:

I(k) :=
∑
z∈Z

||Ñk
−1
Φk(·, z)||2L2(∂C), (2.17)

where Z is a set of points in R
m \ D. We expect this indicator function to have larger values at the

location of scattering poles.

(a) Numerical algorithm for two-dimensional examples
We provide in this section a possible implementation of the method explained below for
two-dimensional problems (m = 2). The implementation could be easily adapted in the three-
dimensional case by replacing circles by spheres, and the Fourier expansion by the expansion
with respect to spherical harmonics. The computational cost does not essentially increase.

The main idea of our implementation method is to take ∂C to be a circle of radius RC and
translate the coordinate system so that this circle is centred at the origin. In this case, one can
express equivalently the operator Nk using the Fourier transform with respect to the angular
coordinate θ and construct a numerical rule to build a low rank Ñk that serves for evaluating
(2.17).

A function ϕ ∈ L2(∂C) can be decomposed in the Fourier domain as

ϕ(x) =
∑
n∈Z

ϕ̂n e−inθ(x) ∀ x ∈ ∂C,

and we set ϕ̂ = (ϕ̂n)n∈Z, which is an element of �2(Z), the set of square summable sequences. The
image of ϕ by the operator Nk can written as

Nk(ϕ)(x) =
∑
n∈Z

ϕ̂nus
n(x) x ∈ ∂C,

where we have set

us
n :=

∫
∂C

us(·, y) e−inθ(y) ds(y).

The functions us
n can be computed directly by solving an interior problem. Indeed, thanks to the

addition theorem

H(1)
0 (k|x − y|) =

∑
m∈Z

H(1)
n (k|x|)Jn(k|y|) eim(θ(x)−θ(y)), |x|> |y|. (2.18)

Consequently, for |y| = RC, x ∈ ∂D ,

−
∫ 2π

θ=0

i
4

H(1)
0 (k|x − y|) einθ(y) dθ = −iπ

2
H(1)

n (k|x|)Jn(kRC) einθ(x).
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This implies that us
n ∈ H1(D) is the unique solution to{

�us
n + k2us

n = 0 in D
us

n = fn on ∂D,
(2.19)

where

fn(x) := − iπ
2

H(1)
n (k|x|)Jn(kRC) einθ(x) x ∈ ∂D.

This Dirichlet problem is posed on a bounded domain and can be numerically solved using any
standard PDE solver (for instance finite-element methods). For our numerical implementation
below, we rather use a boundary integral formulation of this problem based on a single-layer
representation of the solution in the form

us
n(x) =

∫
∂D
ψ(y)H(1)

0 (k|x − y|) ds(y) ∀ x ∈ D.

This leads to a boundary integral equation for ψ of the form∫
∂D
ψ(y)H(1)

0 (k|x − y|) ds(y) = f n(x) ∀ x ∈ ∂D.

This equation is approximated using boundary element methods and the resulting system is
solved using an LU factorization which has a cost proportional to N3

∂D, where N∂D is the
number of unknowns on the boundary. As a rule of thumb, it is generally admitted that a good
approximation is generally obtained for the Helmholtz equation if N∂D ∼ 2|k||∂D|. The important
point for our method is that the number of right-hand sides fn should be much smaller than N∂D,
which reduces the numerical cost. This number is related to the way we approximate the operator
Nk, which in turn is related to the size of RC, which we will explain below in detail.

By introducing the Fourier coefficients of the solution us
n

ûs
n,m :=

∫
∂C

us
n(x)e−imθ(x) ds(x),

we observe that solving Nkϕ =ψ is equivalent in the Fourier domain to solving N̂kϕ̂ = ψ̂ , where
the operator N̂k : �2(Z) → �2(Z) is defined by

(N̂kϕ̂)m :=
∑
n∈Z

ûs
n,mϕ̂n.

As a numerical approximation of this operator, we shall use the operator N̂N
k : C

2N+1 → C
2N+1

defined by

(N̂N
k ϕ̂)m :=

n=N∑
n=−N

ûs
n,mϕ̂n, −N ≤ m ≤ N,

where N> 0 is some truncation parameter that will be chosen later.
Let us denote by (Φ̂k(z))n∈Z ∈ �2(Z) the Fourier transform of Φk(·, z). The addition formula

shows that

(Φ̂k(z))n = iπ
2

H(1)
n (k|z|)Jn(kRC) einθ(z).

Let Φ̂N
k (z) ∈ C

2N+1 be the vector formed by (Φ̂k(z))n with n = −N, . . .N. Equivalently to (2.17), we
shall use as indicator function for scattering poles, the function

Î(k) :=
∑
z∈Z

||(N̂N
k )−1Φ̂N

k (z)||2
C2N+1 . (2.20)

Note that (similarly to Nk) the operator N̂k is a compact operator, thus the inverse operator is
unbounded. The truncation N serves as a regularization parameter, it is a trade-off between the
approximation error and ill-conditioning. To mitigate the latter, N cannot be chosen too large

in order to keep the conditioning number of the matrix N̂N
k small enough by ignoring small

singular values. Note that in practice the truncation parameter N would depend on RC and k
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Figure 1. Choice of the cut-off value for Fourier coefficients.

(see discussion in §4, figure 1 where a rule of thumb N ∼ |k|RC + 4 is observed) and this number
is expected to be small compared with N∂D. The latter is ensured by controlling the size of
RC. Reducing RC (i.e. the size of the inner circle) reduces the numerical cost of the method but
at the expense of less accuracy and vice versa. Indeed, one can imagine a greedy procedure
where the size of RC is gradually increased as the location of the scattering poles improves.
This aspect is not included in our numerical implementation below. The evaluation of Î(k) is
done in our implementation by using a singular value decomposition of N̂N

k , for which the cost
is O(N3).

(i) Analytic expression in the case of circular domain

In the case of a circular domain, it is possible to have an analytic expression of the operator N̂k
and therefore an analytic expression of Î(k). Assume that the domain D is the disc of radius RD. In
this case, the scattering poles are formed by the zeros of k �→ H(1)

n (kRD). For k ∈ C−, the scattered
field us

n solution of (2.19) is then given by

us
n(x) = −iπ

2
H(1)

n (kRD)Jn(kRC)
Jn(kRD)

Jn(k|x|) einθ(x).

This leads to

ûs
n,n = −iπ2RC

H(1)
n (kRD)Jn(kRC)2

Jn(kRD)
and ûs

n,m = 0 if n �= m,

which indicates that the operator N̂N
k is diagonal and invertible for all k ∈ C− outside the

scattering poles. One then obtains

Î(k) := 1
2πRC

∑
z∈Z

n=N∑
n=−N

∣∣∣∣∣ Jn(kRD)H(1)
n (k|z|)

H(1)
n (kRD)Jn(kRC)

∣∣∣∣∣
2

.

This expression clearly shows that if we choose |z|>RD to form a dense set in an interval, Î(k) →
∞ as k approaches any scattering poles that are zeros of H(1)

n (kRD) for −N ≤ n ≤ N.
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3. Extension to the scattering problem for an impedance obstacle
The algorithm described above and the related theory can be naturally extended to other
boundary conditions. The advantage of our computational method for the scattering poles is
that once the interior scattering operator Nk : L2(∂C) → L2(∂C) corresponding to that scattering
problem is available then in principle the algorithm is implemented in the same way without
making use of the physical properties of the scatterer. We describe this extension in the case of
the scattering problem for an obstacle with impedance boundary conditions. Under the same
assumption for D the scattering problem now reads

�us + k2us = 0 in R
m \ D

∂us

∂ν
+ ikηus = −

(
∂v

∂ν
+ ikηv

)
on ∂D

lim
r→∞ r(m−1)2

(
∂us

∂r
− ikus

)
= 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.1)

where η ∈ L∞(∂D) such that �(η)(x) ≥ 0 for almost all x ∈ ∂D. This problem is well-posed for k ∈ C

with �(k) ≥ 0. Note that our approach can be generalized verbatim to k dependent η which model
dispersive thin layer coating D. More specifically in this case one assumes that η= η(k) depends
analytically on k and is such that �(η(k))< 0 if k ∈ C−. However, for the purpose of presentation
here, we assume that η is independent of k. Under these assumptions, we can define the scattering
poles for an impedance obstacle. The above scattering problem can be equivalently written as
given f ∈ H−1/2(∂D) find w ∈ H1

loc(Rm \ D) such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�w + k2w = 0 in R
m \ D

∂w
∂ν

+ ikηw = f on ∂D

w = SLk
∂D

(
∂w
∂ν

)
− DLk

∂D(w) in R
m \ D.

(3.2)

Definition 3.1. k ∈ C is a scattering pole of the scattering problem for D with impedance
boundary conditions if the homogeneous problem (3.2), i.e. with f = 0, has a non-trivial solution.

Under the above assumptions on η, it is known that these scattering poles lie in the complex
lower half-plane C− := {z ∈ C, �(z)< 0} and form a discrete set without accumulation points [26].
The corresponding interior scattering problem is now formulated as: for a point z ∈ D, us(·, z) ∈
H1(D) is the unique solution of⎧⎪⎨

⎪⎩
�us(·, z) + k2us(·, z) = 0 in D

∂us(·, z)
∂ν

+ ikηus(·, z) = −
(
∂Φk(·,z)
∂ν

+ iηΦk(·, z)
)

on ∂D.
(3.3)

Since we are interested in the scattering poles, we restrict k ∈ C−, and this problem has a unique
solution since the impedance eigenvalues have positive imaginary part. One then defines the
operator Nk the same way as (2.10) where now us(x, z) is given by (3.3).

Theorem 3.2. Assume k ∈ C− is not a scattering pole. Then the operator Nk : L2(∂C) −→ L2(∂C) is
injective.

Proof. Let g ∈ L2(∂C) be such that Nk(g) = 0 on ∂C. us
g solves the Helmholtz equation in D ⊃ C

and us
g|∂C = 0, and since k2 is not a Dirichlet eigenvalue in C, us

g = 0 in C. By a unique continuation

us
g = 0 in D and hence

∂us
g

∂ν
+ ikηus

g = 0 on ∂D. By linearity and superposition −
(
∂us

g
∂ν

+ ikηus
g

)
=

∂SL∂C(g)
∂ν

+ ikηSL∂C(g) = 0 on ∂D. Since SL∂C(g) solves (3.2) with f = 0 and since k is not a scattering
pole of the impedance problem, SL∂C(g) = 0 in R

m\D, and by unique continuation, in R
3\C. In

addition, we also have SL∂C(g) = 0 in C. Finally, using the jump relation on ∂C for the normal
derivative of the single-layer potential [25], we obtain g = 0. �
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By obvious modifications of the proof of [23, Lemma 2.5], we can prove the following lemma:

Lemma 3.3. The operator Nk is symmetric, that is its transpose operator N T
k : L2(∂C) −→ L2(∂C)

verifies N T
k (g) =Nk(g), where N T

k is defined by
∫
∂C

Nk(g)(x)f (x) ds(x) =
∫
∂C

g(x)N T
k (f )(x) ds(x) ∀ f , g ∈ L2(∂C).

Combining theorem 3.4 and lemma 3.3, we conclude that

Theorem 3.4. Assume k ∈ C− is not a scattering pole. Then the operator Nk : L2(∂C) −→ L2(∂C) has
dense range.

In the impedance case, the operator Gk : He
inc(D) → L2(∂C) maps w �→ uw|∂C with uw the unique

solution of

�uw + k2uw = 0 in D and
∂uw

∂ν
+ ikηuw = −

(
∂w
∂ν

+ ikηw
)

on ∂D. (3.4)

We next prove an equivalent definition of the scattering poles with definition 3.1.

Proposition 3.5. k ∈ C− is a scattering pole for an impedance obstacle if and only if Gk is not injective.

Proof of the equivalence of definitions 3.1 and 3.5.

(i) Let us suppose k is a scattering pole for the impedance problem in D and write w0 ∈
He

inc(D) its associated eigenfunction, where He
inc(D) given by (2.13). Then ∂w0

∂ν
+ ikηw0 = 0

on ∂D, therefore as k is not an eigenvalue of the impedance problem in D, uw0 = 0 in D
and therefore Gk(w0) = 0.

(ii) Conversely, let us suppose there exists a non-trivial w0 ∈ He
inc(D) such that Gk(w0) = 0.

Then uw0 = 0 on ∂C and as k is not a Dirichlet eigenvalue in C, uw0 = 0 in C and by unique

continuation, in D. By uniqueness of the impedance problem in D,
∂uw0
∂ν

+ ikηuw0 = 0 on
∂D, and therefore ∂w0

∂ν
+ ikηw0 = 0 on ∂D. That is w0 is an eigenfunction of the impedance

boundary problem, i.e. k is a scattering pole of the impedance problem.

�

Lemma 3.6. Assume k ∈ C− is not a scattering pole of the impedance problem in D, and let z ∈ R
m\C.

Then Φk(·, z) is in the range of Gk if and only if z ∈ R
m\D.

Proof.

(i) If z ∈ R
m\D, then we find w ∈ He

inc(D) to be the unique solution of the exterior impedance

problem (3.2) with the right-hand side f = ∂Φk(·,z)
∂ν

+ ikηΦk(·, z) on ∂D. By uniqueness of
the impedance problem in D, we immediately have Gk(w) =Φk(·, z)|C.

(ii) Conversely, assume to the contrary that for z ∈ D\C, there exists w ∈ He
inc(D) such that

Gk(w) =Φ(·, z). This means that there exists uw satisfying (3.4) with uw =Φk(·, z) on ∂C.
Since both uw and Φ(·, z) satisfy the Helmholtz equation in C then by the uniqueness of
the Dirichlet problem uw =Φk(·, z) in C and hence in D by unique continuation. This is a
contradiction since uw ∈ H1(D\C) and Φk(·, z) /∈ H1(D\C).

�

Lemma 3.7. Assume k ∈ C− is a scattering pole of the impedance problem in D. Then Φk(·, z) cannot
be in the range of Gk for a dense set of points z in a ball Ω ⊂ R

m \ D.

Proof. Assume that k ∈ C− is a scattering pole and let w0 be the solution of (3.2) with f = 0.
Assume to the contrary that for a dense set of points z ∈Ω we have that Gk(wz) =Φ(·, z) with
wz ∈ He

inc(D). Thus, we have that there exists the corresponding uz ∈ H1(D) satisfying (3.4) and
uz|∂C =Φz(·, z). We deduce by uniqueness of the Dirichlet problem inside C that uz =Φk(·, z) in C
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and by unique continuation in D. By uniqueness of the impedance boundary problem in D, we
have ∂uz

∂ν
+ ikηuz = ∂Φk(·,z)

∂ν
+ ikηΦk(·, z) on ∂D, that is ∂wz

∂ν
+ ikηwz = ∂Φk(·,z)

∂ν
+ ikηΦk(·, z) on ∂D.

For a generic m − 1 dimensional closed Lipschitz manifold without boundary ∂O introduce the
boundary integral operators obtained from (2.6) and (2.7) and their derivative by approaching the
boundary ∂O

Sk
∂O : H−1/2(∂O) → H1/2(∂O) ψ �→

∫
∂O
ψ(y)Φk(·, y) ds(y),

Kk
∂O : H1/2(∂O) → H1/2(∂O) ψ �→

∫
∂O
ψ(y)

∂Φk(·, y)
∂νy

ds(y),

K̃k
∂O : H−1/2(∂O) → H−1/2(∂O) ψ �→

∫
∂O
ψ(y)

∂Φk(·, y)
∂ν·

ds(y)

and Lk
∂O : H1/2(∂O) → H−1/2(∂O) ψ �→ ∂

∂ν

∫
∂O
ψ(y)

∂Φk(·, y)
∂νy

ds(y).

Applying the impedance boundary condition on Green’s representation formula for w0
approaching ∂D from the outside, we have(

K̃k
∂D − 1

2
+ ikηSk

∂D

)
∂w0

∂ν
−
(
Lk
∂D + ikηKk

∂D + ikη
2

)
w0 = 0,

and using ∂w0
∂ν

= −ikηw0 yields

(ikηK̃k
∂D + (ikη)2Sk

∂D + Lk
∂D + ikηKk

∂D)w0 = 0. (3.5)

In a similar way, we have the impedance boundary condition of wz by approaching ∂D from
outside in Green’s representation formula

∂wz

∂ν
+ ikηwz = −

(
K̃k
∂D − 1

2
+ ikηSk

∂D

)
∂wz

∂ν
+
(
Lk
∂D + iηkKk

∂D + ikη
2

)
wz,

which we can write as

∂wz

∂ν
+ ikηwz = −2(K̃k

∂D + ikηSk
∂D)

∂wz

∂ν
+ 2(Lk

∂D + ikηKk
∂D)wz. (3.6)

Taking now the trace of the representation formula uz and its normal derivative on ∂D from inside
yields

∂uz

∂ν
+ ikηuz =

(
K̃k
∂D + 1

2
+ ikηSk

∂D

)
∂uz

∂ν
−
(
Lk
∂D + ikηKk

∂D − ikη
2

)
,

or equivalently
∂uz

∂ν
+ ikηuz = 2(K̃k

∂D + ikηSk
∂D)

∂uz

∂ν
− 2(Lk

∂D + ikηKk
∂D)uz. (3.7)

Next, we multiply (3.7) by w0 and integrate over ∂D. Using ∂uz
∂ν

= −ikηuz + ∂wz
∂ν

+ ikηwz, we obtain
that ∫

∂D

∂Φk(·, z)
∂ν

w0 + ikηΦk(·, z)w0 ds =
∫
∂D

∂uz

∂ν
+ ikηuzw0 ds

=
∫
∂D

2(K̃k
∂D + ikηSk

∂D)
∂uz

∂ν
w0 − 2(Lk

∂D + iηkKk
∂D)uzw0 ds

=
∫
∂D

2(K̃k
∂D + ikηSk

∂D)
(
∂wz

∂ν
+ ikηwz

)
w0 ds

−
∫
∂D

2(ikηK̃k
∂D + (ikη)2Sk

∂D + Lk
∂D + ikηKk

∂D)uzw0 ds.
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Thanks to the identities Kk
∂D

� = K̃k
∂D, Lk

∂D
� =Lk

∂D and Sk
∂D

� = Sk
∂D [25] and the relation (3.5), the

second integral is zero. We now use the identity (3.6) to replace 2(K̃k
∂D + ikηSk

∂D) ∂wz
∂ν

in the first
integral, which gives

∫
∂D

∂Φk(·, z)
∂ν

w0 + ikηΦk(·, z)w0 ds = −
∫
∂D

(
∂wz

∂ν
+ ikηwz

)
w0 ds

+ 2
∫
∂D

(Lk
∂D + ikηKk

∂D + ikηK̃k
∂D + (ikη)2Sk

∂D)wzw0 ds.

Knowing ∂wz
∂ν

+ ikηwz = ∂Φk(·,z)
∂ν

+ ikηΦk(·, z) and using again (3.5), we can conclude that

u(z) :=
∫
∂D

∂Φk(·, z)
∂ν

w0 + ikηΦk(·, z)w0 ds = DLk
∂D(w0)(z) − SLk

∂D

(
∂w0

∂ν

)
(z) = 0

for a dense set of points z in Ω , where we use that ikηw0 = − ∂w0
∂ν

. Since u(z) is a solution to the
Helmholtz equation in R

m \ D hence analytic, we conclude that u(z) = 0 in R
m \ D. On the other

hand, u(z) as a solution of Helmholtz equation inside D. Letting z approach the boundary from
both sides, using the jump relations of single and double potentials, and knowing that u+|∂D =
∂u+
∂ν

|∂D = 0 (traces from outside D) give

∂u−

∂ν
+ ikηu−=∂w0

∂ν
+ ikηw0 = 0. (3.8)

Therefore, by uniqueness of the impedance problem inside D, we conclude u = 0 in D. Using the
jump relation of u over ∂D, we have w0|∂D = (∂w0/∂ν)|∂D = 0. By Holmgren’s theorem w0 = 0 in
R

m \ D, which is a contradiction. This proves the lemma. �

Obviously, we have that Nkϕ = GkSLk
∂C(ϕ) for all ϕ ∈ L2(∂C) and that {SLk

∂C(ϕ); ϕ ∈ L2(∂C)} is
dense in He

inc(D). Thus, the above discussion provides all the ingredients to prove theorem 2.4,
which is the theoretical basis of our computational algorithm.

(a) Numerical algorithm for two-dimensional examples
In a similar way as for the Dirichlet problem in §2a, for the numerical implementation of the
algorithm in the two-dimensional case, we can obtain an explicit expression of the operator N̂k in
the Fourier domain. For the impedance problem, the functions us

n are now defined as the unique
solution in H1(D) of ⎧⎪⎨

⎪⎩
�us

n + k2us
n = 0 in D

∂us
n

∂ν
+ iη(k)u = fn on ∂D,

(3.9)

where

fn(x) :=
(
∂

∂ν
+ ikη

)(−iπ
2

H(1)
n (k|x|)Jn(kRC) einθ(x)

)
x ∈ ∂D.

Using the formula for Bessel and Hankel functions

X ′
n(x) = −Xn+1(x) + n

x
Xn(x), (3.10)

for Xn = H(1)
n or Jn, we end up with

fn(x) = iπ
2

Jn(kRC)einθ(x)
[

(−kH(1)
n+1(k|x|) + n

|x|H(1)
n (k|x|)) x · ν

|x| + iη(k)H(1)
n (k|x|)

]
.

The rest of the implementation works in the same way as in §2a.
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(i) Analytic expression in the case of a circular domain

Assume that the domain D is the disc of radius RD centred at the origin and η := η(k) does not
depend on the angular variable. Then, the scattering poles are the zeros of the functions

fn(k) := −kH(1)
n+1(kRD) +

(
n

RD
+ iη(k)

)
H(1)

n (kRD). (3.11)

One can solve explicitly for us
n and get

us
n(x) = −iπ

2
Jn(kRC)

[
−kH(1)

n+1(kRD) +
(

n
RD

+ iη(k)
)

H(1)
n (kRD)

]
[
−kJn+1(kRD) + ( n

RD
+ iη(k))Jn(kRD)

] Jn(k|x|)einθ(x).

This again leads to a diagonal operator N̂k with diagonal terms given by

ûs
n,n = −iπ2RCJn(kRC)2

[
−kH(1)

n+1(kRD) +
(

n
RD

+ iη(k)
)

H(1)
n (kR)

]
[
−kJn+1(kRD) +

(
n

RD
+ iη(k)

)
Jn(kRD)

] .

Consequently, the truncated indicator function takes the expression

Î(k) = 1
2πRC

∑
z∈Z

n=N∑
n=−N

∣∣∣∣∣∣
H(1)

n (k|z|)
Jn(kRC)

[−kJn+1(kR) + ( n
R + iη(k)

)
Jn(kR)

]
[
−kH(1)

n+1(kR) + ( n
R + iη(k)

)
H(1)

n (kR)
]
∣∣∣∣∣∣
2

.

We again observe that this indicator function goes to ∞ as k approaches a scattering poles if the
points z are chosen such that they are not zeros of H(1)

n (k|z|).

4. Numerical validation
To build the matrix N̂k, we use Gypsilab [27], an open MATLAB toolbox, which enables us to solve
our boundary value problems (2.19) (and (3.9) in the case of impedance boundary conditions)
using boundary integral techniques. As indicated earlier, any other numerical solver could have
been used for this step.

A key parameter in our method is the choice of N, the number of Fourier parameter used
in truncating the operator N̂k. This number is tuned in order to control the conditioning of the
matrix operator N̂N

k . Indeed, in the case of a circle, one can see from the analytical expressions
derived above that the conditioning grows exponentially with respect to N. On the other hand,
a number of Fourier coefficients that is too small will lower the precision as it would not allow
to reach scattering poles that are the zeros of Hankel functions with order greater than N. This
is specific to the circles. For general domains, we may rephrase this requirement as a precision

constraint, meaning that N̂N
k should be a sufficiently accurate approximation of Nk. It is also

related to the fact that the incident field Φ(·, z) for z ∈ C should be accurately approximated on ∂D
by its truncated Fourier series.

We first consider the case where D is the unit disc and ∂C be the circle of radius 1/2.
We plot in figure 1, the number of Fourier coefficients for different values of k = �(k) −
0.5i, with �(k) ∈ [0; 20] for the case of Dirichlet boundary conditions. The number of Fourier
coefficients N is chosen between the maximum value such that the condition number of
N̂N

k stays below 102, and the minimum value to reach 95% of the norm of the incident
field.

As a rule of thumb, choosing N ∼ |k|RC + 4, seems to provide a good balance. This has been
confirmed by many other experiments not reported here. This choice is the one adopted in the
following experiments.
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Figure 2. The indicator function Î(k) for a circle of radius 1.3 and an impedance η(k)= k/10.

(a) Validation in the case of a disc
It is possible to numerically determine the scattering poles as the zeros of the functions fn given
by (3.11). We exploit the Cauchy integral to compute these zeros, using the identity

1
2iπ

∫
γ

k�
f ′
n(k)

fn(k)
dk =

M∑
i=1

mik
�
i ,

where ki, i = 1, . . .M, are the zeros inside the direct contour γ and mi are their order. Using �= 1,
this allows an accurate evaluation of scattering poles that have simple multiplicities by choosing
the contour γ to be sufficiently small so that it contains only one pole. The number of poles lying
inside γ can be determined using �= 0. For fn given by (3.11), the derivative is given by

df
dk

= kRHn+2(kR) − (2(n + 1) − Riη(k))Hn+1(kR) +
(

iη′(k) + n
k

iη + n2

kR

)
Hn(kR).

We take a circle of radius R = 1.3 and an impedance function η(k) = k/10. Thanks to the Cauchy
integral, we find the poles of f ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k1 = 0.3593 − 0.4712i for n = 1

k2 = 1.0490 − 0.6304 for n = 2

k3 = 1.7514 − 0.7435 for n = 3

k4 = 2.4627 − 0.8346 for n = 4.

Searching in the area [0; 3] × [−1; 0], we compute Î(k) for values of k in a uniform grid with a step
size 2 × 10−2. Figure 2 displays the obtained indicator function where we clearly see the peaks at
the location of the scattering poles. The coordinates of the peaks (with the used mesh step) give
the following approximations for these scattering poles:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kres
1 = 0.3503 − 0.4704i

kres
2 = 1.0554 − 0.6336i

kres
3 = 1.7606 − 0.7356i

kres
4 = 2.4657 − 0.8376i.
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Figure 3. Geometry of a kite compared with the circle of radius 1.3.

(b) The case of a kite
We consider a different shape, a kite which is a deformation of a circle that has the geometry
described in figure 3. The equation of the kite is given by

K(θ ) = (cos(θ ) + 0.65 cos(2θ ) − 0.65, 1.5 sin(θ )), θ ∈ [0; 2π ].

Searching in the same area as in the previous example, we get four peaks corresponding to
four scattering poles (figure 4) ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kres
1 = 0.3707 − 0.4908i

kres
2 = 1.1798 − 0.6336i

kres
3 = 2.0464 − 0.8176i

kres
4 = 2.9292 − 0.9000i.

Seeing the kite as a deformation of the circle, we can compare the values of their poles. They
count the same number of poles, so we can pair them. The greater the distance to the origin, the
less similar the poles seem to be (figure 5).

(c) The influence of the impedance parameter
We can see that for η= 0, the problem corresponds to the Neumann boundary value problem,
and for η−→ ∞ it becomes the Dirichlet boundary value problem. It is interesting to observe the
behaviour of a particular scattering pole when the boundary condition on the scatterer changes
from Dirichlet to Neumann via an impedance boundary condition with a constant impedance
parameter η varying in [0, ∞). The scattering pole is continuous with respect to η, as we can see
in figure 6 (where the parameter η is varied from 0 to 50 taking 60 equally distributed values). For
each fixed such η, the coordinates of the scattering pole corresponding to the impedance boundary
condition (∂/∂ν) + ikη are computed based on the numerical scheme described above.

We observe that the continuous dependence of the scattering pole with respect to η takes a
‘stair shape’. If the problem is close to a Dirichlet problem (η large), the real part of the Dirichlet
pole is a good approximation for the real part of the impedance pole. And if the problem is close to
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Figure 4. The indicator function Î(k) for the kite depicted in figure 3 and an impedance η(k)= k/10.
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Figure 5. Poles of the impedance boundary problem for a kite and a circle.

a Neumann problem (η small), the imaginary part of the scattering pole is well approximated by
the imaginary part of the Neumann pole. However, we refrain ourselves from drawing a general
conclusion, since this observation is made on a single pole for a particular shape (the kite).

(d) The influence of continuous perturbations of the geometry
Next, we investigate the behaviour of a scattering pole for an impedance kite with η= 0.1, with
respect to continuous perturbations of the shape. We consider a one-parametric family of kites
with the equation

K(θ ) = (cos(θ ) + a · cos(2θ ) − a, 1.5 sin(θ )), θ ∈ [0; 2π ],
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Figure 7. (a and b) Tracing the change of a scattering pole with respect to smooth surface preserving perturbation of the kite
region with impedance boundary condition.

where a becomes the parameter. We numerically compute the surface of the kite and note that
the area is invariant with respect to a. We then vary this parameter, and observe the shift of a
scattering pole. The results are shown in figure 7, where a ranges from 0.6 to 1.2.

Once again we observe a continuous dependence of the scattering pole, this time with respect
to this particular class of continuous perturbations of the shape of the object. For example, a
change in the parameter of the shape going from 0.6 to 1.2, that is a 100% increase, is echoed in
the scattering poles in a nonlinear fashion, with a 11% increase in the real part and 3% decrease in
the imaginary part. The way the information about the shape is encoded in the scattering poles is
not trivial, but could be exploited.

Of course, these numerical examples are preliminary and are meant as a proof of concept.
Nevertheless, they show the viability of our numerical method. They also show that the scattering
poles carry geometric and physical information about the scattering object.
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