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Preface to the Second Edition

In the first edition of this book, we discussed methods for determining the support of
an inhomogeneous medium from measured far field data as well as an extensive study
of the central role played by the transmission eigenvalue problem in the mathematical
development of these methods. In particular, we introduced the generalized linear sampling
method (GLSM) and showed that this method provides a mathematical explanation of why
it is permissible to use Tikhonov regularization to obtain an approximate solution of the
far field equation associated with the linear sampling method.

In the six years since the first edition of our book appeared, there has been consid-
erable progress in both the development of GLSM as well as the theory of transmission
eigenvalues. In this second edition, in addition to correcting typos in the first edition, we
have added several highlights taken from these new developments. In particular, we have
included new chapters on (1) the use of modified background media in the nondestructive
testing of materials and in particular methods for determining the modified transmission
eigenvalues that arise in such applications from measured far field data, (2) a study of a
subset of transmission eigenvalues, called nonscattering wave numbers, through the use of
techniques taken from the theory of free boundary value problems for elliptic partial differ-
ential equations, and (3) the duality between scattering poles and transmission eigenvalues
which, in addition to their intrinsic mathematical interest, leads to new methods for the
numerical computation of scattering poles.

We hope that this new edition will attract many newcomers to this intriguing new area
in applied mathematics.

ix





Preface to the First Edition

In the past thirty years the field of inverse scattering theory has become a major theme of
applied mathematics with applications to such diverse areas as medical imaging, geophysi-
cal exploration, and nondestructive testing. The growth of this field has been characterized
by the realization that the inverse scattering problem is both nonlinear and ill-posed, thus
presenting particular problems in the development of efficient inversion algorithms. Al-
though linearized models continue to play an important role in many applications, the
increased need to focus on problems in which multiple scattering effects can no longer
be ignored has led to the nonlinearity of the inverse scattering problem playing a central
role. In addition, the possibility of collecting large amounts of data over limited regions of
space has led to the situation where the ill-posed nature of the inverse scattering problem
becomes a problem of central importance.

Initial efforts to deal with the nonlinear and ill-posed nature of the inverse scattering
problem focused on the use of nonlinear optimization methods, in particular Newton’s
method and various versions of what are now called decomposition methods. For a discus-
sion of this approach to the inverse scattering problem together with numerous references,
we refer the reader to [69]. Although efficient in many situations, the use of nonlinear
optimization methods suffers from the need for strong a priori information in order to im-
plement such an approach. Hence, in order to circumvent this difficulty, a recent trend
in inverse scattering theory has focused on the development of a qualitative approach in
which the amount of a priori information needed is drastically reduced but at the expense
of obtaining only limited information of the scatterer such as the connectivity, support, and
an estimate on the values of the constitutive parameters. Examples of such an approach
are the linear sampling method, the factorization method, and the theory of transmission
eigenvalues. It is these topics that are the theme of this monograph, focusing on their use
in the inverse acoustic scattering problem for inhomogeneous media.

The qualitative approach to inverse scattering theory was initiated by Colton and Kirsch
in 1996 [66]. In this paper they introduced a linear integral equation of the first kind, called
the far field equation, whose solution could be used as an indicator function to determine
the support of the scattering obstacle. This method is called the linear sampling method.
The mathematical difficulties inherent in this approach were subsequently resolved by the
factorization method of Kirsch and Grinberg [113], and further clarification of the rela-
tionship between the linear sampling and factorization methods was obtained by Arens
and Lechleiter [6] and Audibert and Haddar [13]. Having determined the support of the
scatterer, the next step in the qualitative approach is to determine estimates on the material
properties of the scatterer. This was accomplished by Cakoni, Gintides, and Haddar [44]
through the use of transmission eigenvalues first introduced by Kirsch [108] and Colton
and Monk [73]. The development of the above themes is the subject matter of the chapters
that follow. This book is intended for mathematicians, physicists, and engineers who either
are actively involved in problems arising in scattering theory or have an interest in this field

xi



xii Preface to the First Edition

and wish to know more about recent developments in this area. It will also be of interest to
advanced graduate students wishing to become more informed about new ideas in inverse
scattering theory. On the other hand, for those unfamiliar with classical scattering theory,
Chapter 1 provides a basic introduction to this area and also serves as an introduction to
the chapters which follow.

This monograph is based on lectures given by David Colton and Fioralba Cakoni at
the CBMS–NSF sponsored summer school “Inverse Scattering Theory and Transmission
Eigenvalues” held at the University of Texas in Arlington during the week of May 27 –
May 31, 2014. Special thanks are given to the National Science Foundation for their finan-
cial support as well as to Professor Tuncay Aktosun, whose expert skills in organizing and
running the summer school made it so successful. We would also like to thank Dr. Arje
Nachman of the Air Force Office of Scientific Research (AFOSR) for his long term sup-
port of Professors Cakoni and Colton as well as both AFOSR and L’Institut National de
Recherche en Informatique et en Automatique (INRIA) for supporting exchange visits be-
tween Professors Cakoni and Colton and Professor Haddar which has been indispensable
for our long term research efforts. We would also like to thank Dr. Richard Albanese,
USAF (retired), for his continuous interest and encouragement of our research. Finally, we
thank the editorial office at SIAM for their expert handling of our manuscript through the
publishing process.



Chapter 1

Scattering Theory

In this introductory chapter we provide an overview of the basic ideas of scattering the-
ory for inhomogeneous media of compact support and in particular the associated inverse
scattering problems, which will become the major theme of this monograph. In addition to
introducing the concept of the far field operator and the basic theory of ill-posed problems,
we also establish uniqueness results for inverse scattering problems for both isotropic and
anisotropic media. The results presented here are basic to the chapters that follow which
develop the qualitative approach to inverse scattering theory.

1.1 The Helmholtz Equation
The starting point of any discussion of classical scattering theory is the Helmholtz equation
and in particular spherical Bessel functions and spherical harmonics which arise when
separation of variables is implemented in spherical coordinates. More specifically, we
look for solutions of the Helmholtz equation in R3,

�u+ k2u = 0

for k > 0, in the form
u(x) = f(k |x|)Y m

n
(x̂),

where x 2 R3, x̂ := x/ |x|, and Y m

n
(x̂) is a spherical harmonic defined by

Y m

n
(✓,�) :=

s
2n+ 1

4⇡

(n� |m|)!

(n+ |m|)!
Pm

n
(cos ✓)eim�,

where m = �n, . . . , n, n = 0, 1, 2, . . . , (✓,�) are the spherical angles of x̂, and Pm

n
is

an associated Legendre polynomial. We note here that {Y m

n
} is a complete orthonormal

system in L2(S2), where
S2 := {x : |x| = 1}

and Y 0
0 = 1

p
4⇡

. Then f is a solution of the spherical Bessel equation

t2f 00(t) + 2tf 0(t) +
⇥
t2 � n(n� 1)

⇤
f(t) = 0 (1.1)

1



2 Chapter 1. Scattering Theory

with two linearly independent solutions,

jn(t) :=
1X

p=0

(�1)ptn+2p

2pp! 1 · 3 · · · (2n+ 2p+ 1)
,

yn(t) :=
(2n)!

2nn!

1X

p=0

(�1)pt2p�n�1

2pp!(�2n+ 1)(�2n+ 3) · · · (�2n+ 2p� 1)
,

(1.2)

called, respectively, the spherical Bessel function and the spherical Neumann function of
order n. We note that

j0(t) =
sin t

t
, y0(t) = �

cos t

t
. (1.3)

The functions

h(1)
n

(t) := jn(t) + iyn(t),

h(2)
n

(t) := jn(t)� iyn(t)

are called, respectively, the spherical Hankel functions of the first and second kind of order
n. From (1.2) and (1.3) we have that for fn = jn or fn = yn that

fn+1(t) = �tn
d

dt

�
t�nfn(t)

 

for n = 0, 1, 2, . . . and

h(1)
0 (t) =

eit

it
, h(2)

0 (t) = �
e�it

it
.

From this we see that the spherical Hankel functions have the asymptotic behavior

h(1)
n

(t) =
1

t
ei(t�

n⇡
2 �

⇡
2 )
⇢
1 +O

✓
1

t

◆�
,

h(2)
n

(t) =
1

t
e�i(t�n⇡

2 �
⇡
2 )
⇢
1 +O

✓
1

t

◆� (1.4)

as t tends to infinity. In particular, h(1)
n (kr) satisfies the Sommerfeld radiation condition

lim
r!1

r

✓
@u

@r
� iku

◆
= 0,

i.e., if u(x) = h(1)
n (kr)Y m

n
(x̂), then from the above asymptotic behavior of the spherical

Hankel functions we see that u(x)e�i!t (where ! is the frequency and t is time) is an
outgoing wave. In particular this implies that energy is radiated out to infinity as required
by physical considerations. Solutions of the Helmholtz equation satisfying the Sommerfeld
radiation condition uniformly in x̂ are called radiating. An equivalent condition for a
solution of the Helmholtz equation to be radiating is that

lim
r!1

Z

|x|=r

����
@u

@r
� iku

����
2

ds = 0. (1.5)

The Wronskian of h(1)
n (t) and h(2)

n (t) is given by

W
⇣
h(1)
n

, h(2)
n

⌘
:= h(1)

n
(t)h(2)0

n
(t)� h(2)

n
(t)h(1)0

n
(t)

= �
2i

t2
.

(1.6)



1.1. The Helmholtz Equation 3

For later use we also quote the following identity for the modulus of h(1,2)
n that can be

found in [139]:

|h(1,2)
n

(t)|2 =
1

t2
+

nX

`=1

↵n

`

t2(`+1)
, ↵n

`
=

(2n)!(n+ `)!

(n!2n)2(n� `)!
. (1.7)

Now let D be a bounded domain such that R3
\D is connected and assume that @D is

Lipschitz with unit outward normal ⌫ directed into the exterior of D. Let

�(x, y) :=
1

4⇡

eik|x�y|

|x� y|
, x 6= y, (1.8)

be the radiating fundamental solution to the Helmholtz equation, and let H2(D) be the
usual Sobolev space (correspondingly, H2

loc
(R3

\D)). For further reference we define

H2
0 (D) =

⇢
u 2 H2(D) : u = 0 and

@u

@⌫
= 0 on @D

�
. (1.9)

Then using Green’s second identity
Z

D

(u�v � v�u) dx =

Z

@D

✓
u
@v

@⌫
� v

@u

@⌫

◆
ds

we can deduce Green’s formula for functions u 2 H2(D) [69]:

u(x) =

Z

@D

⇢
@u

@⌫
�(x, y)� u

@

@v(y)
�(x, y)

�
ds(y)

�

Z

D

��
�u+ k2u

�
�(x, y)

 
dy, x 2 D.

(1.10)

Theorem 1.1. Let u 2 H2(D) be a solution of the Helmholtz equation in D. Then u is
analytic in D, i.e., u can be locally expanded in a power series for each point x 2 D.

Proof. Let x 2 D, and choose a closed ball contained in D with center x. Apply Green’s
formula to the ball and note that for x 6= y we have that �(x, y) is real analytic in x.

Theorem 1.2 (Holmgren’s Theorem). Let u 2 H2(D) be a solution to the Helmholtz
equation in D such that

u =
@u

@⌫
= 0 on �

for some open subset � ⇢ @D. Then u is identically zero in D.

Proof. Using (1.10) we can extend u by setting

u(x) :=

Z

@D\�

⇢
@u

@⌫
�(x, y)� u

@

@⌫(y)
�(x, y)

�
ds(y)

for x 2 (R3
\ D) [ �. By Green’s second identity applied to u and �(x, ·) we see that

u = 0 in R3
\D. But u is a solution of the Helmholtz equation in (R3

\@D)[� and hence
by the analyticity of u we have that u = 0 in D.



4 Chapter 1. Scattering Theory

We now derive a representation formula analogous to (1.10) for radiating solutions of
the Helmholtz equation in R3

\D. Part of the proof of this theorem will also be used at the
end of this section in order to provide a uniqueness theorem for radiating solutions of the
Helmholtz equation.

Theorem 1.3. Let u 2 H2
loc

(R3
\ D) be a radiating solution to the Helmholtz equation.

Then we have Green’s formula

u(x) =

Z

@D

⇢
u(y)

@�(x, y)

@⌫(y)
�
@u

@⌫
(y)�(x, y)

�
ds(y), x 2 R3

\D.

Proof. Let Sr := {x : |x| = r}. Then the Sommerfeld radiation condition implies that
Z

Sr

(����
@u

@⌫

����
2

+ k2 |u|2 + 2k=

✓
u
@u

@⌫

◆)
ds

=

Z

Sr

����
@u

@⌫
� iku

����
2

ds ! 0

(1.11)

as r tends to infinity. We now assume that r is large enough such that D is contained in the
ball bounded by Sr and apply Green’s first identity

Z

D

(u�v +ru ·rv) dx =

Z

@D

u
@v

@⌫
ds

to Dr :=
�
x 2 R3

\D : |x| < r
 

to obtain
Z

Sr

u
@u

@⌫
ds =

Z

@D

u
@u

@⌫
ds� k2

Z

Dr

|u|2 dy +

Z

Dr

|ru|2 dy. (1.12)

Taking the imaginary part of (1.12) and substituting this into (1.11) gives

lim
r!1

Z

Sr

(����
@u

@⌫

����
2

+ k2 |u|2
)

ds = �2k=

0

@
Z

@D

u
@u

@⌫
ds

1

A , (1.13)

which implies that Z

Sr

|u|2 ds = O(1), r ! 1.

Using the Cauchy–Schwarz inequality and the Sommerfeld radiation condition, we now
have that
Z

Sr

⇢
u
@�(x, y)

@⌫(y)
�
@u

@⌫
�(x, y)

�
ds(y)

=

Z

Sr

u

⇢
@�(x, y)

@⌫(y)
� ik�(x, y)

�
ds(y)

�

Z

Sr

�(x, y)

⇢
@u

@⌫
� iku

�
ds(y) ! 0
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as r tends to infinity. Hence, applying Green’s formula (1.10) to Dr and letting r tend to
infinity gives the theorem.

Corollary 1.4. An entire solution to the Helmholtz equation satisfying the Sommerfeld
radiation condition must vanish identically.

Proof. This follows immediately from Green’s formula and Green’s second identity.

Corollary 1.5. Every radiating solution u 2 H2
loc

(R3
\D) to the Helmholtz equation has

the asymptotic behavior of an outgoing spherical wave,

u(x) =
eik|x|

|x|
u1(x̂) +O

 
1

|x|2

!
, |x| ! 1, (1.14)

uniformly in all directions x̂ = x/ |x|. The function u1 defined on the unit sphere S2 is
called the far field pattern of u and can be expressed as

u1(x̂) =
1

4⇡

Z

@D

⇢
u(y)

@

@⌫(y)
e�ikx̂·y

�
@u

@⌫
(y)e�ikx̂·y

�
ds(y), x̂ 2 S2. (1.15)

Proof. From

|x� y| =
q
|x|2 � 2x · y + |y|2 = |x|� x̂ · y +O

✓
1

|x|

◆

we obtain
eik|x�y|

|x� y|
=

eik|x|

|x|

⇢
e�ikx̂·y +O

✓
1

|x|

◆�

and
@

@⌫(y)

eik|x�y|

|x� y|
=

eik|x|

|x|

⇢
@

@⌫(y)
e�ikx̂·y +O

✓
1

|x|

◆�

as |x| ! 1 uniformly for all y 2 @D. The corollary now follows by substituting into
Green’s formula.

The next result is a cornerstone of scattering theory and will be used repeatedly in what
follows.

Lemma 1.6 (Rellich’s Lemma). Let u 2 H2
loc

(R3
\ D) be a solution to the Helmholtz

equation satisfying

lim
r!1

Z

|x|=r

|u(x)|2 ds(x) = 0.

Then u = 0 in R3
\D.

Proof. For |x| sufficiently large we have that

u(x) =
1X

n=0

nX

m=�n

am
n
(r)Y m

n
(x̂),
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where
am
n
(r) =

Z

S2

u(rx̂)Y m
n
(x̂) ds(x̂) (1.16)

and Z

|x|=r

|u(x)|2 ds = r2
1X

n=0

nX

m=�n

|am
n
(r)|2 .

The assumption of the theorem implies that

lim
r!1

r2 |am
n
(r)|2 = 0. (1.17)

But from (1.16) and the fact that u is a solution of the Helmholtz equation we can deduce
that the am

n
(r) are solutions of the spherical Bessel equation (1.1), i.e.,

am
n
(r) = ↵m

n
h(1)
n

(kr) + �m

n
h(2)
n

(kr), (1.18)

where ↵m

n
and �m

n
are constants. Substituting (1.18) into (1.17) and using the asymptotic

formulae (1.4) now implies that ↵m

n
= �m

n
= 0 for all n, m and hence u = 0 outside a

sufficiently large ball. This implies that u = 0 in R3
\ D by analyticity (Theorem 1.1).

Corollary 1.7. Assume u 2 H2
loc

(R3
\D) is a radiating solution to the Helmholtz equation

such that

=

0

@
Z

@D

u
@u

@⌫
ds

1

A � 0.

Then u = 0 in R3
\D.

Proof. From (1.13) and the assumption of the theorem we have that the assumption of
Rellich’s Lemma is valid.

1.2 The Scattering Problem for Inhomogeneous
Isotropic Media

We will now present the simplest scattering problem that will serve as a model for the
inverse problems which will be discussed in this book. It is related to the propagation of
sound waves of small amplitude in R3 viewed as a problem in fluid dynamics. Let v(x, t),
x 2 R3, be the velocity potential of a fluid particle in an inviscid fluid, and let p(x, t) be the
pressure, ⇢(x, t) the density, and S(x, t) the specific entropy. Then, if there are no external
forces, we have that

@v

@t
+ (v ·r)v +

1

⇢
r⇢ = 0 (Euler’s equation),

@⇢

@t
+r(⇢v) = 0 (equation of continuity),

p = f(⇢, s) (equation of state),
@s

@t
+ v ·rs = 0 (adiabatic hypothesis),
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where f is a function depending on the fluid. Assuming that v(x, t), p(x, t), ⇢(x, t), and
S(x, t) are small we perturb around the static case v = 0, p = p0 = constant, ⇢ = ⇢0(x),
S = S0(x) with p0 = f(⇢0, S0):

v(x, t) = ✏v1(x, t) +O(✏2),

p(x, t) = p0 + ✏p1(x, t) +O(✏2),

⇢(x, t) = ⇢0(x) + ✏⇢1(x, t) +O(✏2),

S(x, t) = S0(x) + ✏S1(x, t) +O(✏2),

where 0 < ✏ ⌧ 1. Substituting the above into the equations of motion and equating the
coefficients of ✏, we arrive at

@v1
@t

+
1

⇢0
rp1 = 0,

@⇢1
@t

+r(⇢0v1) = 0,

@p1
@t

+ c2(x)

✓
@⇢1
@t

+ v1 ·r⇢0

◆
,

where the sound speed c is defined by

c2(x) =
@

@⇢
f (⇢0(x), S0(x)) .

Hence
@2p1
@t2

= c2(x)⇢0(x)r

✓
1

⇢0(x)
rp1

◆
.

If p1(x, t) = <
�
u(x)e�iwt

 
, we have that u satisfies

⇢0(x)r

✓
1

⇢0(x)
ru

◆
+

w2

c2(x)
u = 0.

Making the further assumption that r⇢0 can be ignored, we arrive at

�u+
w2

c2(x)
u = 0. (1.19)

We now assume that the slowly varying inhomogeneous medium is of compact support and
is embedded in R3 where the sound speed is c(x) = c0 = constant. If the wave motion is
caused by an incident field ui satisfying (1.19) with c(x) = c0, we arrive at the scattering
problem of determining u such that

�u+ k2n(x)u = 0 in R3, (1.20)

u = ui + us, (1.21)

lim
r!1

r

✓
@us

@r
� ikus

◆
= 0, (1.22)

where n(x) = 1 outside the inhomogeneous medium,

n(x) =
c20

c2(x)
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inside the inhomogeneous medium, r = |x|, the radiation condition (1.22) is valid uni-
formly with respect to x̂ = x/ |x|, k = w/c0 > 0 is the wave number, ui is an entire
solution of the Helmholtz equation �u + k2u = 0, us is the scattered field, and we re-
fer to the function n(x) as the refractive index (in the engineering and physics literature
c0/c(x) is the refractive index). The scattering problem (1.20)–(1.22) is the simplest model
in which to introduce the basic ideas of inverse scattering theory. However, we shall later
consider more physically realistic models in which we no longer ignore r⇢0 and allow u
to have jump discontinuities across the boundary of the inhomogeneous media (cf. Section
1.4). Moreover, in order to take into account possible attenuation in the media, we consider
a complex valued refractive index.

We now assume that n 2 L1(R3) with nonnegative imaginary part, set m := 1 � n,
and let D be a bounded domain with Lipschitz boundary @D such that R3

\D is connected
and m(x) = 0 in R3

\D. We again let

�(x, y) :=
1

4⇡

eik|x�y|

|x� y|
, x 6= y.

A proof of the following theorem can be found in [69].

Theorem 1.8. Given two bounded domains D and G, the volume potential

(V ')(x) :=

Z

D

�(x, y)'(y) dy, x 2 R3,

defines a bounded operator V : L2(D) ! H2(G), where H2(G) denotes a Sobolev space.

A classical approach to solving the scattering problem is based on reformulating the
problem as a volume integral equation known as the Lippmann–Schwinger integral equa-
tion. An alternative variational approach will also be discussed later in this chapter. We
now show that the scattering problem (1.20)–(1.22) is equivalent to solving

u(x) = ui(x)� k2
Z

R3

�(x, y)m(y)u(y) dy, x 2 R3. (1.23)

Due to the fact that supp(m) ✓ D, (1.23) can be viewed as an integral equation over D for
u 2 L2(D).

Theorem 1.9. If u 2 H2
loc

(R3) is a solution of (1.20)–(1.22), then u is a solution of (1.23)
in L2(D). Conversely, if u 2 L2(D) is a solution of (1.23), then u 2 H2

loc
(R3) and u is a

solution of (1.20)–(1.22).

Proof. Let u 2 H2
loc

(R3) be a solution of (1.20)–(1.22). Let x 2 R3 and B a ball
containing x and D. Then Green’s formula implies that

u(x) =

Z

@B

⇢
@u

@⌫
(y)�(x, y)� u(y)

@

@⌫(y)
�(x, y)

�
ds(y)

� k2
Z

B

�(x, y)m(y)u(y) dy
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and

ui(x) =

Z

@B

⇢
@ui

@⌫
(y)�(x, y)� ui(y)

@

@⌫(y)
�(x, y)

�
ds(y).

Furthermore, Green’s second identity and the Sommerfeld radiation condition imply that
Z

@B

⇢
@us

@⌫
(y)�(x, y)� us(y)

@

@⌫(y)
�(x, y)

�
ds(y) = 0.

Adding these equations together gives the Lippmann–Schwinger integral equation (1.23),
noting that since m has compact support the integral over B can be replaced by an integral
over R3.

Conversely, let u 2 L2(D) be a solution of (1.23) and define

us(x) := �k2
Z

R3

�(x, y)m(y)u(y) dy, x 2 R3.

Then us satisfies the Sommerfeld radiation condition and us
2 H2

loc
(R3) satisfies �us +

k2us = k2mu. Since�ui + k2ui = 0 we have that u = ui + us satisfies�u+ k2nu = 0
in R3.

The existence of a unique solution to the scattering problem (1.20)–(1.22) is now equiv-
alent to showing the existence of a unique solution to the Lippmann–Schwinger integral
equation. For the wave number k sufficiently small, this can be done by the method of
successive approximations.

Theorem 1.10. Suppose that m(x) = 0 for |x| � a and k2 < 2/Ma2, where M :=
max|x|a |m(x)|. Then there exists a unique solution to the Lippmann–Schwinger integral
equation.

Proof. It suffices to solve (1.23) in C(B) with B :=
�
x 2 R3 : |x| < a

 
. On C(B) define

(Tmu)(x) :=

Z

B

�(x, y)m(y)u(y) dy, x 2 B.

By the method of successive approximations, the theorem will be proved if kTmk
1



Ma2/2. To this end, we have

|(Tmu)(x)| 
M kuk

1

4⇡

Z

B

dy

|x� y|
, x 2 B.

Now note that

h(x) :=

Z

B

dy

|x� y|
, x 2 B,

satisfies�h = �4⇡ and is a function only of r = |x|. Hence

1

r2
d

dr

✓
r2

dh

dr

◆
= �4⇡
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and thus h(r) = �
2
3⇡r

2 + c1
r
+ c2 where c1 and c2 are constants. Since h is continuous at

the origin, c1 = 0, and letting r tend to zero shows that

c2 = h(0) =

Z

B

dy

|y|
= 4⇡

aZ

0

⇢ d⇢ = 2⇡a2.

Hence h(r) = 2⇡(a2 � r2/3) and thus khk
1

= 2⇡a2. We now have that

|(Tmu)(x)| 
Ma2

2
kuk

1
, x 2 B,

and the theorem follows.

From (1.23) we see that

us(x) = �k2
Z

R3

�(x, y)m(y)u(y) dy, x 2 R3,

and hence

us(x) =
eik|x|

|x|
u1(x̂) +O

 
1

|x|2

!
, |x| ! 1,

where the far field pattern u1 is given by

u1(x̂) = �
k2

4⇡

Z

R3

e�ikx̂·ym(y)u(y) dy, x̂ =
x

|x|
. (1.24)

Assuming that k is sufficiently small and replacing u by the first term in solving (1.23)
by iteration (the weak scattering assumption) gives the Born approximation to the far field
pattern

u1(x̂) ⇡ �
k2

4⇡

Z

R3

e�ikx̂·ym(y)ui(y) dy.

The Born approximation has been used extensively in inverse scattering where the weak
scattering assumption is valid; for details of such an approach, see [81].

The proof of the existence of a unique solution to the Lippmann–Schwinger integral
equation for arbitrary k > 0 is more delicate than for k > 0 sufficiently small and is based
on the unique continuation principle. This principle is a basic result in the theory of linear
elliptic partial differential equations and in the case of elliptic equations in R3 dates back
to Müller [135], [136].

Unique Continuation Principle. Let G be a domain in R3 and suppose u 2 H2(G) is a
solution of�u+ k2n(x)u = 0 in G for n 2 L2(G). Then if u vanishes in a neighborhood
of some point in G, u is identically zero in G.

For a proof of the above unique continuation principle, see [69]. We can now use
this principle to show that for each k > 0 there exists a unique solution u 2 H2

loc
(R3)

to the scattering problem (1.20)–(1.22) (or equivalently the Lippmann–Schwinger integral
equation).

Theorem 1.11. For each k > 0 there exists a unique solution u 2 H2
loc

(R3) to the
scattering problem (1.20)–(1.22).
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Proof. The integral operator appearing in the Lippmann–Schwinger integral equation has
a weakly singular kernel and hence this operator is compact on L2(D), where D is the
support of m. Hence by the Riesz–Fredholm theory it suffices to show the uniqueness of a
solution to (1.23), i.e., that the only solution of

�u+ k2n(x)u = 0 in R3, (1.25)

lim
r!1

r

✓
@u

@r
� iku

◆
= 0 (1.26)

is u = 0. To this end, Green’s first identity and (1.25) imply that
Z

@D

u
@u

@⌫
ds =

Z

D

n
|ru|2 � k2n̄ |u|2

o
dx

and hence

=

0

@
Z

@D

u
@u

@⌫
ds

1

A =

Z

D

k2=(n) |u|2 dx � 0.

By Corollary 1.7 u(x) = 0 for x 2 R3
\D and hence by the unique continuation principle

u(x) = 0 for all x 2 R3.

The following theorem can be viewed as a generalization of the Riesz–Fredholm The-
orem and will often be referred to in what follows (for a proof see Theorem 8.26 in [69]).
Let L(X) denote the Banach space of bounded linear operators mapping the Banach space
X into itself, and let I be the identity operator in L(X).

Theorem 1.12 (Analytic Fredholm Theorem). Let D be a domain in C, and let A :
D ! L(X) be an operator valued analytic function such that A(z) is compact for each
z 2 D. Then either

(a) (I �A(z))�1 does not exist for any z 2 D or

(b) (I �A(z))�1 exists for all z 2 D \ S, where S is a discrete subset of D.

1.2.1 The Far Field Operator
The far field operator plays a central role in inverse scattering theory and will appear in
many of the remaining chapters of this monograph. Hence in this section we will introduce
this operator and derive its most important analytic properties. In the course of our analysis
we will also encounter the transmission eigenvalue problem, which will be seen to play an
important role in all of our subsequent investigations.

In order to proceed we will need to be more specific on the nature of the incident field
ui. In particular, from now on we will assume that ui(x) = eikx·d, where |d| = 1. Then
the solution of the scattering problem

�u+ k2n(x)u = 0, (1.27)

u(x) = eikx·d + us(x), (1.28)

lim
r!1

r

✓
@us

@r
� ikus

◆
= 0 (1.29)
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will depend on d, and in particular the far field pattern u1(x̂) = u1(x̂, d) defined by

us(x) =
eik|x|

|x|
u1(x̂, d) +O

 
1

|x|2

!

now depends on d. The following reciprocity principle is basic to our investigations.

Theorem 1.13 (Reciprocity Principle). Let u1(x̂, d) be the far field pattern correspond-
ing to (1.27)–(1.29). Then u1(x̂, d) = u1(�d,�x̂).

Proof. Let D ⇢ {x : |x| < a}, where again D := {x : m(x) 6= 0}. Then Green’s second
identity implies that

Z

|y|=a

⇢
ui(y, d)

@

@⌫
ui(y,�x̂)� ui(y,�x̂)

@

@⌫
ui(y, d)

�
ds(y) = 0,

Z

|y|=a

⇢
us(y, d)

@

@⌫
us(y,�x̂)� us(y,�x̂)

@

@⌫
us(y, d)

�
ds(y) = 0,

where ui(x, d) = eikx·d. Corollary 1.5 shows that
Z

|y|=a

⇢
us(y, d)

@

@⌫
ui(y,�x̂)� ui(y,�x̂)

@

@⌫
us(y, d)

�
ds(y) = 4⇡u1(x̂, d),

Z

|y|=a

⇢
us(y,�x̂)

@

@⌫
ui(y, d)� ui(y, d)

@

@⌫
us(y,�x̂)

�
ds(y) = 4⇡u1(�d,�x̂).

Subtracting the last of these equations from the sum of the first three gives

4⇡ [u1(x̂, d)� u1(�d,�x̂)] =

Z

|y|=a

⇢
u(y, d)

@

@⌫
u(y,�x̂)� u(y,�x̂)

@

@⌫
u(y, d)

�
ds(y)

= 0

by Green’s second identity.

We now define the far field operatorF : L2(S 2) ! L2(S 2) by

(Fg)(x̂) :=

Z

S2

u1(x̂, d)g(d) ds(d).

Since u1(x̂, d) is infinitely differentiable with respect to each of its variables, F is clearly
compact. The corresponding scattering operator S : L2(S 2) ! L2(S 2) is defined by

S := I +
ik

2⇡
F . (1.30)

We now want to prove some properties of these operators. To this end we define a Herglotz
wave function to be a function of the form

vg(x) =

Z

S2

eikx·dg(d) ds(d), x 2 R3, (1.31)
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where g 2 L2(S 2). The function g is called the Herglotz kernel of vg . Herglotz wave
functions are clearly entire solutions of the Helmholtz equation. We note that for a given
g 2 L2(S 2) the function

Z

S2

e�ikx·dg(d) ds(d), x 2 R3,

is also a Herglotz wave function. Furthermore, if a Herglotz wave function vanishes in
some open subset of R3, then its kernel must be identically zero [69]. In what follows (·, ·)
is the inner product in L2(S 2).

Theorem 1.14. Let g, h 2 L2(S 2), and let vg and vh be the Herglotz wave functions with
kernels g and h, respectively. Then if wg and wh are the solutions of the scattering problem
(1.27)–(1.29) corresponding to the incident field eikx·d being replaced by the incident fields
vg and vh, respectively, we have that

k2
Z

D

=(n)wg wh dx = 2⇡(Fg, h)� 2⇡(g,Fh)� ik(Fg,Fh).

Proof. ([68], [69]) Let ws

g
= wg�vg and ws

h
= wh�vh denote the scattered fields with far

field patterns w1

g
and w1

h
respectively. Then by linearity w1

g
= Fg and w1

h
= Fh and

Green’s second identity implies that, for a sufficiently large such that D ⇢ {x 2 R3; |x| 
a}, Z

|x|=a

⇢
wg

@wh

@⌫
� wh

@wg

@⌫

�
ds = 2k2

Z

D

=(n)wg wh dx (1.32)

and Z

|x|=a

⇢
vg
@vh
@⌫

� vh
@vg
@⌫

�
ds = 0.

Furthermore, for R > a we have that

Z

|x|=a

⇢
ws

g

@ws

h

@⌫
� ws

h

@ws

g

@⌫

�
ds =

Z

|x|=R

⇢
ws

g

@ws

h

@⌫
� ws

h

@ws

g

@⌫

�
ds

! �2ik

Z

S2

w1

g
w1

h
ds = �2ik(Fg,Fh)

as R tends to infinity. Finally, we have that
Z

|x|=a

⇢
vg
@ws

h

@⌫
� ws

h

@vg
@⌫

�
ds

=

Z

S2

g(d)

Z

|x|=a

⇢
eikx·d

@ws

h

@⌫
� ws

h

@

@⌫
eikx·d

�
ds(x)ds(d)

= �4⇡

Z

S2

g(d)w1

h
(d) ds(d) = �4⇡(g,Fh)
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and similarly Z

|x|=a

⇢
ws

g

@vh
@⌫

� vh
@ws

g

@⌫

�
ds = 4⇡(Fg, h).

Substituting the above identities into (1.32) now implies the theorem.

Theorem 1.15. Assume that =(n) = 0. Then the far field operator is normal, i.e., F ⇤F =
FF ⇤, and the scattering operator S is unitary, i.e., SS⇤ = S⇤S = I .

Proof. Theorem 1.14 implies that

ik(Fg,Fh) = 2⇡ [(Fg, h)� (g,Fh)] (1.33)

for g, h 2 L2(S 2). By reciprocity we have that

(F ⇤g)(x̂) =

Z

S2

u1(d, x̂)g(d) ds(d)

=

Z

S2

u1(�x̂,�d)g(d) ds(d)

=

Z

S2

u1(�x̂,�d)g(d) ds(d),

i.e., F ⇤g = RFRg, where (Rh)(x̂) := h(�x̂). Since (Rg,Rh) = (g, h), we have from
(1.33) that

ik(F ⇤h,F ⇤g) = ik(RFRg,RFRh)

= ik(FRg,FRh)

= 2⇡(FRg,Rh)� 2⇡(Rg,FRh)

= 2⇡(RFRg, h)� 2⇡(g,RFRh)

= 2⇡(h,F ⇤g)� 2⇡(F ⇤h, g)

= 2⇡(Fh, g)� 2⇡(h,Fg)

= ik(Fh,Fg)

and hence F ⇤F = FF ⇤. Finally, (1.33) implies that

�(g, ikF ⇤Fh) = 2⇡ (g, (F ⇤
� F )h) ,

i.e., ikF ⇤F = 2⇡(F �F ⇤). This, together with F ⇤F = FF ⇤, implies that S⇤S = SS⇤ =
I by direct substitution.

We now introduce the transmission eigenvalue problem: Determine k 2 C and v, w 2

L2(D), v � w 2 H2
0 (D), such that v 6= 0, w 6= 0, and

�w + k2n(x)w = 0 in D,

�v + k2v = 0 in D,

v = w on @D,

@v

@⌫
=
@w

@⌫
on @D.
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Such values of k are called transmission eigenvalues. Recall that D � {x : n(x) 6= 1}
and it is assumed that D is bounded with Lipschitz boundary @D such that R3

\D is con-
nected. If the solution v of the transmission eigenvalue problem is a Herglotz wave func-
tion, we then call the transmission eigenvalue k a nonscattering wave number. Obviously
the concept of nonscattering wave numbers is much more restrictive than the concept of
transmission eigenvalues. The transmission eigenvalues along with the nonhomogeneous
interior transmission problem are more precisely introduced in Chapter 2 and are exten-
sively investigated in Chapters 3 and 4. Nonscattering wave numbers, more specifically
their existence as well as their connection to transmission eigenvalues and regularity of the
inhomogeneity, are discussed in Chapter 7.

Theorem 1.16. Let F be the far field operator corresponding to the scattering problem
(1.27)–(1.29). Then F is injective if and only if k is not a nonscattering wave number.

Proof. ([73], [108]) Suppose Fg = 0. Then the far field pattern w1

g
of the scattered field

ws

g
corresponding to the incident field

vg(x) :=

Z

S2

eikx·dg(d) ds(d)

vanishes. By Rellich’s Lemma ws

g
= wg � vg vanishes outside D. Then wg = vg + ws

g

satisfies �wg + k2nwg = 0 in R3 and wg � vg = 0 on @D and @

@⌫
(wg � vg) = 0 on

@D. If k is not a transmission eigenvalue, then vg = wg = 0 and hence g = 0, i.e., F is
injective.

Corollary 1.17. Let F be the far field operator corresponding to the scattering problem
(1.27)–(1.29). Then F has dense range if and only if k is not a nonscattering wave number.

Proof. ([73], [108]) From a well-known theorem in functional analysis, the orthogonal
complement of the range of F is equal to the null space of its adjoint F ⇤. Hence we must
show that if F ⇤h = 0, then h = 0. To this end, we have that if F ⇤h = 0, i.e.,

Z

S2

u1(d, x̂)h(d) ds(d) = 0,

then Z

S2

u1(d,�x̂)h(d) ds(d) = 0

and hence, using reciprocity,
Z

S2

u1(x̂, d)h(�d) ds(d) = 0.

Since F is injective by Theorem 1.16, we can now conclude that h = 0 as desired.

1.2.2 The Inverse Scattering Problem
We again consider the scattering problem (1.27)–(1.29). It has previously been shown that

us(x, d) =
eik|x|

|x|
u1(x̂, d) +O

 
1

|x|2

!
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as |x| ! 1, where

u1(x̂, d) = �
k2

4⇡

Z

R3

e�ikx̂·ym(y)u(y) dy

and m := 1� n. The inverse scattering problem is to determine n(x) (or some properties
of n(x)) from u1(x̂, d). We begin our discussion with the uniqueness. As motivation we
first prove a simple result for harmonic functions.

Theorem 1.18. The set of products h1h2 of entire harmonic functions h1 and h2 is com-
plete in L2(D) for any bounded domain D ⇢ R3.

Proof. ([58]) Given y 2 R3 choose a vector b 2 R3 with b · y = 0 and |b| = |y|. Then for
z := y + ib 2 C3 we have z · z = 0, which implies that hz := eiz·x, x 2 R3, is harmonic.
Now assume ' 2 L2(D) is such that

Z

D

'h1h2 dx = 0

for all pairs of entire harmonic functions h1 and h2. Our theorem will be proved if we can
show that ' = 0. But for h1 = hz , h2 = hz we have that

Z

D

'(x)e2iy·x dx = 0

for y 2 R3, which implies that ' = 0 almost everywhere by the Fourier integral theorem.

To prove uniqueness for the inverse scattering problem of determining n(x) from
u1(x̂, d) we need a property corresponding to the above theorem for products v1v2 of
solutions to�v1+ k2n1v1 = 0 and�v2+ k2n2v2 = 0 for two different refractive indices
n1 and n2. Such a result was first established by Sylvester and Uhlmann [161]. The proofs
of the following two lemmas can be found in [69] and [112].

Lemma 1.19. Let B be an open ball centered at the origin and containing the support of
m := 1� n. Then there exists a constant C > 0 such that for each z 2 C3 with z · z = 0
and |<z| > 2k2 knk

1
there exists a solution v 2 H2(D) of �v + k2nv = 0 in B of the

form
v(x) = eiz·x [1� w(x)] ,

where
kwk

L2(D) 
C

|<(z)|
.

Lemma 1.20. Let B and B0 be two open balls centered at the origin and containing the
support of m := 1 � n such that B ⇢ B0. Then the set of total fields

�
u(·, d) : d 2 S 2

 

satisfying (1.27)–(1.29) is complete in the closure of
�
v 2 H2(B0) : �v + k2nv = 0 in B0

 

with respect to the L2(B) norm.
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We are now ready to prove the following uniqueness result for the inverse scattering
problem due to Nachman [137], Novikov [142], and Ramm [150].

Theorem 1.21. The index of refraction n is uniquely determined by a knowledge of the
far field pattern u1(x̂, d) for x, d 2 S 2 and a fixed wave number k.

Proof. Assume that n1 and n2 are two refractive indices such that

u1,1(·, d) = u2,1(·, d), d 2 S 2,

and let B and B0 be two open balls centered at the origin and containing the support of
1�n1 and 1�n2 such that B ⇢ B0. By Rellich’s Lemma we have that u1(·, d) = u2(·, d)
in R3

\B for all d 2 S 2. Hence u := u1 � u2 satisfies

u =
@u

@⌫
= 0 on @B (1.34)

and
�u+ k2n1u = k2(n2 � n1)u2 in B.

From this and the partial differential equation for ũ1 := u1(·, d̃) we have that

k2ũ1u2(n2 � n1) = ũ1(�u+ k2n1u) = ũ1�u� u�ũ1.

Green’s second identity and (1.34) now imply that
Z

B

u1(·, d̃)u2(·, d)(n2 � n1) dx = 0

for all d, d̃ 2 S 2. Hence, from Lemma 1.20, it follows that
Z

B

v1v2(n1 � n2) dx = 0 (1.35)

for all solutions v1, v2 2 H2(B0) of �v1 + k2n1v1 = 0,�v2 + k2n2v2 = 0 in B0.
Given y 2 R3

\ {0} and ⇢ > 0 we now choose vectors a, b 2 R3 such that {y, a, b}
is an orthogonal basis in R3 and |a| = 1, |b|2 = |y|2 + ⇢2. Then for z1 := y + ⇢a + ib,
z2 := y � ⇢a� ib we have that

zj · zj = |<zj |
2
� |=zj |

2 + 2i<zj · =zj

= |y|2 + ⇢2 � |b|2 = 0

and
|<zj |

2 = |y|2 + ⇢2 � ⇢2.

In (1.35) we now insert the solutions v1 and v2 constructed in Lemma 1.19 for the indices
of refraction n1 and n2 and the vectors z1 and z2, respectively. Since z1 + z2 = 2y this
yields Z

B

e2iy·x [1 + w1(x)] [1 + w2(x)] [n1(x)� n2(x)] dx = 0



18 Chapter 1. Scattering Theory

and passing to the limit as ⇢ tends to infinity gives
Z

B

e2iy·x [n1(x)� n2(x)] dx = 0.

By the Fourier integral theorem we now have that n1 = n2.

Although nonlinear optimization methods are not the focus of this monograph, we will
briefly show how, in principle, n(x) can be constructed from u1(x̂, d) through the use
of Newton type methods. To this end, we define the operator F : m 7! u1 for u1 =
u1(x̂, d), which we just showed is injective but is obviously nonlinear. Letting B be a ball
containing the (unknown) support of m, we interpret F as an operator from L2(B) into
L2(S 2

⇥ S 2). From the Lippmann–Schwinger integral equation we can write

(Fm)(x̂, d) = �
k2

4⇡

Z

B

e�ikx̂·ym(y)u(y) dy, (1.36)

where u(·, d) is the unique solution of

u(x, d) + k2
Z

B

�(x, y)m(y)u(y, d) dy = eikx·d, (1.37)

where again

�(x, y) :=
1

4⇡

eik|x�y|

|x� y|
, x 6= y.

Note that F is a nonlinear operator.
Recall now that a mapping T : X ! Y of a normal space X into a normal space Y is

called Fréchet differentiable if there exists a bounded linear operator A : X ! Y such that

lim
h!0

1

khk
kT (x+ h)� T (x)�Ahk = 0

and we write T 0(x) = A. In particular, from (1.37) it can be seen that the Fréchet derivative
v := u0

m
h of u with respect to m (in the “direction” h) satisfies the Lippmann–Schwinger

integral equation

v(x, d) + k2
Z

B

�(x, y) [m(y)v(y, d) + h(y)u(y, d)] dy = 0, x 2 B, (1.38)

and from (1.36) we have that

(F 0

m
h)(x̂) = �

k2

4⇡

Z

B

e�ikx̂·y [m(y)v(y, d) + h(y)u(y, d)] dy

for x̂, d 2 S 2. Hence (F 0

m
h)(x̂) coincides with the far field pattern of the solution v(·, d) 2

H2
loc

(R3) of (1.38). Note also that F 0

m
: L2(B) ! L2(S 2

⇥ S 2) is compact. We have
proven the following theorem [69].

Theorem 1.22. The operator F : m 7! u1 is Fréchet differentiable. The derivative is
given by F

0

m
h = v1, where v1 is the far field pattern of the radiating solution v 2

H2
loc

(R3) to �v + k2nv = �k2uh in R3.
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Theorem 1.23. The operator F 0

m
: L2(B) ! L2(S 2

⇥ S 2) is injective.

Proof. ([69]) Assume that h 2 L2(B) satisfies F 0

m
h = 0. We want to show that h = 0.

Since F
0

m
h = 0 we have that for each d 2 S 2 the far field pattern of the solution v of

(1.38) vanishes and Rellich’s Lemma implies that v(·, d) = @

@⌫
v(·, d) = 0 on @B. Hence

Green’s second identity implies that

k2
Z

B

hu(·, d)w dx = 0

for all d 2 S 2 and any solution w 2 H2(B0) of �w + k2nw = 0 in B0. By Lemma 1.20
we can now conclude that Z

B

hww̃ dx = 0

for all w, w̃ satisfying �w + k2nw = 0 and �w̃ + k2nw̃ = 0 in B0 � B. The proof can
now be completed as in the proof of Theorem 1.21.

We can now apply Newton’s method to the nonlinear equation F(m) = u1. However,
to implement this procedure we must solve a direct scattering problem at each step of the
iteration procedure. We furthermore have the possible problem of local minima and need
to solve an “ill-posed” compact operator equation of the first kind at each step. How to
solve this last problem will be dealt with in the next section.

1.3 Ill-Posed Problems
In the previous sections we have introduced two different methods for solving the inverse
scattering problem: the Born approximation and Newton’s method applied to the nonlin-
ear equation F(m) = u1. Both methods involve the solution of an integral equation of
the first kind over a bounded region with a smooth kernel. In particular, in both cases the
integral operator is compact. As we shall see shortly, the problem of inversion of such
an operator is ill-posed in the sense that the solution does not depend continuously on the
given (measured) data. The same problem will also arise later when we use the factoriza-
tion method or the linear sampling method to determine the support of the scattering object.
In short, all the available methods for solving the inverse scattering problem involve the
solution of ill-posed integral equations of the first kind. Hence in this section we shall give
a brief survey of how to solve such equations. For a more comprehensive study we refer
the reader to [85], [112], and [119].

Definition 1.24. Let A : X ! V ⇢ Y be an operator from a normal space X into a subset
V of a normed space Y . The equation A' = f is called well-posed if A : X ! V is
bijective and the inverse operator A�1 : V ! X is continuous. Otherwise the equation is
called ill-posed.

Theorem 1.25. Let A : X ! V ⇢ Y be a linear compact operator. Then A' = f is
ill-posed if X is not finite-dimensional.

Proof. If A�1 : V ! X exists and is continuous, then I = A
�1

A is compact, which
implies that X is finite-dimensional.
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We now assume that A is a linear compact operator and wish to approximate the solu-
tion ' to A' = f from a knowledge of a perturbed right-hand side f� with a known error
level

��f� � f
��  �. We will always assume that A : X ! Y is injective and want the

approximate solution '� to depend continuously on f� .

Definition 1.26. Let A : X ! Y be an injective compact linear operator. Then a family of
bounded linear operators R↵ : Y ! X with the property that

R↵f ! A
�1f, ↵! 0, (1.39)

for all f 2 A(X) is called a regularization scheme for A. The parameter ↵ is called the
regularization parameter.

It is easily verified that if X is infinite-dimensional, then the operator R↵ cannot be
uniformly bounded with respect to ↵ and the operators R↵A cannot be norm convergent
as ↵ ! 0 [69]. A regularization scheme approximates the solution ' of A' = f by the
regularized solution '�

↵
:= R↵f� . Hence

'�
↵
� ' = R↵f

�
�R↵f +R↵A'� ',

which implies that ��'�
↵
� '

��  � kR↵k+ kR↵A'� 'k .

The error consists of two parts. The first term reflects the error in the data and the second
term the error between R↵ and A

�1. From the above discussion we see that the first term
will be increasing as ↵! 0 due to the ill-posed nature of the problem, whereas the second
term will be decreasing as ↵! 0 according to (1.39).

Definition 1.27. A strategy for a regularization scheme R↵, ↵ > 0, i.e., the choice of the
regularization parameter ↵ = ↵(�, f�), is called regular if for all f 2 A(X) and f� 2 Y
with

��f� � f
��  � we have that

R↵(�,f�)f
�
! A

�1f, � ! 0.

A natural strategy is the Morozov discrepancy principle based on the idea that the resid-
ual should not be smaller than the accuracy of the measurements, i.e.,

��AR↵f� � f�
�� 

�� for some parameter �  1.
From now on let X and Y be Hilbert spaces and A : X ! Y be a compact linear

operator with adjoint A⇤ : Y ! X . The nonnegative square roots of the eigenvalues of
A

⇤
A : X ! X are called the singular values of A. We always assume that A 6= 0. For a

proof of the following theorem, see [29] or [69].

Theorem 1.28. Let (µn), µ1 � µ2 � · · · , be the singular values of A. Then there exist
orthonormal sequences ('n) in X and (gn) in Y such that

A'n = µngn, A
⇤gn = µn'n,

and for all ' 2 X

' =
1X

n=1

(','n)'n +Q',

A' =
1X

n=1

µn(','n)gn,
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where Q : X ! N(A) is the orthogonal projection operator. The system (µn,'n, gn) is
called a singular system of A.

Theorem 1.29 (Picard’s Theorem). Let A : X ! Y be a compact linear operator with
singular system (µn,'n, gn). Then A' = f is solvable if and only if f 2 N(A⇤)? and
satisfies

1X

n=1

1

µ2
n

|(f, gn)|
2 < 1. (1.40)

In this case a solution is given by

' =
1X

n=1

1

µn

(f, gn)'n. (1.41)

Proof. The necessity of f 2 N(A⇤)? follows from N(A⇤)? = A(X). If A' = f , then

µn(','n) = (',A⇤gn) = (A', gn) = (f, gn)

and hence
1X

n=1

1

µ2
n

|(f, gn)|
2 =

1X

n=1

|(','n)|
2
 k'k2

and the necessity of (1.40) follows.
Conversely, if f 2 N(A⇤)? and (1.40) is satisfied, then (1.41) converges in X . Apply-

ing A to (1.41) gives

A' =
1X

n=1

(f, gn)gn = f

since f 2 N(A⇤)?.

Picard’s Theorem shows that the ill-posedness of A' = f comes from the fact that
µn ! 0. This suggests filtering out the influence of 1/µn in the solution of (1.41). To this
end we have the following theorem.

Theorem 1.30. Let A : X ! Y be an injective compact linear operator with singular
system (µn,'n, gn), and let q : (0,1) ⇥ (0, kAk) ! R be a bounded function such that
for each ' > 0 there exists a positive constant c(↵) with

|q(↵, µ)|  c(↵)µ, 0 < µ  kAk , (1.42)

and
lim
↵!0

q(↵, µ) = 1, 0 < µ  kAk . (1.43)

Then the bounded operators R↵ : Y ! X , ↵ > 0, defined by

R↵f :
1X

n=1

1

µn

q(↵, µn)(f, gn)'n, f 2 Y,

describe a regularization scheme with kR↵k  c(↵).
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Proof. Since for all f 2 Y we have that

kfk2 =
1X

n=1

|(f, gn)|
2 + kQfk2 ,

we have from (1.42) that

kR↵fk
2 =

1X

n=1

1

µ2
n

|q(↵, µn)|
2
|(f, gn)|

2

 |c(↵)|2
1X

n=1

|(f, gn)|
2

 |c(↵)|2 kfk2

for all f 2 Y and hence kR↵k  c(↵). With the aid of

(R↵A','n) =
1

µn

q(↵, µn)(A', gn)

= q(↵, µn)(','n)

and the singular value decomposition for R↵A'� ' we obtain

kR↵A'� 'k2 =
1X

n=1

|(R↵A'� ','n)|
2

=
1X

n=1

[q(↵, µn)� 1]2 |(','n)|
2 ,

(1.44)

where we have used the fact that A is injective.
Now let ' 2 X with ' 6= 0 and let ✏ > 0 be given. Let |q(↵, µ)|  M . Then there

exists N = N(✏) such that

1X

n=N+1

|(','n)|
2 <

✏

2(M + 1)2
·

By (1.43) there exists ↵0 = ↵0(✏) > 0 such that

[q(↵, µn)� 1]2 <
✏

2 k'k2

for all n = 1, 2, . . . , N and 0 < ↵ < ↵0. Splitting the series (1.44) into two parts now
yields

kR↵A'� 'k2 <
✏

2 k'k2

NX

n=1

|(','n)|
2 +

✏

2
 ✏

for 0 < ↵  ↵0. Hence R↵A' ! ' as ↵ ! 0 for all ' 2 X and the proof is complete.

The special choice

q(↵, µ) =
µ2

↵+ µ2
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leads to Tikhonov regularization, which is arguably the most popular method for solving
ill-posed operator equations of the first kind.

Theorem 1.31. Let A : X ! Y be a compact linear operator. Then for each ↵ > 0
the operator ↵I + A

⇤
A : X ! X is bijective and has a bounded inverse. Furthermore,

if A is injective, then R↵ := (↵I + A
⇤
A)�1

A
⇤ describes a regularization scheme with

kR↵k 
1

2
p
↵

.

Proof. From ↵ k'k2  (↵' + A
⇤
A',') for all ' 2 X we conclude that for ↵ > 0

the operator ↵I + A
⇤
A is injective. Let (µn,'n, gn) be a singular system for A, and let

Q : X ! N(A) denote the orthogonal projection operator. Then T : X ! X defined by

T' :=
1X

n=1

1

↵+ µ2
n

(','n)'n +
1

↵
Q(')

is bounded and (↵I +A
⇤
A)T = T (↵I +A

⇤
A) = I , i.e., T = (↵I +A

⇤
A)�1.

If A is injective, then for the unique solution '↵ of

↵'↵ +A
⇤
A'↵ = A

⇤f

we deduce from the above expression for (↵I + A
⇤
A)�1 and the identity (A⇤f,'n) =

µn(f, gn) that

'↵ =
1X

n=1

µn

↵+ µ2
n

(f, gn)'n.

Hence

R↵f =
1X

n=1

1

µn

q(↵, µn)(f, gn)'n, f 2 Y,

with q(↵, µ) = µ
2

↵+µ2 . The function q satisfies the conditions of Theorem 1.30 with c(↵) =

1/2
p
↵ due to the fact that

p
↵µ 

↵+ µ2

2
.

The proof of the theorem is now complete (note that '↵ can also be determined as the
unique minimizer of the Tikhonov functional kA'� fk2 +↵k'k2 — cf. Theorem 4.14 in
[69]).

It can be shown that the Morozov discrepancy principle is a regular strategy for choos-
ing ↵ [69], [119]. Regularization methods can also be developed for the case when the
operator A is perturbed with a known error level [69].

1.4 The Scattering Problem for Anisotropic Media
We now consider a more general scattering problem where the scattering media can ex-
hibit anisotropic behavior when interrogated by incident waves. The corresponding direct
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problem can be formulated as finding u and the scattered field us such that

r ·Aru+ k2nu = 0 in D, (1.45)
�us + k2us = 0 in R3

\D, (1.46)
u� us = ui on @D, (1.47)

@u

@⌫A
�
@us

@⌫
=
@ui

@⌫
on @D, (1.48)

lim
r!1

r

✓
@us

@r
� ikus

◆
= 0, (1.49)

where ui is the incident field (to become precise later on), D is the support of the inhomo-
geneity which is assumed to be a bounded Lipschitz domain such that R3

\D is connected,
and A is a 3⇥ 3 symmetric matrix with L1(D)-entries such that

⇠ · <(A)⇠ � � |⇠|2 and ⇠ · =(A)⇠  0

for all ⇠ 2 C3 and almost every x 2 D and some constant � > 0. The assumptions on n
are the same as in Section 1.2. Here @u/@⌫A denotes the conormal derivative, i.e.,

@u

@⌫A
:= ⌫ ·Aru.

Assuming that ui is an entire solution to the Helmholtz equation, one can easily see that
the function w defined as

w(x) = u(x)� ui(x) x 2 D and w(x) = us(x), x 2 R3
\D

satisfies
r ·Arw + k2nw = r · (I �A)rui + k2(1� n)ui in R3 (1.50)

together with the Sommerfeld radiation condition where the matrix A and the index n have
been, respectively, extended by the identity matrix and 1 in the whole R3. Note that (1.50)
also holds for ui := �(·, z), z /2 D, where �(·, z) is the fundamental solution of the
Helmholtz equation given by (1.8).

Our aim in this section is to establish the existence of a unique solution w 2 H1
loc

(R3)
to (1.50). To this end we will rely on a variational approach; hence in the following we lay
out the analytical framework for such an approach.

Definition 1.32. Let X be a Hilbert space. A mapping a(·, ·) : X · X ! C is called a
sesquilinear form if

a(�1u1 + �2u2, v) = �1a(u1, v) + �2a(u2, v)

for all �1,�2 2 C, u1, u2 2 X and

a(u, µ1v1 + µ2v2) = µ1a(u, v1) + µ2a(u, v2)

for all µ1, µ2 2 C, v1, v2 2 X .

Definition 1.33. A mapping F : X ! C is called a conjugate linear functional if

F (µ1, v1 + µ2, v2) = µ1F (v1) + µ2F (v2), µ1, µ2 2 C, v1, v2 2 X.
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Lemma 1.34 (Lax–Milgram Lemma). Assume that a : X ⇥ X ! C is a sesquilinear
form (not necessarily symmetric) for which there exist constants ↵,� > 0 such that

|a(u, v)|  ↵ kuk kvk for all u, v 2 X

and
|a(u, u)| � � kuk2 for all u 2 X. (1.51)

Then for every bounded conjugate linear functional F : X ! C there exists a unique
element u 2 X such that

a(u, v) = F (v) for all v 2 X.

Furthermore kuk  C kFk, where C > 0 is a constant independent of F .

Remark 1.35. Note that the Lax–Milgram Lemma is a generalization of the Riesz Repre-
sentation Theorem.

Remark 1.36. A sesquilinear form satisfying (1.51) is said to be coercive.

Definition 1.37. The Dirichlet-to-Neumann map ⇤ is defined by

⇤ : v !
@v

@⌫
on SR,

where v is a radiating solution to the Helmholtz equation�v+ k2v = 0, SR is the bound-
ary of some ball BR :=: {x : |x| < R}, and ⌫ is the outward unit normal to SR.

From the definition, we see that ⇤ maps

v =
1X

n=0

nX

m=�n

am
n
Y m

n

with coefficients am
n

onto

⇤v =
1X

n=0

�n

nX

m=�n

am
n
Y m

n
,

where

�n :=
kh(1)0

n (kR)

h(1)
n (kR)

, n = 0, 1, . . . .

Noting that spherical Hankel functions and their derivatives do not have real zeros since
otherwise the Wronskian of h(1)

n and h(2)
n would vanish, we see that ⇤ is bijective. Fur-

thermore, using the results of Section 1.1, it can easily be shown that

c1(n+ 1)  |�n|  c2(n+ 1)

for all n � 0 and some constants 0 < c1 < c2. From this if follows that ⇤ : H1/2(SR) !
H�1/2(SR) is bounded. We remark that

<(�n) =
1

2

k(|h(1)
n |

2)0(kR)

|h(1)
n |2(kR)

 0
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since the modulus of h(1)
n (r) is decreasing with respect to r (see (1.7)), while

=(�n) = �
k

2i

W
⇣
h(1)
n , h(2)

n

⌘
(kR)

|h(1)
n |2(kR)

� 0

according to (1.6). These properties show in particular that

= h⇤v, vi � 0 and < h⇤v, vi  0 for all v 2 H1/2(SR), (1.52)

where h·, ·i denotes the duality pairing between H�1/2(SR) and H1/2(SR) with respect
to the L2(SR) scalar product for regular functions.

Remark 1.38. If we define ⇤0 : H1/2(SR) ! H�1/2(SR) by

⇤0v := �
1

R

1X

n=0

(n+ 1)
nX

m=�n

am
n
Y m

n
,

we clearly have that

�h⇤0v, vi = R
1X

n=0

(n+ 1)
nX

m=�n

|am
n
|
2 .

Hence
�h⇤0v, vi � c kvk2

H1/2(SR)

for some constant c > 0, i.e., �⇤0 is coercive. From the series expansion for h(1)
n we have

that
�n = �

n+ 1

R

⇢
1 +O

✓
1

n

◆�
, n ! 1,

which implies that ⇤ � ⇤0 : H1/2(SR) ! H�1/2(SR) is compact since it is bounded
from H1/2(SR) into H1/2(SR) and the embedding from H1/2(SR) into H�1/2(SR) is
compact.

Setting ' = rui
|D and  = ui

|D, we can now replace the scattering problem (1.45)–
(1.49) or (1.50) by an equivalent problem for a bounded domain: Find w 2 H1(BR) such
that

r ·Arw + k2nw = r · (I �A)'+ k2(1� n) in BR, (1.53)
@w

@⌫
= ⇤w on SR. (1.54)

Multiply (1.53) by a test function v 2 H1(BR) and use Green’s first identity to arrive at the
following equivalent variational formulation of problem (1.53)–(1.54): Find w 2 H1(BR)
such that

a1(w, v) + a2(w, v) = F (v) for all v 2 H1(BR), (1.55)
where

a1(�, v) :=

Z

BR

rv ·Ar� dx+

Z

BR

v� dx� h⇤�, vi ,

a2(�, v) := �

Z

BR

�
nk2 + 1

�
v� dx,

F (v) := �

Z

D

rv · (I �A)' dx+ k2
Z

D

(1� n)v dx.
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Theorem 1.39. Assume that ' 2 L2(D)3 and  2 L2(D) and in addition that A is
continuously differentiable in D. Then there exists a unique solution to (1.55).

Proof.

1. From the assumption ⇠ · <(A)⇠ � � |⇠|2 and (1.52) we can conclude that a1(·, ·) is
coercive.

2. Using the Riesz representation theorem we can now define the operator A : H1(BR)
!H1(BR) by a1(w, v) = (Aw, v)

H1(BR) and from 1 and the Lax–Milgram lemma
we have that A�1 exists and is bounded.

3. Similarly, we can define a bounded linear operator B : H1(BR) ! H1(BR) by
a2(w, v) = (Bw, v)

H1(BR) and due to the compact embedding of H1(BR) into
L2(BR) we have that B is compact. Note that

kBuk2
H1(BR) = (Bu,Bu)

H1(BR)  ckukL2(BR)kBukL2(BR)

 ckukL2(BR)kBukH1(BR),

implying that
kBukH1(BR)  ckukL2(BR).

4. The theorem now follows if we can show that A+B is boundedly invertible. But this
follows from items 2 and 3 by the Fredholm alternative provided we have uniqueness
of a solution to (1.45)–(1.49). Under the assumption that A is continuously differ-
entiable, this follows from Rellich’s Lemma and the unique continuation principle
for solutions to (1.53) in a similar way to the isotropic case discussed in Section 1.2
(cf. [98]).

Since (1.55) is equivalent to the scattering problem (1.45)–(1.49), the above theorem
establishes the well-posedness of the direct scattering problem for anisotropic media.

For further use in Chapter 2, we will need the following formulas:

w1(x̂) = �
1

4⇡

Z

D

(ikx̂ · (I �A)('(y) +rw(y)

+ k2(1� n)(y)( (y) + w(y))
�
e�ikx̂·y dy, (1.56)

u1(x̂) = �
1

4⇡

Z

D

�
ikx̂ · (I �A)ru(y) + k2(1� n)(y)u(y)

�
e�ikx̂·y dy. (1.57)

Since (1.57) follows immediately from (1.56), it suffices to prove (1.56). To this end, we
note that

�w + k2w = r · (I �A)rw + k2(1� n)w + (r ·Arw + k2nw)

= r · (I �A)(rw +') + k2(1� n)(w +  ). (1.58)

From Green’s formula we immediately have that

w(x) = �

Z

D

�(x, y)(�w + k2w)dy, (1.59)
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where the integral is understood as the convolution of the fundamental solution with the
compactly supported distribution�w + k2w. Then from (1.58) and (1.59) we have that

w(x) = �

Z

D

(I �A)(rw +') ·rx�(x, y) + k2(1� n)(w +  )�(x, y) dy.

Finally letting x tend to infinity, now yields (1.56).

1.4.1 The Far Field Operator

If we consider plane wave incident fields, i.e., ui(x) := eikx·d, where |d| = 1, similarly to
the isotropic case, we have that the scattered field corresponding to (1.45)–(1.49) satisfies

us(x) =
eik|x|

|x|

⇢
u1(x̂, d) +O

✓
1

|x|

◆�
.

The following reciprocity principle can be proven exactly in the same way as Theorem
1.13 where using the symmetry of A and with the help of Green’s theorem the integral
over @D is moved to the integral over |y| = a.

Theorem 1.40. Let u1(x̂, d) be the far field pattern corresponding to (1.45)–(1.49). Then
u1(x̂, d) = u1(�d,�x̂).

The reciprocity principle states that the far field pattern is unchanged if the direction
of the incident field and observation directions are interchanged. It can be generalized to
a relationship between the scattering of point sources and plane waves, which is refered to
as the mixed reciprocity principle. The following theorem can be proven in a similar way
to that of Theorem 1.13 (see, for details, Theorem 3.16 in [69]).

Theorem 1.41. Let u1(x̂, z) be the far field pattern of the scattered field us(x, z) for the
scattering of a point source ui := �(x, z) located at z 2 R3

\D, and let us(x, d) be the
scattered field due to a plane wave ui := eikx·d. Then

4⇡u1(�d, z) = u(z, d), z 2 R3
\D, d 2 S.

We can define the far field operator F : L2(S2) ! L2(S2) corresponding to (1.45)–
(1.49) by

(Fg)(x̂) :=

Z

S2

u1(x̂, d)g(d) ds(d)

with the corresponding scattering operator given by (1.30).

Theorem 1.42. Let g, h 2 L2(S 2), and let vg and vh be the Herglotz wave functions
with kernels g and h, respectively. Then if (ug, us

g
) and (uh, us

h
) are the solutions of the

scattering problem (1.45)–(1.49) corresponding to the incident field ui := vg and ui := vh,
respectively, we have that

�

Z

D

=(A)rug ·ruh dx+ k2
Z

D

=(n)uguh dx = 2⇡(Fg, h)� 2⇡(g,Fh)� ik(Fg,Fh).
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Proof. Let ug = us

g
+ vg and uh = us

h
+ vh be the total fields in R3

\ D. Then using
transmission conditions, the divergence theorem along with the symmetry of A, and the
equations in D we have

Z

|x|=a

✓
ug

@uh

@⌫
� uh

@ug

@⌫

◆
ds =

Z

@D

✓
ug

@uh

@⌫
� uh

@ug

@⌫

◆
ds

=

Z

@D

�
ug Aruh · ⌫ � uhArug · ⌫

�
ds =

Z

D

�
r · (ugAruh)�r · (uhArug)

�
dx

=

Z

D

�
rug ·Aruh �ruh ·Arug

�
dx+

Z

D

�
ugr ·Aruh � uh ·rArug

�
dx

=

Z

D

�
rug ·Aruh �ruh ·Arug

�
dx+ k2

Z

D

(uhnug � ugnuh) dx.

Hence we have that

Z

|x|=a

✓
ug

@uh

@⌫
� uh

@ug

@⌫

◆
ds (1.60)

= �2i

Z

D

=(A)rug ·ruh dx+ 2ik2
Z

D

=(n)uguh dx.

Proceeding exactly as in the proof of Theorem 1.14 where wg and wh are replaced by
the fields outside D, ug and uh, we obtain that

Z

|x|=a

✓
ug

@uh

@⌫
� uh

@ug

@⌫

◆
ds (1.61)

= 4⇡(Fg, h)� 4⇡(g,Fh)� 2ik(Fg,Fh).

Combining (1.60) and (1.61) yields the result.

Now Theorem 1.42 implies the following property of the far field operator.

Theorem 1.43. Assume that both =(A) = 0 and =(n) = 0. Then the far field operator
corresponding to the scattering problem (1.45)–(1.49) is normal.

Proof. The proof is exactly the same as the proof of Theorem 1.15.

Finally, the proofs of Theorem 1.16 and Corollary 1.17 carry through for the far field
operator corresponding to the scattering problem for anisotropic media. More precisely,
the following theorem holds (see also Theorem 6.2 in [29]).

Theorem 1.44. Let F : L2(S 2) ! L2(S 2) be the far field operator corresponding to the
scattering problem (1.27)–(1.29). Then F is injective and has dense range if and only if
there does not exist a Herglotz wave function vg such that the pair u, v := vg is a solution
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to the transmission eigenvalue problem

r ·Aru+ k2nu = 0 in D, (1.62)
�v + k2v = 0 in D, (1.63)

v = u on @D, (1.64)
@v

@⌫
=

@u

@⌫A
on @D. (1.65)

Values of k > 0 for which (1.62)–(1.65) has nontrivial solutions such that v := vg , i.e.,
v is a Herglotz wave function, are called nonscattering wave numbers. In particular F is
injective and has dense range if and only k is not a nonscattering wave number. We also
mention that values of k for which (1.62)–(1.65) has nontrivial solutions are referred to as
transmission eigenvalues.

1.4.2 The Inverse Scattering Problem

Similarly to the inverse medium problem for isotropic inhomogeneities (Section 1.2.2),
the inverse problem is to determine A(x) and n(x) (or some properties of A(x) and n(x))
from a knowledge of the far field u1(x̂, d) corresponding to the scattering problem (1.27)–
(1.29). Unfortunately, in the general case of matrix valued functions A(x), the far field
patterns u1(·, d) do not uniquely determine A and n even if they are known for all d 2 S2

and all wave numbers k [92]. Hence in general for anisotropic media, only the uniqueness
of the support D of the inhomogeneity can be expected . The idea of the uniqueness proof
for the inverse medium scattering problem originates from [101], [102] in which it is shown
that the shape of a penetrable, inhomogeneous, isotropic medium is uniquely determined
by its far field pattern for all incident plane waves. The case of an anisotropic medium
is due to Hähner [94] (see also [41]), the proof of which is based on the existence of a
solution to the modified interior transmission problem. To proceed further let us define the
(nonhomogeneous) interior transmission problem corresponding to (1.62)–(1.65): Given
f 2 H1/2(@D) and h 2 H�1/2(@D), find u 2 H1(D) and v 2 H1(D) satisfying

r ·Aru+ k2nu = 0 in D, (1.66)
�v + k2v = 0 in D, (1.67)
u� v = f on @D, (1.68)

@w

@⌫A
�
@v

@⌫
= h on @D, (1.69)

This problem will be analyzed in Chapter 3 in this book. The uniqueness result is based on
the following assumption on the interior transmission problem.

Assumption 1.1. A, n are such that the modified interior transmission problem—given
f 2 H1/2(@D), h 2 H�1/2(@D), `1 2 L2(D), and `2 2 L2(D), find u 2 H1(D) and
v 2 H1(D) satisfying

r ·Aru+ �1nu = `1 in D, (1.70)
�v + �2v = `2 in D, (1.71)

u� v = f on @D, (1.72)
@u

@⌫A
�
@v

@⌫
= h on @D (1.73)
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for some constants �1 and �2—has a unique solution which satisfies

kukH1(D) + kvkH1(D)  C
�
kfkH1/2(@D) + khkH�1/2(@D) + k`1kL2(D) + k`2kL2(D)

�
.

Note that the interior transmission problem (1.66)–(1.69) is a compact perturbation
of (1.70)–(1.73). This implies the following lemma, which will be used in the proof of
uniqueness, in order to obtain the result without assuming that k is not a transmission
eigenvalue.

Lemma 1.45. Assume that Assumption 1.1 holds, and let {vn, un} 2 H1(D) ⇥H1(D),
j 2 N, be a sequence of solutions to the interior transmission problem (1.66)–(1.69) with
boundary data fn 2 H

1
2 (@D), hn 2 H�

1
2 (@D). If the sequences {fn} and {hn} converge

in H
1
2 (@D) and H�

1
2 (@D), respectively, and if the sequences {vn} and {un} are bounded

in H1(D), then there exists a subsequence {vnk} which converges in H1(D).

Proof. Thanks to the compact embedding of H1(D) into L2(D) we can select L2-conver-
gent subsequences {vnk} and {unk}, which satisfy

r ·Arunk + �1unk = (� � k2n)unk in D,

�vnk + �2 vnk = (�2 � k2)vnk in D,

unk � vnk = fnk on @D,

@unk

@⌫A
�
@vnk

@⌫
= hnk on @D.

Then the result follows from Assumption 1.1.

We are now ready to prove the uniqueness theorem.

Theorem 1.46. Let the domains D1 and D2, the matrix-valued functions A1 and A2,
and the functions n1 and n2 be such that Assumption 1.1 holds. If the far field patterns
u1

1 (x̂, d) and u1

2 (x̂, d) corresponding to D1, A1, n1 and D2, A2, n2, respectively, coin-
cide for all x̂ 2 S2 and d 2 S2, then D1 = D2.

Proof. Denote by G the unbounded connected component of R3
\ (D̄1 [ D̄2) and define

De

1 := R3
\ D̄1, De

2 := R3
\ D̄2. By the analyticity of the far field patterns and Rellich’s

Lemma we conclude that the scattered fields us

1(·, d) and us

2(·, d) which are solutions of
(1.45)–(1.49) with D1, A1, n1 and D2, A2, n2, respectively, and ui = eikx·d, coincide
in G for all d 2 S2. For the incident field ui := �(x, z) we denote by us

1(·, z) and
us

2(·, z) the corresponding scattered solutions. The mixed reciprocity relation in Theorem
1.41 with another application of Rellich’s Lemma implies that us

1(·, z) and us

2(·, z) also
coincide for all z 2 G. In terms of notation (1.50), this means that w1(·, z) = w2(·, z)
for all z 2 G.

Let us now assume that D̄1 is not included in D̄2. Since De

2 is connected, we can find
a point z 2 @D1 and ✏ > 0 with the following properties, where ⌦�(z) denotes the ball of
radius � centered at z:

1. ⌦8✏(z) \ D̄2 = ;.

2. The intersection D̄1 \ ⌦8✏(z) is contained in the connected component of D̄1 to
which z belongs.
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3. There are points from this connected component of D̄1 to which z belongs that are
not contained in D̄1 \ ⌦̄8✏(z).

4. The points zn := z + ✏

n
⌫(z) lie in G for all n 2 N, where ⌫(z) is the unit normal to

@D1 at z.

Due to the singular behavior of �(·, zn), it is easy to show that k�(·, zn)kH1(D1) ! 1

as n ! 1. We now define

vn(x) :=
1

k�(·, zn)kH1(D1)
�(x, zn), x 2 D̄1 [ D̄2,

and let wn

1 and wn

2 be the scattered fields solving the scattering problem (1.50) with ui :=
vn corresponding to D1, A1, n1 and D2, A2, n2, respectively. Note that for each n, vn is
a solution of the Helmholtz equation in D1 and D2. Our aim is to prove that if D̄1 6⇢ D̄2,
then the equality w1(·, z) = w2(·, z) for z 2 G allows the selection of a subsequence
{vnk} from {vn} that converges to zero with respect to H1(D1). This certainly contradicts
the definition of {vn} as a sequence of functions with H1(D1)-norm equal to one. Note
that w1(·, z) = w2(·, z) obviously implies that wn

1 = wn

2 in G.
We begin by noting that since the functions �(·, zn) together with their derivatives are

uniformly bounded in every compact subset of R3
\⌦2✏(z), and since k�(·, zn)kH1(D1) !

1 as n ! 1, then kvnkH1(D2) ! 0 as n ! 1. Hence, if ⌦R is a large ball containing
D̄1 [ D̄2, then kwn

2 kH1(⌦R\G) ! 0 also as n ! 1 from the well-posedness of the direct
scattering problem . Since wn

1 = wn

2 in G then kwn

1 kH1(⌦R\G) ! 0 as n ! 1 as well.
Now, with the help of a cutoff function � 2 C1

0 (⌦8✏(z)) satisfying �(x) = 1 in ⌦7✏(z)
we see that kwn

1 kH1(⌦R\G) ! 0 implies that

(�wn

1 ) ! 0,
@(�wn

1 )

@⌫
! 0, as n ! 1 (1.74)

on @D1, with respect to the H
1
2 (@D1)-norm and H�

1
2 (@D1)-norm, respectively. Indeed,

for the first convergence we simply apply the trace theorem, while for the convergence of
@(�wn

1 )/@⌫, we first deduce the convergence of�(�wn

1 ) in L2(⌦R \De

1), which follows
from �(�wn

1 ) = ��wn

1 + 2r� ·rwn

1 + wn

1��, and then apply Green’s Theorem. Note
here that we need conditions 2 and 4 on z to ensure ⌦8✏(z) \De

1 = ⌦8✏(z) \G.
We next note that in the exterior of ⌦2✏(z) the H2(⌦R \ ⌦2✏(z))-norms of vn remain

uniformly bounded. Then, thanks to the smoothness of A and n, regularity results for
(1.50) [88] imply that wn

1 is uniformly bounded with respect to the H2((⌦R \ De

1) \
⌦4✏(z))-norm. Therefore, using the compact embedding of H2(⌦R \De

1) into H1(⌦R \

De

1), we can select an H1(⌦R \De

1) convergent subsequence {(1 � �)wnk
1 } from {(1 �

�)wn

1 }. Hence, {(1� �)wnk
1 } is a convergent sequence in H

1
2 (@D1), and similarly to the

above reasoning we also have that {@((1 � �)wnk
1 )/@⌫} converges in H�

1
2 (@D1). This,

together with (1.74), implies that the sequences

{wnk
1 } and

⇢
@wnk

1

@⌫

�

converge in H
1
2 (@D1) and H�

1
2 (@D1), respectively.

Finally, since the functions wnk
1 +vnk and vnk are solutions to the interior transmission

problem (1.66)–(1.69) for the domain D1 with boundary data f = wnk
1 and h = @wnk

1 /@⌫,
and since the H1(D1)-norms of wnk

1 + vnk and vnk remain uniformly bounded, according
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to Lemma 1.45 we can select a subsequence of {vnk}, denoted again by {vnk}, which
converges in H1(D1) to a function v 2 H1(D1). As a limit of weak solutions to the
Helmholtz equation, v 2 H1(D1) is a weak solution to the Helmholtz equation. We also
have that v|D1\⌦2✏(z) = 0 because the functions vnk converge uniformly to zero in the
exterior of ⌦2✏(z). Hence, v must be zero in all of D1 (here we make use of condition 3,
namely, the fact that the connected component of D1 containing z has points which do not
lie in the exterior of ⌦̄2✏(z)). This contradicts the fact that kvnkkH1(D1) = 1. Hence the
assumption D̄1 6⇢ D̄2 is false.

Since we can derive the analogous contradiction for the assumption D̄2 6⇢ D̄1, we have
proved that D1 = D2.





Chapter 2

The Determination of the
Support of
Inhomogeneous Media

We now introduce and analyze a class of inversion methods, often referred to as qualitative
methods, that solve the inverse problem of finding D from the measured far field data
u1(x̂, d) for (x̂, d) 2 S2

⇥ S2 without reconstructing the index of refraction n or other
medium physical parameters. These methods are based on a careful analysis of the range
of the far field operator F : L2(S2) ! L2(S2) defined by

(Fg)(x̂) :=

Z

S2

u1(x̂, d)g(d) ds(d). (2.1)

The analysis of these methods does not require weak scattering approximations. In addi-
tion, the associated algorithms do not require a forward solver of the scattering problem,
and hence they are faster to implement.

We start in Section 2.1 with the Linear Sampling Method (LSM) that has been intro-
duced in [66] to solve the aforementioned inverse problem and that was further analyzed in
a number of subsequent works [26], [65], and [76]. We refer the reader to [29] for an exten-
sive presentation of this method and its various applications. This method has the simplest
formulation and can be easily adapted to different settings of the data (near field data, data
available on a limited aperture) and the scattering problem (inhomogeneous background).
However, the theoretical foundation of the method does not fully justify why it numerically
works. For instance, the theory does not provide a regularization scheme that constructs
the predicted indicator function of the domain D. We provide in Section 2.1 a complete
analysis of this method in the simple isotropic case.

A new formulation of LSM, referred to as Generalized Linear Sampling Method
(GLSM), was proposed in [13] in order to circumvent the above-mentioned weak point.
It gives an exact characterization of the domain D in terms of the range of F . Moreover, it
yields a numerically tractable indicator function. A detailed presentation of this method is
given in Section 2.2 and follows the one given in [12] and [13]. This method has also been
extended to the case of Maxwell’s equations [93]. We provide in Section 2.2.1 the theoret-
ical foundation of the GLSM in an abstract framework that can then be applied to various
inverse scattering problems. We confine ourselves to the theory adapted to data available
on a full aperture and refer the reader to [7] for more elaborate formulations that can apply
to near field data, data available on a limited aperture, and inhomogeneous backgrounds.
Sections 2.2.2 and 2.2.3 address the issue of noisy operators. Although important from a
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practical point of view, these sections can be skipped in a first reading. The application of
the abstract theory to the isotropic inverse problem is then presented in Section 2.2.4.

Another exact characterization of D in terms of the far field operator can be obtained
using the so-called inf-criterion. This method is presented in Section 2.3. The main draw-
back of this characterization is that it is numerically less attractive than other sampling
methods. However, this criterion can be used to justify other methods like the factorization
method presented in Section 2.4. The latter was first introduced by Kirsch in [109], and
we refer the reader to [113] for a detailed analysis of this method. We give here a self-
contained and slightly different presentation of the abstract theory related to this method
for both versions, the (F ⇤F )1/4 and F] methods. We also discuss for each version the ap-
plication to the isotropic inverse problem. The factorization method requires (in principle)
stronger assumptions than the other sampling methods. For instance, the generalization to
the case of limited aperture is an open problem as well as for inhomogeneous backgrounds
that contain absorption.

Section 2.5 complements the picture on sampling methods by addressing some link
between them. We explain, for instance, how the (F ⇤F )1/4 method can be used to pro-
vide precise information on the behavior of the Tikhonov regularized solution of the LSM
equation. We also explain how the factorization method can complement the GLSM to
solve the imaging problem where one would like to identify a change in the background
using differential measurements. Some simple comparative numerical illustrations of these
methods are given in Section 2.5.3. Application to the case of differential measurements
is discussed in Section 2.5.4 in a simplified configuration. This section does not intend to
give a full presentation of this important problem but rather a glimpse on potential new
applications of sampling methods.

We close this chapter with Section 2.6, where the application of all previously intro-
duced sampling methods is discussed in the case of anisotropic media. This provides a
unified presentation of the analysis of these methods for a particular problem.

2.1 The Linear Sampling Method (LSM)
We consider here the first class of qualitative methods that was introduced in [66] and that
was further analyzed in a number of subsequent works [26], [65], [76]. Roughly speaking,
the idea of the method is to consider approximate solutions to (2.1) (in a sense that will be
made precise later), i.e., gz 2 L2(S2) satisfying

Fgz ' �1(·, z)

with �1(x̂, z) := 1
4⇡ e

�ikx̂·z being the far field pattern associated with the fundamental
solution �(·, z) and then use z 7! 1/kgzkL2(S2) as an indicator function for the domain
D. We shall first give a presentation of the method in the special case where u1(·, d)
is the far field pattern associated with the scattered field us(·, d) 2 H1

loc
(R3) solution to

(1.27)–(1.29). The index of refraction n 2 L1(R3) is such that <(n) > 0, =(n) � 0,
n = 1 outside the support D of m := 1 � n, and assume that D contains the origin, has
Lipschitz boundary @D, and connected complement in R3. According to Theorem 1.11,
let us define for u0 2 L2(D) the unique function w 2 H1

loc
(R3) satisfying

8
>><

>>:

�w + k2nw = k2(1� n)u0 in R3,

lim
R!1

Z

|x|=R

|@w/@|x|� ik w|2 ds = 0. (2.2)
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Obviously, if u0(x) = eikd·x, then w = us(·, d), and therefore the far field pattern w1 of
w coincides with u1(·, d). Let us consider the (compact) operator H : L2(S2) ! L2(D)
defined by

Hg := vg|D, (2.3)

where the Herglotz wave function vg is defined by (1.31), namely,

vg(x) :=

Z

S2

eikd·xg(d)ds(d), x 2 R3.

Let us denote by Hinc(D) the closure of the range of H in L2(D). We then consider the
(compact) operator G : Hinc(D) ! L2(S2) defined by

G(u0) := w1, (2.4)

where w1 is the far field pattern of w 2 H1
loc

(R3) satisfying (2.2). One therefore easily
observes that F can be factorized as

F = GH. (2.5)

The justification of the Linear Sampling Method (LSM) is mainly based on the charac-
terization of D in terms of the range of the operator G. This characterization uses the
solvability of the interior transmission problem: Find (u, u0) 2 L2(D)⇥L2(D) such that
u� u0 2 H2(D) and 8

>>>>><

>>>>>:

�u+ k2nu = 0 in D,

�u0 + k2u0 = 0 in D,

u� u0 = f on @D,

@(u� u0)/@⌫ = h on @D

(2.6)

for given (f, h) 2 H3/2(@D) ⇥H1/2(@D), where ⌫ denotes the outward normal on @D.
Values of k for which this problem is not well-posed are referred to as transmission eigen-
values. We consider in this chapter only real transmission eigenvalues.

The analysis of the interior transmission problem and of transmission eigenvalues will
be conducted in the next two chapters. We need in this chapter only the well-posedness
of this problem (as well as the well-posedness of the direct problem (2.2)) for data u0 2

L2(D). At this point we formulate this statement in the following assumption (the solv-
ability of the interior transmission problem is the subject of Chapter 3).

Assumption 2.1. We assume that the refractive index n and the real wave number k are
such that (2.6) defines a well-posed problem.

We recall from Theorem 1.11 that (2.2) is well-posed if n 2 L1(R3), <(n) > 0,
=(n) � 0, and n = 1 in R3

\D. The well-posedness of (2.6) requires at least that n 6= 1
in a neighborhood of @D and that k is outside a countable set without finite accumulation
points (see Chapter 3).

A first step towards the justification of LSM is the characterization of the closure of the
range of H.

Lemma 2.1. The operator H is compact and injective. Let Hinc(D) be the closure of the
range of H in L2(D). Then

Hinc(D) = {v 2 L2(D) : �v + k2v = 0 in D}.
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Proof. For the first part, assume that Hg = 0 in D. Since

�Hg + k2Hg = 0 in R3,

by the unique continuation principle, Hg = 0 in R3. This implies (using the Jacobi–Anger
expansion [69]) that g = 0.

For the second part of the lemma, we give a slightly different proof from the orig-
inal one in [154]. Set gHinc(D) := {v 2 L2(D) : �v + k2v = 0 in D}. Then ob-
viously Hinc(D) ⇢ gHinc(D). To prove the theorem it is then sufficient to prove that
H

⇤ : L2(D) ! L2(S2), the adjoint of the operator H given by

H
⇤'(x̂) :=

Z

D

e�ikx̂·y'(y)dy, ' 2 L2(D), x̂ 2 S2, (2.7)

is injective on gHinc(D). Let u0 2 gHinc(D) and set

u(x) :=

Z

D

�(x, y)u0(y) dy, x 2 R3.

From the regularity properties of volume potentials (Theorem 1.8), we infer that u 2

H2
loc

(R3) and satisfies
(

(i) �u+ k2u = �u0 in D,

(ii) �u+ k2u = 0 in R3
\D.

(2.8)

Since by construction 4⇡u1 = H
⇤(u0), then H

⇤(u0) = 0 implies that u1 = 0 and
therefore u = 0 in R3

\D by Rellich’s Lemma. The regularity u 2 H2
loc

(R3) then implies
u 2 H2

0 (D). Now take the L2(D) scalar product of (2.8)(i) with u0 to obtain
Z

D

�
�u+ k2u

�
u0 dx = �ku0k

2
L2(D).

The left-hand side of this equality is zero since�u0+k2u0 = 0 in the distributional sense
and u 2 H2

0 (D). This implies u0 = 0.

The following reciprocity lemma will also be useful.

Lemma 2.2. Let u0, u1 2 L2(D), and let w0 and w1 2 H1
loc

(R3) be the corresponding
solutions satisfying (2.2). Then

Z

D

(1� n)w0 · u1dx =

Z

D

(1� n)w1 · u0dx. (2.9)

Proof. We have
(

(i) �w0 + k2 nw0 = k2(1� n)u0 in R3,

(ii) �w1 + k2 nw1 = k2(1� n)u1 in R3.
(2.10)

Let BR be an open ball with radius R that contains D. Multiplying (2.10)(i) by w1 and
(2.10)(ii) by w0 yields, after integrating over BR and taking the difference,

Z

BR

(�w0 w1 ��w1 w0) dx = k2
Z

D

((1� n)u0 w1 � (1� n)u1 w0) dx.
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Integrating by parts, we obtain
Z

@BR

((@w0/@r)w1 � (@w1/@r)w0) ds(x)

= k2
Z

D

((1� n)u0 · w1 � (1� n)u1 · w0) dx. (2.11)

Since w0 and w1 satisfy the Sommerfeld radiation condition

lim
R!1

Z

@BR

|@w`/@r � i kw`|
2 ds(x̂) = 0

and
lim

R!1

Z

@BR

|w`|
2 ds(x) =

Z

S2

��w`
1

��2 ds(x̂)

for ` = 1, 2, therefore

lim
R!1

Z

@BR

((@w0/@r)w1 � (@w1/@r)w0) ds(x) = 0.

The lemma follows by letting R ! 1 in (2.11).

We now prove the main ingredient for the justification of the LSM.

Theorem 2.3. Assume that Assumption 2.1 holds. Then the operator G : Hinc(D) !

L2(S2) defined by (2.4) is injective with dense range. Moreover,

�1(·, z) 2 R(G) if and only if z 2 D.

Proof. We start by proving that G : Hinc(D) ! L2(S2) is injective with dense range. Let
u0 and w satisfy (2.2). From (1.24), we get

w1(x̂) = �
k2

4⇡

Z

D

e�ikx̂·y(1� n)(u0(y) + w(y))dy.

Therefore, for g 2 L2(S2),

(G(u0), g)L2(S2) = �
k2

4⇡

Z

D

(1� n)(u0 + w)Hg dx. (2.12)

Assume that u0 = H' for some ' 2 L2(S2) and set w(') ⌘ w. Then the previous
equality can be written as

(G(H'), g)L2(S2) = k2
Z

D

(1� n)(H'+ w('))Hg dx. (2.13)

From Lemma 2.2 we get
Z

D

(1� n)(H'+ w('))Hg dx =

Z

D

(1� n)(Hg + w(g))H' dx.
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Therefore, the identity (2.13) implies the reciprocity relation

(G(H'), g)L2(S2) = (G(Hg),')L2(S2) for all g,' 2 L2(S2). (2.14)

Now assume that (G(H'), g)L2(S2) = 0 for all ' 2 L2(S2). We deduce from (2.14) that
G(Hg) = 0. Using Rellich’s Lemma and the unique continuation principle we deduce that
w(g) = 0 in R3

\D. Consequently, if we set u := w(g) +Hg, then the pair (u,Hg) is a
solution to (2.6) with zero data. Our hypothesis ensures that Hg = 0 in D and consequently
g = 0 (by Lemma 2.1). This proves the denseness of the range of G.

We now prove the injectivity of G. Let u0 2 Hinc(D) and let w 2 H1
loc

(R3) be the
associated scattered field via (2.2). As observed earlier, w 2 H2(BR) for all balls BR

centered at the origin of radius R. Assume that G(u0) = 0. From Rellich’s Lemma we
deduce that

w = 0 in R3
\D.

Consequently, if we set u := w + u0, then the pair (u, u0) is a solution to (2.6) with zero
data. Assumption 2.1 then ensures that u0 = 0, which proves the injectivity of G.

We now prove the last part of the theorem. We first observe that�1(·, z) is the far field
pattern of ue = �(·, z) satisfying�ue+ k2ue = ��z in R3 and the Sommerfeld radiation
condition. Let z 2 D. We consider (u, u0) 2 L2(D) ⇥ L2(D) as being the solution to
(2.6) with

f(x) = ue(x; z) and h(x) = @ue(x; z)/@⌫(x) for x 2 @D. (2.15)

We then define w by
w(x) = u(x)� u0(x) in D,

w(x) = ue(x; z) in R3
\D.

Due to (2.15), we have that w 2 H2
loc

(R3) and satisfies (2.2). Hence Gu0 = �1(·, z).
Now let z 2 R3

\D. Assume that there exists u0 2 Hinc(D) such that Gu0 = �1(·, z).
By Rellich’s Lemma we deduce that w = ue(·; z) in R3

\ D, where w is the solution to
(2.2). This gives a contradiction since w 2 H1

loc
(R3

\D) while ue(·; z) /2 H1
loc

(R3
\D).

Since the operator H is compact, the characterization of D in terms of the range of
G in Theorem 2.3 does not imply a similar characterization in terms of the range of F .
However, one can deduce the following.

Theorem 2.4. Assume that assumption (2.1) holds; then the operator F is injective with
dense range. Moreover,

• if z2D, then there exists a sequence g↵
z
2L2(S2) such that lim

↵!0
kFg↵

z
��1(·, z)kL2(S2)

= 0 and lim
↵!0

kHg↵
z
kL2(D) < 1;

• if z /2 D, then for all g↵
z
2 L2(S2) such that lim

↵!0
kFg↵

z
��1(·, z)kL2(S2) = 0 and

lim
↵!0

kHg↵
z
kL2(D) = 1.

Proof. The injectivity and the denseness of the range of F directly follow from the same
properties satisfied by H (Lemma 2.1) and G (Theorem 2.3). See also Theorem 1.16 and
Corollary 1.17 for a direct proof of these properties.
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If z 2 D, let u0 2 Hinc(D) be such that Gu0 = �1(·, z), which exists by Theo-
rem 2.3. From Lemma 2.1 there exists a sequence g↵

z
2 L2(S2) such that Hg↵

z
! u0 as

↵! 0, and the first statement follows from the fact that F = GH.
Let z /2 D and g↵

z
2 L2(S2) be such that lim

↵!0
kFg↵

z
� �1(·, z)kL2(S2) = 0. Assume

that kHg↵
z
kL2(D) is bounded as ↵ ! 0. Without loss of generality we can assume that

Hg↵
z

weakly converges to some u0 2 Hinc(D). Since GH = F , we get the limit Gu0 =
�1(·, z), which contradicts the last part of Theorem 2.3.

The main weak point in this theorem is that it does not indicate how to construct the
sequence g↵

z
when z 2 D. In practice one relies on the use of Tikhonov regularization and

considers g̃↵
z
2 L2(S2) satisfying

(↵+ F ⇤F ) g̃↵
z
= F ⇤ (�1(·, z)) . (2.16)

Since F has dense range, lim
↵!0

kF g̃↵
z
� �1(·, z)kL2(S2) = 0. However, one cannot guar-

antee in general that lim
↵!0

kHg̃↵
z
kL2(D) < 1 if z 2 D. In the case =(n) = 0, the latter

has been proved in [5, 6], based on the so-called (F ⇤F )1/4 method (see Section 2.5.1). A
second weak point of Theorem 2.4 is that one cannot compute kHg↵(·; z)kL2(D) since D
is not known. In practice one uses kg↵(·; z)kL2(S2) as an indicator function for D. We
refer the reader to [65], [64] for numerical examples of the performance of this method on
synthetic data.

Remark 2.5. A possible method to fix the Tikhonov regularization parameter ↵ in (2.16)
is to use the Morozov discrepancy principle. Assume that F � is the noisy operator corre-
sponding to noisy measurements u�

1
such that

ku�
1

� u1kL2(S2)⇥L2(S2)  �.

Then for each sampling point z, the parameter ↵ is chosen such that

kF �g↵(·; z)� �1(·, z)kL2(S2) = �kg↵(·; z)kL2(S2).

This leads to a nonlinear equation that determines ↵ in terms of the noise level � [76].

2.2 A Generalized Version of LSM (GLSM)
In order to overcome the weak points mentioned above, a new formulation of LSM was
proposed in [13]. It gives an exact characterization of the domain D in terms of the range
of F . Moreover, it provides a numerically tractable indicator function, but at the expense
of additional numerical cost. The key idea behind the new formulation is to replace the
penalty term in the Tikhonov formulation (2.16) by a term that controls kHg↵(·; z)kL2(D).
This is possible due to the second factorization of the far field operator F that has been used
in [113] to design a different family of sampling methods, namely, factorization methods
(see Section 2.4). More precisely, since H⇤ : L2(D) ! L2(S2), the adjoint of the operator
H, is given by (2.7) and since, from (1.24),

w1(x̂) = �
k2

4⇡

Z

D

e�ikx̂·y(1� n)(u0(y) + w(y))dy,

we get that G = H
⇤T , where T : L2(D) ! L2(D) is defined by

Tu0 := �
k2

4⇡
(1� n)(u0 + w) (2.17)
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with w being the solution of (2.2). We then end up with

F = H
⇤TH. (2.18)

We observe that if T is coercive on the range of the operator H, then |(Fg, g)L2(S2)| is
equivalent to kHgk2

L2(D). One can therefore use |(Fg, g)L2(S2)| as a penalty term in the
Tikhonov functional. However, this cannot be treated as a regular penalty term since it does
not define a norm for g which is equivalent to the L2(S2) norm (the operator F is compact).
This term is also nonconvex in general, which induces difficulties in the analysis and from
the numerical point of view. Other alternatives would be, at the expense of possibly more
restrictions on the index of refraction n, to replace this term with |(Bg, g)|, where the
operator B : L2(S2) ! L2(S2) is a self-adjoint and nonnegative operator expressed in
terms of F . For instance, B = =(F ) := 1

2i (F � F ⇤) if the imaginary part of n is positive
definite in D or B = F] := |<(F )|+|=(F )|, where <(F ) := 1

2 (F+F ⇤) in a more general
case. We shall investigate all these possibilities in an abstract form in the following section.

2.2.1 Theoretical Foundation of GLSM in the Noise Free Case
We follow here the presentation given in [12] and [13]. Let X and Y be two (complex)
reflexive Banach spaces with duals X⇤ and Y ⇤, respectively, and denote by h, i a dual-
ity product that refers to hX⇤, Xi or hY ⇤, Y i duality. We consider two linear bounded
operators F : X ! X⇤ and B : X ! X⇤ for which the following factorizations hold:

F = GH and B = H⇤TH, (2.19)

where the operators H : X ! Y , T : Y ! Y ⇤, and G : Hinc := R(H) ⇢ Y ! X⇤

are bounded and where R(H) is the closure of the range of H in Y . Let ↵ > 0 be a given
parameter and � 2 X⇤. The GLSM is based on considering minimizing sequences of the
functional J↵(�; ·) : X ! R, where

J↵(�; g) := ↵| hBg, gi |+ kFg � �k2 for all g 2 X. (2.20)

This functional does not have a minimizer in general since the operator B is typically
chosen to be compact. However, since J↵(�; ·) � 0 one can define

j↵(�) := inf
g2X

J↵(�; g). (2.21)

A first simple observation is the following.

Lemma 2.6. Assume that F has dense range. Then for all � 2 X⇤, j↵(�) ! 0 as ↵! 0.

Proof. Let ✏ > 0. The denseness of the range of F implies the existence of g✏ such that
kFg✏ � �k <

p
✏

2 . One can choose a sufficiently small ↵0(✏) such that for all ↵  ↵0(✏),
↵| hBg✏, g✏i | <

✏

2 . Consequently j↵(�)  J↵(�; g✏) < ✏, which proves the claim.

The central theorem for noise free GLSM is the following characterization of the range
of G in terms of F and B.

Theorem 2.7. We assume in addition to (2.19) that

• G is compact and F = GH has dense range;
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• T satisfies the coercivity property

| hT', 'i | > µ k'k2 for all ' 2 R(H), (2.22)

where µ > 0 is a constant independent of '. Let C > 0 be a given constant (independent
of ↵) and consider for ↵ > 0 and � 2 X⇤, an element g↵ 2 X such that

J↵(�; g↵)  j↵(�) + C ↵. (2.23)

Then the following hold:

• If � 2 R(G), then lim sup
↵!0

| hBg↵, g↵i | < 1.

• If � /2 R(G), then lim inf
↵!0

| hBg↵, g↵i | = 1.

Proof. Assume that � 2 R(G). Then by definition one can find ' 2 R(H) such that
G' = �. For ↵ > 0, there exists g0 2 X such that kHg0 � 'k2 < ↵. Then by continuity
of G, kFg0 � �k2 < kGk

2↵. On the other hand, the continuity of T implies

| hBg0, g0i | = | hTHg0, Hg0i |  kTk kHg0k
2 < 2 kTk (↵+ k'k2).

From the definitions of j↵(�) and g↵ we have

↵| hBg0, g0i |+ kFg0 � �k2 > j↵(�) > J↵(�, g↵)� C↵.

We then deduce from the definition of J↵ and previous inequalities that

↵| hBg↵, g↵i |  J↵(�, g↵)  C↵+ 2↵ kTk (↵+ k'k2) + ↵kGk
2.

Therefore lim sup
↵!0

| hBg↵, g↵i | < 1, which proves the first claim.

Now assume that � /2 R(G) and, contrary to the theorem, that

lim inf
↵!0

| hBg↵, g↵i | < 1.

Then (for some extracted subsequence g↵) | hBg↵, g↵i | < A, where A is a constant inde-
pendent of ↵ ! 0. The coercivity of T implies that kHg↵k is also bounded. Since Y is
reflexive and R(H) is closed, one can assume that, up to an extracted subsequence, Hg↵
weakly converges to some ' in R(H). Compactness of G implies that GHg↵ strongly
converges to G' as ↵! 0. On the other hand, Lemma 2.6 and the definition of J↵(�, g↵)
show that kFg↵ � �k2  J↵(�, g↵)  j↵(�) + C↵ ! 0 as ↵ ! 0. Since Fg↵ = GHg↵
we get G' = �, which is a contradiction.

As indicated in the previous section, the range of the operator G characterizes the in-
homogeneity D. Therefore this theorem leads to a characterization of D in terms of the
operators F and B (and therefore a uniqueness result for the reconstruction of D in terms
of F and B). It also stipulates that an indicator function is given by | hBg↵, g↵i | for small
values of ↵. Let us note that the parameter ↵ does not play the role of a regularization pa-
rameter, since in applications the operator B is, in general, compact. However, construct-
ing a sequence (g↵) satisfying (2.23) for fixed ↵ > 0 may be viewed as a regularization
of the minimization of J↵(�; ·) that can be used for numerics. A different regularization
procedure that would be more suited for noisy operators is introduced in the following
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subsection. For this version and particular choices of the operator B one can construct a
minimizer by solving a simple linear system (see Remark 2.15).

For the natural choice B = F one can state the following straightforward corollary.

Corollary 2.8. Assume that G(') = H⇤T (') for all ' 2 R(H) and assume in addition
that H is compact, F has dense range, and T satisfies the coercivity property (2.22). Let
C > 0 be a given constant (independent of ↵) and consider for ↵ > 0 and � 2 X⇤,
g↵ 2 X such that

J↵(�; g↵)  j↵(�) + C ↵.

Then � 2 R(G) if and only if lim sup
↵!0

| hFg↵, g↵i | < 1 and we also have � /2 R(G) if

and only if lim inf
↵!0

| hFg↵, g↵i | = 1.

In Theorem 2.7 and the case � 2 R(G) one only knows that the quantity | hBg↵, g↵i |
is bounded as ↵! 0 and nothing is said on the (strong) convergence of the sequence Hg↵.
In order to ensure the strong convergence of this sequence one possibility would be to add
a convexity property for | hBg↵, g↵i | as in the following theorem.

Theorem 2.9. We assume, in addition to the hypotheses of Theorem 2.7, that F is injective
and that h 7!

p
| hTh, hi | is a uniformly convex function on Hinc. Consider for ↵ > 0

and � 2 X⇤, g↵ 2 X such that

J↵(�; g↵)  j↵(�) + p(↵), (2.24)

where p(↵)
↵

! 0 as ↵! 0.
Then � 2 R(G) if and only if lim

↵!0
| hBg↵, g↵i | < 1. Moreover, in the case � = G',

the sequence Hg↵ strongly converges to ' in Y .

Proof. According to Theorem 2.7 we only need to prove the convergence of Hg↵ to '
when � = G' for ' 2 Y . The coercivity of T combined with the first part of the proof of
Theorem 2.7 imply that kHg↵k

2 is bounded. Second, from Lemma 2.6, equation (2.24),
and the injectivity of G we infer that the only possible weak limit of (any subsequence of)
Hg↵ is '. Thus the whole sequence Hg↵ weakly converges to '. Since ' 2 R(H) we
have

j↵(�) = inf
g2X)

J↵(g,�) = inf
h2R(H)

⇣
↵| hTh, hi |+ kGh� �k2

⌘
 ↵| hT', 'i |.

Thus

| hBg↵, g↵i |  | hT', 'i |+
p(↵)

↵
,

which implies (as p(↵)
↵

! 0)

lim sup
↵!0

| hTHg↵, Hg↵i |  | hT', 'i |. (2.25)

The uniform convexity of h 7!

p
| hTh, hi | and the continuity and coercivity prop-

erties of T ensure that R(H) equipped with
p
| hTh, hi | is a uniformly convex Banach

space. We deduce from (2.25) and the weak convergence of the sequence Hg↵ that Hg↵
strongly converges to ' (see, for instance, [27, Chapter 3, Proposition 3.32]).
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We remark that the additional hypothesis of Theorem 2.9 is automatically satisfied as
soon as the operator B or, equivalently, the operator T is self-adjoint. We refer the reader
to Section 2.5.2 for possible choices of such an operator. Let us notice that one can avoid
this assumption by adding an extra term in the cost functional, as indicated in the following
remark.

Remark 2.10. In the case B = F , one can avoid the extra assumption on the operator T
in Theorem 2.9 by replacing the cost functional J↵ with

J↵(�; g) := ↵| hFg, gi |+ ↵1�⌘
| hFg � �, gi |+ kFg � �k2 for all g 2 X (2.26)

with ⌘ 2]0, 1] being a fixed parameter. We refer the reader to [7, Chapter 4] for the analysis
of this type of function that is also more suited for limited aperture data.

An important application of Theorem 2.9 is the design of a method capable of imaging
defects in an unknown multiply connected background from so-called differential measure-
ments (i.e., measurements for the cases with and without defects) as sketched in Section
2.5.4.

2.2.2 Regularized Formulation of GLSM
As will be clearer later, the above formulation of GLSM has to be adapted to the case
of noisy operators since in general a noisy operator B does not satisfy a factorization of
the form (2.19) (with a middle operator satisfying a coercivity property similar to (2.22)).
In order to cope with this issue we introduce a regularized version of J↵ which allows a
similar range characterization and where one controls both the noisy criteria and the noisy
misfit term. Following [13], consider for ↵ > 0 and ✏ > 0 (that will later be linked with
the noise level) and for � 2 X⇤, the functional J"

↵
(�; ·) : X ! R defined by

J"
↵
(�; g) = ↵(| hBg, gi |+ " kgk2) + kFg � �k2 . (2.27)

Lemma 2.11. Assume that B is compact. Then for all ↵ > 0, ✏ > 0, and � 2 X⇤ the
functional J"

↵
(�; ·) has a minimizer g"

↵
2 X . If we assume in addition that F has dense

range, then
lim
↵!0

lim
"!0

J"
↵
(�; g"

↵
) = lim

"!0
lim sup
↵!0

J"
↵
(�; g"

↵
) = 0.

Proof. The existence of a minimizer is clear: for fixed ↵ > 0, ✏ > 0, and � 2 X⇤, any
minimizing sequence (gn) of J"

↵
(�; ·) is bounded and therefore one can assume that it is

weakly convergent in X to some g"
↵

2 X . The lower semicontinuity of the norm with
respect to weak convergence and the compactness property of B then imply

J"
↵
(�; g"

↵
)  lim inf

n!1

J"
↵
(�; gn)  inf

g2X

J"
↵
(�; g),

which proves that g"
↵

is a minimizer of J"
↵
(�; ·) on X .

Now assume in addition that F has dense range. By Lemma 2.6, j↵(�) ! 0 as ↵! 0.
Showing that lim

"!0
J"
↵
(�; g"

↵
) = j↵(�) will then prove that lim

↵!0
lim
"!0

J"
↵
(�; g"

↵
) = 0. We

observe that
J"
↵
(�; g) = J↵(�; g) + ↵"kgk2 (2.28)

and therefore |J"
↵
(�; g) � J↵(�; g)| ! 0 as " ! 0. For ⌘ > 0 one can choose g such

that |J↵(�; g) � j↵(�)|  ⌘/2. For this g one then has for " sufficiently small that
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|J"
↵
(�; g) � J↵(�; g)| < ⌘/2. We obtain by the triangle inequality that for " sufficiently

small J"
↵
(�; g)  j↵(�) + ⌘. We now observe from the definitions of g"

↵
and j↵ and from

(2.28) that
j↵(�)  J↵(�; g

"

↵
)  J"

↵
(�; g"

↵
)  J"

↵
(�; g),

which proves the claim.
We now prove lim

"!0
lim sup
↵!0

J"
↵
(�; g"

↵
) = 0. First let g" be a minimizer on X of the

Tikhonov functional "2 kgk2 + kFg � �k2 and set j" = "2 kg"k
2 + kFg" � �k2, which

goes to zero as " goes to zero (see Lemma 2.6, which is valid for any bounded operator
B). We have that, for ↵  ", J"

↵
(g)  "2 kgk2 + kFg � �k2 +↵(|(Bg, g)|. By taking the

upper limit,
lim sup
↵!0

J"
↵
(g"
↵
)  lim sup

↵!0
J"
↵
(g") = j",

which concludes the proof.

Theorem 2.12. Under the assumptions of Theorem 2.7 and the additional assumption that
B is compact the following hold. If g"

↵
denotes the minimizer of J"

↵
(�; ·) (defined by (2.27))

for ↵ > 0, " > 0, and � 2 X⇤, then

• � 2 R(G) =) lim sup
↵!0

lim sup
"!0

| hBg"
↵
, g"

↵
i | < 1;

• � /2 R(G) =) lim inf
↵!0

lim inf
"!0

| hBg"
↵
, g"

↵
i | = 1.

Proof. The proof is similar to the proof of Theorem 2.7. Assume that � = G(') for some
' 2 R(H). We consider the same g0 as in the first part of the proof of Theorem 2.7 (that
depends on ↵ but is independent from "). Then we choose " such that "kg0k2  1. Then

J"
↵
(�; g"

↵
)  J"

↵
(�; g0)  J↵(�; g0) + ↵. (2.29)

Consequently

↵| hBg"
↵
, g"

↵
i |  J"

↵
(�; g"

↵
)  ↵+ 2↵ kTk (↵+ k'k2) + ↵kGk

2,

which proves lim sup
↵!0

lim sup
"!0

| hBg"
↵
, g"

↵
i | < 1.

Now assume � /2 R(G) and assume that lim inf
↵!0

lim inf
"!0

| hBg"
↵
, g"

↵
i | is finite. The

coercivity of T implies that lim inf
↵!0

lim inf
"!0

kHg"
↵
k
2 is also finite. This means the exis-

tence of a subsequence (↵0, "(↵0)) such that ↵0
! 0 and "(↵0) ! 0 as ↵0

! 0 and��Hg"(↵
0)

↵0

��2 is bounded independently from ↵0. On the other hand, the second part of
Lemma 2.11 (namely, the first limit), indicates that one can choose this subsequence such
that J"(↵

0)
↵0 (g"(↵

0)
↵0 ) ! 0 as ↵0

! 0 and therefore
��Fg"(↵

0)
↵0 � �

�� ! 0 as ↵0
! 0. The

compactness of G implies that a subsequence of GHg"(↵
0)

↵0 converges to some G' in X⇤.
The uniqueness of the limit implies that G' = �, which is a contradiction.

In this theorem " should be viewed as the regularization parameter (and not ↵, which
is instead used to construct an indicator function with a limiting process). As indicated by
(2.29), this regularization parameter serves in the construction of the minimizing sequence
of Theorem 2.7.

This theorem with regularization stipulates that a criterion to localize the target is given
by | hBg"

↵
, g"

↵
i | for small values of ✏ and ↵. The reader can easily see from the first part
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of the proof that the result holds true if we replace this by (| hBg"
↵
, g"

↵
i | + "kg"

↵
k
2). This

latter criterion is more suited to the case of noisy measurements as indicated in the section
below.

2.2.3 The GLSM for Noisy Data
We consider in this section the case where there may be noise in the data. More precisely,
we shall assume that one has access to two noisy operators B� and F � such that

��F � � F
��  �kF �k and

��B�
�B

��  �kB�
k

for some � > 0. We also assume in this section that the operators B, B� F � , and F are
compact. We then consider for ↵ > 0 and � 2 X⇤ the functional J�

↵
(�; ·) : X ! R

defined by

J�
↵
(�; g) := ↵(|

⌦
B�g, g

↵
|+ �kB�

k kgk2) +
��F �g � �

��2 for all g 2 X, (2.30)

which coincides with a regularized noisy functional J"
↵

with a regularization parameter
✏ = �kB�

k. According to Lemma 2.11 one can consider g�
↵

to be a minimizer of J�
↵
(�; g).

We first observe (similarly to the second part of the proof of Lemma 2.11) the following
lemma.

Lemma 2.13. Assume in addition to our previous assumptions that F has dense range.
Then for all � 2 X⇤,

lim
↵!0

lim sup
�!0

J�
↵
(�; g�

↵
) = 0.

Proof. We observe that for all g 2 X ,

J�
↵
(�; g)  J↵(�; g) + (2↵�kB�

k+ �2kF �k2) kgk2 . (2.31)

Since (2↵�kB�
k+ �2kF �k2) ! 0 as � ! 0, then as in the proof of Lemma 2.11, for any

⌘ > 0 (↵ fixed), one can choose g 2 X such that for sufficiently small �,

J�
↵
(�; g)  j↵(�) + ⌘.

Consequently, from the definition of g�
↵

,

J�
↵
(g�
↵
;�)  j↵(�) + ⌘.

This proves the claim, since j↵(�) ! 0 as ↵! 0 (by Lemma 2.6).

Theorem 2.14. Assume that the assumptions of Theorem 2.7 and the additional assump-
tions of this subsection hold true. Let g�

↵
be the minimizer of J�

↵
(�; ·) (defined by (2.30))

for ↵ > 0, � > 0, and � 2 X⇤. Then

• � 2 R(G) =) lim sup
↵!0

lim sup
�!0

⇣��⌦B�g�
↵
, g�

↵

↵��+ �kB�
k
��g�
↵

��2
⌘
< 1;

• � /2 R(G) =) lim inf
↵!0

lim inf
�!0

⇣��⌦B�g�
↵
, g�

↵

↵��+ �kB�
k
��g�
↵

��2
⌘
= 1.

Proof. The proof of this theorem follows along the lines of the proof of Theorem 2.12.
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First consider the case where � = G(') for some ' 2 R(H) and introduce the same
g0 as in the first part of the proof of Theorem 2.7 (that depends on ↵ but is independent of
�). Choosing � sufficiently small such that

(2↵�kB�
k+ �2kF �k2) kg0k

2
 ↵

we get
J�
↵
(�; g�

↵
)  J�

↵
(�; g0)  J↵(�; g0) + ↵. (2.32)

Consequently

↵
⇣
|
⌦
Bg�

↵
, g�

↵

↵
|+ �kB�

k
��g�
↵

��2
⌘
 J�

↵
(�; g�

↵
)  ↵+ 2↵ kTk (↵+ k'k2) + ↵kGk

2,

which proves that lim sup
↵!0

lim sup
�!0

(|
⌦
B�g�

↵
,
↵
|+ �kB�

kkg�
↵
k
2) < 1. This proves the first

part of the theorem.
Now let � /2 R(G) and assume that lim inf

↵!0
lim inf
"!0

(|
⌦
B�g�

↵
,
↵
|+�kB�

kkg�
↵
k
2) is finite.

The coercivity of T implies that

µ
���Hg�

↵(�)

���
2
 |
⌦
Bg�

↵
, g�

↵

↵
|  |

⌦
B�g�

↵
, g�

↵

↵
|+ �kB�

k
��g�
↵

��2 .

Therefore lim inf
↵!0

lim inf
�!0

��Hg�
↵

��2 is also finite. This means the existence of a subsequence

(↵0, �(↵0)) such that ↵0
! 0, �(↵0) ! 0 as ↵0

! 0, and
��Hg�(↵

0)
↵0

��2 is bounded indepen-
dently from ↵0. One can also choose �(↵0) such that �(↵0)  ↵0.

On the other hand, Lemma 2.13 indicates that one can choose this subsequence such
that J�(↵

0)
↵0 (g�(↵

0)
↵0 ) ! 0 as ↵0

! 0 and therefore
��F �g�(↵

0)
↵0 � �

�� ! 0 as ↵0
! 0

and ↵0�(↵0)kg�(↵
0)

↵0 k
2
! 0 as ↵0

! 0. By the triangle inequality and �(↵0)  ↵0 we
then deduce that

��Fg�(↵
0)

↵0 � �
�� ! 0 as ↵0

! 0. The compactness of G implies that
a subsequence of GHg�(↵

0)
↵0 converges to some G' in X⇤. The uniqueness of the limit

implies that G' = �, which is a contradiction.

It is clear from the proof of the previous theorem that any strategy of regularization
"(�) satisfying ✏(�) � �kB�

k and ✏(�) ! 0 as � ! 0 would be convenient to obtain a
similar result. From the numerical perspective this theorem indicates that a criterion to
localize the object would be the magnitude of

|
⌦
B�g�

↵
, g�

↵

↵
|+ �kB�

k
��g�
↵

��2

for small values of ↵. Indeed the theorem only says that this criterion would be efficient for
sufficiently small noise. Building an explicit link between the value of ↵ and the noise level
� (in the fashion of a posteriori regularization strategies) would be of valuable theoretical
interest but this seems to be challenging (due to the compactness of the operator B). One
can see from the proof that adding the term �kB�

k
��g�
↵

��2 is important to conclude when �
is not in the range of G. This means that this term is important for correcting the behavior
of the indicator function outside the inclusion, which is corroborated by the numerical
experiments in [13] for the scalar case.

Remark 2.15. If B� is a positive self-adjoint operator (see Section 2.5.2), one can directly
compute the minimizer g�

↵
of J�

↵
(�; ·) (defined by (2.30)) for ↵ > 0, � > 0, and � 2 X⇤

as the solution of

(↵B� + ↵�kB�
kI + (F �)⇤F �)g�

↵
= (F �)⇤�. (2.33)
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2.2.4 Application of GLSM to the Inverse Scattering Problem

We return to our model problem and consider the notation and assumptions of Section 2.1.
We shall apply GLSM with B = F . The central additional theorem needed for this case is
the following coercivity property of the operator T .

Assumption 2.2. We assume that n 2 L1(R3), supp(1 � n) ⇢ D, and =(n) � 0.
Furthermore, we assume either that <(1� n) + ↵=(n) or <(n� 1) + ↵=(n) is positive
definite on D for some constant ↵ � 0.

We remark that if =(n) is positive definite on D, then the last part of Assumption 2.2
is automatically verified.

Theorem 2.16. Assume that Assumptions 2.1 and 2.2 hold. Then the operator T defined
by (2.17) satisfies the coercivity property (2.22) with Y = Y ⇤ = L2(D) and the operator
H = H defined by (2.3).

Proof. We start by proving a useful identity related to the imaginary part of T . With ( , )
denoting the L2(D) scalar product, for  2 L2(D) and w 2 H2

loc
(R3) the solution of (2.2)

we have that

(T , ) = �
k2

4⇡

Z

D

(1� n)( + w) dx. (2.34)

Multiplying (2.2) by w and integrating by parts over BR, a ball of radius R with center at
the origin containing D, we have that

k2
Z

D

(1� n)( + w)w dx = �

Z

BR

(|rw|2 � k2|w|2) dx+

Z

|x|=R

@w

@r
w ds.

The Sommerfeld radiation condition indicates that

lim
R!1

=

0

B@
Z

|x|=R

@w

@r
w ds

1

CA = k

Z

S2
|w1|

2ds.

Therefore, taking the imaginary part and then letting R ! 1 yields

k2=

0

@
Z

D

(1� n)( + w)w dx

1

A = k

Z

S2
|w1|

2ds.

Consequently, decomposing ( + w) = | + w|2 � ( + w)w, we obtain the important
identity,

4⇡=(T , ) =

Z

D

k2=(n)| + w|2dx+ k

Z

S2
|w1|

2ds. (2.35)

We are now in position to prove the coercivity property using a contradiction argument.
Assume, for instance, the existence of a sequence  ` 2 R(H) such that

k `kL2(D) = 1 and |(T `, `)| ! 0 as `! 1.
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We denote by w` 2 H2
loc

(R3) the solution of (2.2) with  =  `. Elliptic regularity implies
that kw`kH2(D) is bounded uniformly with respect to `. Then up to changing the initial
sequence, one can assume that  ` weakly converges to some  in L2(D) and w` converges
weakly in H2

loc
(R3) and strongly in L2(D) to some w 2 H2

loc
(R3). It is then easily seen

(using the distributional limit) that w and  satisfy (2.2), and since  ` 2 R(H)

� + k2 = 0 in D. (2.36)

Identity (2.35) and |(T `, `)| ! 0 imply that w`
1

! 0 in L2(S2) and therefore w1 = 0.
Rellich’s Lemma implies w = 0 outside D and consequently w 2 H2

0 (D). With the
help of equation (2.36) we get u = w +  2 L2(D) and v =  2 L2(D) are such that
u � v 2 H2(D) and satisfy the interior transmission problem (2.6) with f = g = 0. We
then infer that w =  = 0. Identity (2.34) applied to  ` and w` implies

|(T `, `)| �
k2

4⇡

������

Z

D

(1� n)| `|
2dx

������
� k2

������

Z

D

(1� n)w` ` dx

������
.

Therefore, since
R
D
(1 � n)w` `dx !

R
D
(1 � n)w dx = 0, and using the assumptions

on n,
lim
`!1

|(T `, `)| � ✓k `k
2
L2(D) = ✓

for some positive constant ✓, which is a contradiction.

Remark 2.17. A different proof of this theorem can be obtained as a combination of Lem-
mas 2.23 and 2.31 below. The proof given here can be adapted to prove the same results
under the hypothesis that Assumption 2.2 holds only in a neighborhood of the boundary
@D (see [7, Chapter 4]).

Set �z := �1(·, z) and denote by ( , ) the L2(S2) scalar product and by k.k the
associated norm. Let C > 0 be a given constant (independent of ↵) and consider for ↵ > 0
and z 2 R3, gz

↵
2 L2(S2) such that

↵|(Fgz
↵
, gz
↵
)|+ kFgz

↵
� �zk

2
 j↵(�z) + C ↵, (2.37)

where
j↵(�z) = inf

g2L2(S2)

�
↵|(Fg, g)|+ kFg � �zk

2
�
.

Combining the results of Theorems 2.16 and 2.3 and the first claim of Theorem 2.4, we
obtain the following as a straightforward application of Corollary 2.8.

Theorem 2.18. Assume that Assumptions 2.1 and 2.2 hold. Then z 2 D if and only if
lim sup
↵!0

|(Fgz
↵
, gz
↵
)| < 1.

We also have z /2 D if and only if lim inf
↵!0

|(Fgz
↵
, gz
↵
)| = 1.

This theorem gives, for instance, a uniqueness result for the reconstruction of D from
the far field operator.

Let us remark that in the case where =(n) is positive definite on D one can use B =
=(F ). This is justified by the fact that =(T ) is coercive and positive, as indicated by
identity (2.35). In that case one can replace the term |(Fgz

↵
, gz
↵
)| with (=(F )gz

↵
, gz
↵
) in the

definition of gz
↵

and in Theorem 2.18.
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For practical applications, it is important to use the criterion provided in Theorem 2.14.
Consider F � : L2(S2) ! L2(S2) a compact operator such that

��F � � F
��  �,

and consider for ↵ > 0 and � 2 L2(S2) the functional J�
↵
(�; ·) : L2(S2) ! R defined by

J�
↵
(�; g) := ↵(|(F �g, g)|+ � kgk2) +

��F �g � �
��2 for all g 2 L2(S2). (2.38)

Then as a direct consequence of Theorem 2.14, we have the following characterization
of D.

Theorem 2.19. Assume that Assumptions 2.1 and 2.2 hold. For z 2 R3 denote by gz
↵,�

the
minimizer of J�

↵
(�z; ·) over L2(S2). Then

z 2 D if and only if lim sup
↵!0

lim sup
�!0

⇣��(F �gz
↵,�

, gz
↵,�

)
��+ �

��gz
↵,�

��2
⌘
< 1

and we also have

z /2 D if and only if lim inf
↵!0

lim inf
�!0

⇣��(F �gz
↵,�

, gz
↵,�

)
��+ �

��gz
↵,�

��2
⌘
= 1.

2.3 The Inf-Criterion
Another exact characterization of D in terms of the far field operator can be obtained using
the so-called inf-criterion [113], [138]. For this characterization one basically needs the
same coercivity property as in Theorem 2.7.

2.3.1 The Main Theorem
Let X and Y be two (complex) reflexive Banach spaces with duals X⇤ and Y ⇤, respec-
tively, and denote by h , i a duality product that refers to hX⇤, Xi or hY ⇤, Y i duality. We
consider three bounded operators F : X ! X⇤, H : X ! Y , and T : Y ! Y ⇤ such that

F = H⇤TH.

We then have the following theorem.

Theorem 2.20. Assume that there exists a constant ↵ > 0 such that

|hT','i| � ↵k'k2
Y

for all ' 2 R(H). (2.39)

Then one has the following characterization of the range of H⇤:

{ ⇤
2 R(H⇤) and  ⇤

6= 0} if and only if inf{|hF , i| , 2 X, h ⇤, i = 1} > 0.

Proof. We first observe that

|hF , i| = |hH⇤TH , i| = |hTH , H i| .

Hence,
↵kH k2

Y
 |hF , i|  kTkkH k2

Y
for all  2 X. (2.40)
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Let  ⇤
2 R(H⇤) and  ⇤

6= 0. Then  ⇤ = H⇤('⇤) for some '⇤
2 Y ⇤ and '⇤

6= 0. Let
 2 X such that h ⇤, i = 1. Then

kH kY =
1

k'⇤kY ⇤
kH kY k'

⇤
kY ⇤

�
1

k'⇤kY ⇤
h'⇤, H i =

1

k'⇤kY ⇤
> 0.

We then deduce, using the first inequality in (2.40), that

inf{|hF , i| , 2 X, h ⇤, i = 1} �
↵

k'⇤k
2
Y ⇤

> 0.

Now assume that  ⇤ /2 R(H⇤) and let us show that

inf{|hF , i| , 2 X, h ⇤, i = 1} = 0.

From the second inequality in (2.40) it is sufficient to prove the existence of a sequence
 n 2 X such that h ⇤, ni = 1 and kH nkY ! 0 as n ! 1. Since  ⇤

6= 0 and X is
reflexive, there exists  ̂ 2 X such that

⌦
 ⇤,  ̂

↵
= 1. Setting  ̂n =  ̂ �  n, we see that it

is sufficient to show the existence of a sequence  ̂n 2 X such that
D
 ⇤,  ̂n

E
= 0 and H ̂n ! H ̂ in Y. (2.41)

Set V = { 2 X;
⌦
 ⇤,  ̂

↵
= 0} = { ⇤

}
? (where the orthogonality is to be understood

in the sense of the X⇤, X duality product). Since H ̂ 2 R(H), in order to prove (2.41) it
is sufficient to prove that H(V ) is dense in R(H), and for the latter it is sufficient to prove
(since Y is reflexive) that H(V )? = R(H)? (where the orthogonality is to be understood
in the sense of the Y ⇤, Y duality product). But this equality follows from

'⇤
2 H(V )? if and only if H⇤'⇤

2 V ? = Span{ ⇤
},

and the latter is equivalent to H⇤'⇤ = 0 (since  ⇤ /2 R(H⇤)), which means '⇤
2

N (H⇤) = R(H)?.

2.3.2 Application to the Inverse Scattering Problem

We turn back to our model problem and consider the notation and assumptions of Section
2.1. We first have the following characterization of D in terms of the operator H⇤ where
once again �z := �1(·, z).

Lemma 2.21. For z 2 R3 we have that z 2 D if and only if �z is in the range of H⇤.

Proof. For z 2 D choose a cutoff function ⇢ 2 C1(R3) which vanishes near z and
equals one in R3

\ D. Then v(x) = ⇢(x)�(x, z) has �z as its far field pattern. Note
that f := (�v + k2v) has compact support in D and f 2 L2(D). Since v satisfies the
Sommerfeld radiation condition,

v(x) = �

Z

D

�(x, y)f(y)dy. (2.42)
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Hence
�z = v1 = �

1

4⇡
H

⇤f.

Now assume that z /2 D and �z = H
⇤f for some f 2 L2(D). By Rellich’s Lemma

�(·, z) = �4⇡v in the exterior of D [ {z}, where v is defined by (2.42). This gives a
contradiction since v is smooth near z but �(·, z) is singular at z.

Applying Theorem 2.20 to the operator F given by (2.1) and in view of Theorem 2.16
and Lemma 2.21, one can state the following corollary.

Corollary 2.22. Assume that Assumptions 2.1 and 2.2 hold. Then for z 2 R3 we have that
z 2 D if and only if

inf{
��(Fg, g)L2(S2)

�� ; g 2 L2(S2), (g,�z)L2(S2) = 1} > 0.

The main drawback of this characterization is that it is numerically less attractive than
other sampling methods. From the analysis of GLSM one also expects that this procedure
would be very sensitive to noise in the operator F . Another typical difference with GLSM
is that in this characterization one loses the link with the interior transmission problem.
For the application and implementation of this method in the case of weakly nonlinear
materials we refer the reader to [129]. A nice feature of this criterion is that it can be used
to justify other sampling methods like the factorization method presented below.

2.4 The Factorization Method
In this section we present two versions of the factorization method for solving the inverse
scattering problem for inhomogeneous media. The factorization method was first intro-
duced by Kirsch in [109]. We refer the reader to [113] for a detailed analysis of both of
these versions.

2.4.1 The (F ⇤F )1/4 Method

We start with the first version of the factorization method, which relies on the factorization

F = H⇤TH, (2.43)

where now F : X ! X , H : X ! Y , and T : Y ! Y ⇤ are bounded operators with
X being an infinite-dimensional separable Hilbert space (we identify X⇤ with X) and Y a
reflexive Banach space. We shall assume the following properties for the operator T . We
denote by h , i the Y ⇤, Y duality product.

Assumption 2.3. We assume that T : Y ! Y ⇤ satisfies

= hT', 'i 6= 0

for all ' 2 R(H) with ' 6= 0 and T = T0 + C, where C is compact on R(H) and

hT0', 'i 2 R and hT0', 'i � ↵ k'k2
X

for all ' 2 R(H) and some ↵ > 0.
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These assumptions are stronger than the coercivity property (2.39), as indicated in the
following lemma.

Lemma 2.23. Assume that T : Y ! Y ⇤ satisfies Assumption 2.3. Then it also satisfies the
coercivity property (2.39).

Proof. Assume by contradiction that (2.39) is not satisfied. Then one can find a sequence
'j 2 R(H) such that k'jkX = 1 and is weakly convergent to ' in R(H) and also
|hT'j ,'ji| ! 0 as j ! 1. By our assumptions,

= hT'j , 'ji = = hC'j , 'ji ! = hT', 'i

as j ! 0 since C is compact. This implies that = hT', 'i = 0 and therefore ' = 0.
Consequently, by the triangle inequality,

0 < ↵  hT0'j , 'ji  | hT'j , 'ji |+ | hC'j , 'ji |,

where | hT'j , 'ji | ! 0 by assumption and | hC'j , 'ji | ! | hC', 'i | = 0 by the
compactness of C. This gives a contradiction and proves the lemma.

We now state and prove the main theorem of this section.

Theorem 2.24. Assume that F : X ! X is compact, injective, and that I+ i�F is unitary
for some � > 0. In addition, assume that T satisfies Assumption 2.3. Then the ranges
R(H⇤) and R((F ⇤F )1/4) coincide.

Proof. The proof follows the one given in [113]. Since I + i�F is unitary for some � > 0
this implies that F is normal. Since it is compact and injective, we deduce the existence
of an orthonormal complete basis (gj)j=1,+1 of X such that Fgj = �jgj , where �j 6= 0
forms a sequence of complex numbers that goes to 0 as j ! 1. We remark that by
assumption, �j lies in the circle or radius 1/� and center i/� which means in particular
that =(�j) � 0. The operator H̃ := (F ⇤F )1/4 : X ! X is defined by H̃gj =

p
|�j |gj ,

and we introduce the operator T̃ : X ! X defined by

T̃ gj = �̂jgj , �̂j = �j/|�j |.

We then easily observe that H̃⇤ = H̃ and

F = H̃⇤T̃ H̃. (2.44)

Consequently, in view of the inf-criterion (Theorem 2.20), the original factorization (2.43),
and Lemma 2.23, it is sufficient to prove that T̃ is coercive on X to obtain that the ranges
of H̃⇤ and H⇤ coincide. Let g 2 X such that kgk = 1. We need to prove the existence of
a positive constant � independent from g such that

0 < �  |(T̃ g, g)X | =

�����

1X

j=1

�̂j |(g, gj)X |
2

�����. (2.45)

Since
P

1

j=1 |(g, gj)X |
2 = 1, the complex number

P
1

j=1 �̂j |(g, gj)X |
2 lies in C: the clo-

sure of the convex hull of the sequence (�̂j). Giving that =(�̂j) � 0, in order to prove
the coercivity property, one only needs to prove that 0 /2 C. Observe that, since �j (for
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all j) lies in the circle or radius 1/� and center i/� and �j ! 0 as j ! 1, the only
possible accumulation points of the sequence (�̂j) are �1 and +1. We shall prove that �1
is not an accumulation point, which is sufficient to get 0 /2 C. Assume the existence of a
subsequence, which we denote by �̂j for convenience, such that �̂j ! �1 and set

'j :=
1p
|�j |

Hgj .

Then using (2.43), clearly

hT'j , 'ji = �̂j(gj , gj)X = �̂j ! �1. (2.46)

From Lemma 2.23 we deduce that the sequence 'j is bounded in Y and then can assume,
up to the extraction of a subsequence, that 'j weakly converges to some ' in R(H).
Taking the imaginary part of (2.46) implies

= hT'j , 'ji = = hC'j , 'ji ! =(�1) = 0,

which implies that = hT', 'i = 0 and therefore ' = 0. By the definition of T0 and the
corresponding coercivity property we get

0  hT0'j , 'ji  hT'j , 'ji � hC'j , 'ji ! �1

since hC'j , 'ji ! hC', 'i = 0 by compactness of C. This gives a contradiction and
finishes the proof.

2.4.2 Application to the Inverse Scattering Problem for
Nonabsorbing Media

We turn back to our model problem and consider the notation and assumptions of Section
2.1. According to Theorem 1.15, the normality of the operator F holds if (and only if)
=(n) = 0. Given the characterization of D in terms of the range of H

⇤ (see Lemma
2.21), we only need to check when Assumption 2.3 for the operator T defined by (2.17) is
satisfied.

Lemma 2.25. Assume that =(n) = 0 and <(n�1) � ↵ > 0 (respectively, <(1�n) � ↵ >
0) in D for some constant ↵ and that Assumption 2.1 holds (i.e., k is not a transmission
eigenvalue). Then the operator T : L2(D) ! L2(D) (respectively, �T ) defined by (2.17)
satisfies Assumption 2.3 with Y = Y ⇤ = L2(D).

Proof. Recall that

T ( ) = �
k2

4⇡
(1� n)( + w),

where w 2 H2
loc

(R3) is a solution of (2.2). Consider the case n � 1 � ↵ > 0 (the case
1� n � ↵ > 0 is similar). Let T0 : L2(D) ! L2(D) be defined by

T0 =
k2

4⇡
(n� 1) .

Then obviously T0 is real and coercive as in Assumption 2.3. Moreover T�T0 : L2(D) !
L2(D) is compact by the compact embedding of H2(D) into L2(D).
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Let  2 R(H). From the identity (2.35), =(T , ) = 0 implies w1 = 0 and by
Rellich’s Lemma w = 0 in R3

\D. Consequently u = w+ 2 L2(D) and v =  2 L2(D)
are such that u � v 2 H2(D) and are solutions of the interior transmission problem (2.6)
with f = g = 0. We then infer that w =  = 0.

In view of Theorems 1.16, 1.15 and Lemmas 2.21 and 2.25 one can apply Theorem
2.24 to the factorization (2.18) and derive the following characterization of D in terms of
the range of the operator (F ⇤F )1/4.

Theorem 2.26. Assume the assumptions of Lemma 2.25 hold. Then z 2 D if and only if
�1(·, z) is in the range of (F ⇤F )1/4.

A method to determine the support D of m = 1 � n using Theorem 2.26 is to use
Tikhonov regularization to find a regularized solution of

(↵I + (F ⇤F )1/2)g↵
z
= (F ⇤F )1/4�1(·, z) (2.47)

and note that the regularized solution g↵
z

of (2.47) converges in L2(S 2) as ↵ ! 0 if and
only if z 2 D (see Theorem 1.31). An alternative method to construct D is to let �n and
 n be the eigenvalues and eigenfunctions of F and note that (F ⇤F )1/4 has the singular
system (

p
|�n|, n, n). Then by Picard’s Theorem (Theorem 1.29) and Theorem 2.26,

z 2 D if and only if
1X

n=1

|( n,�1(·, z))|2

|�n|
< 1. (2.48)

For details of the numerical implementation of the factorization method we refer the reader
to [113].

Let us now define the operator

F] := |<F |+ |=(F )|, (2.49)

where <(F ) := 1
2 (F + F ⇤) and =(F ) := 1

2i (F � F ⇤). Let �n = |<(�n)| + |=(�n)|.
Obviously F] is a positive self-adjoint compact operator with (�n, n, n) as a singular
system. Since

|�n|  �n 

p

2|�n|

we get, from Picard’s Theorem, that the range of F 1/2
]

and the range of (F ⇤F )1/4 coincide.
One therefore can replace (F ⇤F )1/4 by F 1/2

]
in Theorem 2.26 and |�n| by �n in (2.48).

The main advantage of the use of F 1/2
]

is that it can be extended to cases where F is no
longer normal (for instance, when =(n) 6= 0), as indicated in the following section.

2.4.3 The F] Method

This method was originally proposed in [109] as a generalization of the (F ⇤F )1/4 method.
It also relies on the factorization (2.43) of the far field operator, namely,

F = H⇤TH, (2.50)

where F : X ! X , H : X ! Y , and T : Y ! Y ⇤ are bounded operators with X being an
infinite-dimensional separable Hilbert space and Y a reflexive Banach space. We assume
in addition that there exists a pivot separable Hilbert space U such that Y ⇢ U ⇢ Y ⇤ with
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dense inclusions (the triple (Y, U, Y ⇤) is then called a Gelfand triple). The analysis given
here follows mainly the one given in [113] but with slight modifications in the presentation
and the hypothesis. We denote by h , i the Y ⇤, Y duality product and by k · k the norm
in Y .

The conditions on T are summarized in the following assumption.

Assumption 2.4. We assume that T : Y ! Y ⇤ satisfies

= hT', 'i � 0 or = hT', 'i  0 (2.51)

for all ' 2 R(H) and <T = T0 + C, where C is compact on R(H) and

hT0', 'i � ↵ k'k2 (2.52)

for all ' 2 R(H) and some ↵ > 0. Moreover, we assume that if one of the following holds
for some v 2 R(H), then v = 0:

(i) hTv, 'i = 0 for all ' 2 R(H);

(ii) h=(T )v, vi = 0.

Remark 2.27. It is worth noticing that item (i) in Assumption 2.4 is equivalent to the
injectivity of the operator G = H⇤T on R(H). In the previous edition of this book, this
condition was replaced by the injectivity of T on R(H) as in [128], which is not correct.
(This mistake was also present in the first edition of [113].)

We now state and prove an intermediate result that will allow us to prove the main
theorem.

Theorem 2.28. Let F = H⇤TH : X ! X , where H : X ! U is compact and injective
and has dense range, T : U ! U is self-adjoint, T = T0 + C, where C is compact, and
T0 is self-adjoint and satisfies (2.52). Then there exists a finite rank operator P : U ! U
such that I + P : U ! U is an isomorphism and

|F | = H⇤T (I + P )H.

Moreover, the operator T (I + P ) : U ! U is self-adjoint and nonnegative.

Proof. Since there is no risk of confusion, the scalar product in X or in U is indicated
by using the same symbol ( , ). The operator F is compact and self-adjoint. Let �n 2 R
and  n 2 X be the eigenvalues and eigenfunctions of F such that { n, n � 1} form an
orthonormal basis of X . Then |F | is the operator having (|�n|, n) as a singular system.
Let us decompose

X = X+
�X�

with X+ := span{ n;�n > 0} and X� := span{ n;�n  0}. Obviously HX+ +
HX� is dense in U . However, there is no guarantee in general that this sum is closed. We
shall prove that it is the case by proving that HX� is finite-dimensional. Consider (�n,�n)
an eigenvalue decomposition of T (a self-adjoint and Fredholm operator of index 0). We
decompose U = U+

�U� with U+ := span{�n;�n > 0} and U� := span{�n;�n  0}.
Since T0 is positive, the space U� is finite-dimensional. Denote by Q± the orthogonal
projection on U±. Let � 2 HX�, i.e., � 2 H for some  2 X�. Then

0 � (F , ) = (TH , H ) � c1kQ
+H k2 � c2kQ

�H k2
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with c1 = min{�n,�n > 0} > 0 and c2 = max{|�n|,�n  0}. Consequently

k�k2  (1 + c2/c1)kQ
��k2 for all � 2 HX�.

This proves that Q� is a bijection from HX� into U� and therefore HX� is finite-
dimensional and V � := HX� = HX�. We then obtain that HX+ + V � is a closed
dense subspace of U and therefore U = HX+ + V �. Let us set

V 0 := HX+ \ V � and V + := (V 0)? \HX+.

Then V + is closed and V +
� V 0 = HX+ (since V 0 is closed). We then deduce the

(nonorthogonal) direct sum decomposition

U = V + + V �.

Since V + and V � are closed and V +
\ V � = {0}, then the projectors P+ and P�

associated with this sum are continuous operators. We can now conclude the proof by
proving that V 0

⇢ kerT . Let � 2 V 0. Then (T�,�) � 0 since � 2 HX+ and (T�,�) 
0 since � 2 V �. Hence (T�,�) = 0. Let  2 HX+ and t 2 R [ iR. Then

0  (T (t�+  ), (t�+  )) = 2<(tT�, ) + (T , ).

The latter holds for all t 2 R [ iR if and only if (T�, ) = 0. Similar reasoning implies
that (T�, ) = 0 for all  2 V �. We then obtain (T�, ) = 0 for all  2 U , which gives
T� = 0.

We are now in position to prove the desired factorization for |F |. For  2 X ,  =
 + +  � with  ±

2 X± and

TH + = TP+H + + TP�H + = TP+H + = TP+H (2.53)

since P�H +
2 V 0 and P+H �

2 V 0. Similarly

TH � = TP+H � + TP�H � = TP�H � = TP�H . (2.54)

Consequently

|F |( ) = F ( +)� F ( �) = H⇤TH +
�H⇤T � = H⇤T (P+

� P�)H ,

which is the desired factorization with P = �2P�. Indeed I + P = P+
� P� is an

isomorphism (I + P is in fact an involution, (I + P )2 = I + P ) and T̃ := T (I + P ) is
self-adjoint since

(|F | ,') = (T̃H , H') = ( , |F |') = (H , T̃H')

and H has dense range in U .

The following lemma will be useful.

Lemma 2.29. Assume that T : U ! U is a self-adjoint nonnegative operator. Then

kT (�)k2  kTk(T�,�). (2.55)

Proof. Let � and  2 U and let t 2 R. Then

0  (T (�+ t ), (�+ t )) = (T�,�) + 2t<(T�, ) + t2(T , ).
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The latter holds for all t 2 R if and only if

<(T�, )2  (T�,�)(T , ).

Taking  = T� implies

kT (�)k4  (T�,�)(TT�, T�)  (T�,�)kTkkT (�)k2,

which proves the lemma.

Theorem 2.30. Let F be given by (2.50) and assume that there exists an isomorphism
J : Y ! U . Assume that H : X ! Y is compact, injective, and that T satisfies
Assumption 2.4. Then

F] = H⇤T]H, (2.56)

where T] : Y ! Y ⇤ is self-adjoint and satisfies the coercivity property (2.39) on R(H).
Moreover, the ranges R(H⇤) and R((F])1/2) coincide.

Proof. We shall first transform the problem so that it fits the assumptions of Theorem 2.28.
The factorization (2.50) can also be written as

F = H⇤

1T1H1

with H1 = JH : X ! U and T1 = (J⇤)�1TJ�1 : U ! U , which gives a factorization
that involves only Hilbert spaces X and U . Let us denote by Ũ = R(H1) and Q the
projection operator from U onto Ũ . Then using that QH = H we get

F = H̃⇤T̃ H̃

with H̃ := QH1 : X ! Ũ , T̃ := QT1Q⇤ : Ũ ! Ũ . From the assumptions of the
theorem it is clear that H̃ is injective with dense range and that if T satisfies Assumption
2.4, then <(T̃ ) : Ũ ! Ũ is self-adjoint and is the sum of a self-adjoint coercive operator
and a compact operator. From Theorem 2.28 we get the existence of an isomorphism
I + P : Ũ ! Ũ such that P is a finite rank operator and

|<(F )| = H̃⇤(<(T̃ ))(I + P )H̃,

where (<(T̃ ))(I + P ) : Ũ ! Ũ is a self-adjoint and nonnegative operator. Assumption
2.4 implies in addition that

|=(F )| = H̃⇤
|=(T̃ )|H̃,

where |=(T̃ )| : Ũ ! Ũ is a self-adjoint nonnegative operator and |=(T̃ )| = ±=(T̃ )
depending on the sign of =(T̃ ). We therefore end up with the factorization

F] = H̃⇤T̃]H̃

with T̃] = (<(T̃ ))(I +P )+ |=(T̃ )|. We shall now prove that T̃] is coercive. Since |=(T̃ )|
is a nonnegative operator then <(T̃0) + |=(T̃ )| is a coercive operator on Ũ and therefore
T̃] is a Fredholm operator of index 0.

Using Assumption 2.4(i) or (ii) we now prove that T̃] is injective. T̃]� = 0 implies

(<(T̃ )(I + P )�,�) = 0 and (=(T̃ )�,�) = 0.
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From Lemma 2.29, we deduce that <(T̃ )(I+P )� = 0 and =(T̃ ) = 0. Since <(T̃ )(I+P )
is self-adjoint, and (I +P ) is an isomorphism, <(T̃ )(I +P )� = 0 implies <(T̃ )� = 0. If
condition (ii) of Assumption 2.4 holds, then we immediately get from

⌦
=(T )J�1�, J�1�

↵

= (=(T̃ )�,�) = 0 that � = 0. If condition (i) holds then we also have � = 0 since
T̃� = <(T̃ )�+ i=(T̃ )� = 0 and therefore

⌦
TJ�1�,  

↵
= 0 for all  2 R(H).

The injectivity of T̃] proves that T̃] is invertible. Applying Lemma 2.29 to T̃�1
]

and
choosing � = T̃] in (2.55) implies that

k k2  kT̃�1
]

k(T̃] , ),

which gives the coercivity of T̃] on Ũ . The factorization of the theorem follows by setting

T] = J⇤Q⇤T̃]QJ.

Using the definition of J and Q we easily get that T] is coercive on the closure of the
range of H . We now can apply Theorem 2.20 to the factorizations (2.56) and F] =
(F])1/2((F])1/2)⇤ to get that the ranges R(H⇤) and R((F])1/2) coincide.

2.4.4 Application to the Inverse Scattering Problem for
Absorbing Media

We turn back to our model problem and consider the notation and assumptions of Section
2.1. Consider F satisfying the factorization (2.18) and set, for ✓ 2 [0, 2⇡[,

F ✓ := <(ei✓F ) + i=(F )

and
F ✓
]
:= |<(ei✓F )|+ |=(F )|. (2.57)

Obviously
F ✓ = H

⇤T ✓H with T ✓ := <(ei✓T ) + i=(T ),

where T : L2(D) ! L2(D) is defined by (2.17). We then have the following lemma.

Lemma 2.31. Let ✓ 2 [0,⇡]. Assume that =(n) � 0 and <(ei✓(n� 1)) � ↵ > 0 in D for
some constant ↵ and that Assumption 2.1 holds (i.e., k is not a transmission eigenvalue).
Then the operator T ✓ : L2(D) ! L2(D) satisfies Assumption 2.4 with Y = Y ⇤ = L2(D).

Proof. Recall that

T ( ) = �
k2

4⇡
(1� n)( + w( )), (2.58)

where w( ) 2 H2
loc

(R3) is a solution of (2.2). Let T0 : L2(D) ! L2(D) be defined by

T0 = �
k2

4⇡
<(ei✓(1� n)) .

Then obviously T0 is real and coercive as in Assumption 2.4. Moreover <T ✓ � T0 :
L2(D) ! L2(D) is compact by the compact embedding of H2(D) into L2(D). From
identity (2.35), =(T ✓ , ) = =(T , ) � 0. We now can conclude as in the proof
of Lemma 2.25 that =(T ✓) is injective on the range R(H) since k is not a transmission
eigenvalue. Assumption 2.4(ii) is then verified.
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In view of the previous lemma and Lemmas 2.1 and 2.21, we now can state the straight-
forward application of Theorem 2.30 to the operator F ✓.

Theorem 2.32. Assume =(n) � 0 and there exists ✓ 2 [0,⇡] such that <(ei✓(n � 1)) �
↵ > 0 in D for some constant ↵. Assume in addition that Assumption 2.1 holds (i.e., k
is not a transmission eigenvalue). Then z 2 D if and only if �1(·, z) is in the range of
(F ✓
]
)1/2.

As for (F ⇤F )1/4, the numerical implementation of Theorem 2.32 can rely on either a
Tikhonov regularization as in (2.47) or the Picard series as in (2.48).

2.5 Link between Sampling Methods
The assumptions required by the GLSM method are weaker than the ones required by
the factorization method but are similar to the inf-criterion. Indeed the main advantage
of GLSM with respect to the inf-criterion is that it leads to a more tractable numerical
inversion algorithm. In some special configurations there is a direct link between GLSM
and the factorization method as explained below. Moreover, the (F ⇤F )1/4 method can be
used to provide precise information on the behavior of the Tikhonov regularized solution
of the LSM equation.

2.5.1 LSM versus the (F ⇤F )1/4 Method
Let us consider the case where the hypothesis of Theorem 2.24 holds (this corresponds
in particular to the case when =(n) = 0). We shall prove that in this case the Tikhonov
solution of (2.16) satisfies lim sup

↵!0
kHg̃↵

z
kL2(D) < 1 if z 2 D (see also [5]). This is a

direct consequence of the following general result together with Theorem 2.24.

Theorem 2.33. Assume that F : X ! X is as in Theorem 2.24. Let � 2 X , and let
g↵ 2 X be a solution to

(↵+ F ⇤F ) g↵ = F ⇤�.

Then � is in the range of (F ⇤F )1/4 if and only if lim sup
↵!0

|(Fg↵, g↵)| < 1, which is also
equivalent to lim sup

↵!0
kHg↵k < 1.

Proof. Using the eigensystem (�j , j)j�1 of the normal operator F , we observe that

g↵ =
X

j

�j
↵+ |�j |2

(�, j) j .

Therefore

|(Fg↵, g↵)| =

������

X

j

|�j |2�j
(↵+ |�j |2)2

|(�, j)|
2

������


X

j

|�j |3

(↵+ |�j |2)2
|(�, j)|

2.

On the other hand, from the coercivity property (2.45), we also have

|(Fg↵, g↵)| � �
X

j

|�j |3

(↵+ |�j |2)2
|(�, j)|

2.
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The Picard criterion implies that � is in the range of (F ⇤F )1/4 if and only if

X

j

1

|�j |
|(�, j)|

2 < +1.

Consequently, since

|�j |3

(↵+ |�j |2)2
!

1

|�j |
as ↵! 0 and

|�j |3

(↵+ |�j |2)2


1

|�j |
,

we get that � is in the range of (F ⇤F )1/4 if and only if

lim sup
↵!0

|(Fg↵, g↵)| < +1.

We conclude the proof by using the coercivity property (2.39) and the continuity of T to
obtain

�kHg↵k2  |(Fg↵, g↵)|  kTkkHg↵k2

for some � > 0.

2.5.2 GLSM versus the Factorization Method
We now briefly relate the generalized linear sampling method to both versions of the fac-
torization method.

GLSM versus the (F ⇤F )1/4 Method

Let us again consider the case where the hypothesis of Theorem 2.24 holds (this corre-
sponds in particular to the case when =(n) = 0). According to the factorization (2.44) one
can apply GLSM with F = F , B = H̃⇤H̃ = (F ⇤F )

1
2 , and G = H̃⇤T̃ . In this case, the

operator B is positive self-adjoint, and therefore one can say more than in Theorem 2.9.
Using the eigensystem (�j , j)j�1 of the normal operator F , we observe that

J↵(�; g) = ↵((F ⇤F )
1
2 g, g) + kFg � �k2

= ↵
X

i

|�i||(g, i)|
2 +

X

i

(�i(g, i)� (�, i))
2.

Hence J↵(�; ·) has a minimizer given by

g↵ =
X

j

�j(�, j)

↵|�j |+ |�j |2
 j .

This minimizer clearly satisfies (2.23). Let us now define

gFM
↵

=
X

j

|�j |
1
2

|�j |+ ↵
(�, j) j ,

which is the minimizer of the Tikhonov functional ↵kgk2 + k(F ⇤F )
1
4 g � �k2. One then

observes that the GLSM indicator function satisfies

|((F ⇤F )
1
2 g↵, g↵)| =

X

j

|�j |(�, j)2

(↵+ |�j |)2
=
��gFM
↵

��2 .
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This means that the GLSM indicator function (in the noise free case) coincides with the
indicator function given by the (F ⇤F )1/4 method when Tikhonov regularization is used,
e.g., (2.47). In principle, nothing can be deduced on the boundedness of Hg↵ from the
analysis of GLSM. However, this information can be obtained from Theorem 2.33.

GLSM versus the F] Method

The factorization method allows one to use for GLSM an operator B that satisfies the
assumptions of Theorem 2.9 which is important for the some applications like imaging in
unknown backgrounds (see Section 2.5.4). Let F = H⇤TH be as in Theorem 2.30. Let us
set for � 2 X

J↵(�; g) := ↵(F]g, g) + kFg � �k2

and
j↵(�) = inf

g2X

J↵(�; g).

Combining Theorems 2.9 and 2.30 we have the following theorem.

Theorem 2.34. Let F = H⇤TH be as in Theorem 2.30, set G = H⇤T : R(H) ⇢ Y ! X ,
and assume in addition that F is injective with dense range.

Consider for ↵ > 0 and � 2 X⇤, g↵ 2 X such that

J↵(�; g↵)  j↵(�) + p(↵) with 0 <
p(↵)

↵
! 0 as ↵! 0.

Then � 2 R(G) if and only if lim
↵!0

(F]g↵, g↵) < 1.
Moreover, in the case � = G', the sequence Hg↵ strongly converges to ' in Y .

2.5.3 Some Numerical Examples
We report here some two-dimensional numerical examples from [13]. They correspond
to two separate inhomogeneities with different index of refractions, respectively, equal to
n = 2 + 0.5i and 2 + 0.1i (see Figure 2.1). The frequency is k = 1 and 100 equidistant
incident directions and observation points have been used. The data have been generated
synthetically by solving the forward scattering problem using a standard finite element
method. In Figure 2.1 the output of four indicator functions are compared. Let g↵

z
be the

Tikhonov regularized solution of (2.16), where the regularization parameter is computed
using the Morozov discrepancy principle (see Remark 2.5). We define

I
LSM(z) = 1/kg↵

z
k
2, (2.59)

I
GLSM0(z) = 1/|(F �g↵

z
, g↵

z
)|, (2.60)

I
GLSM(z) = 1/

�
|(F �g↵

z
, g↵

z
)|+ �kF �kkg↵

z
k
2
�
, (2.61)

where the noise level � is such that

kF � F �k  �kF �k.

Let g↵
z,]

be the Tikhonov regularized solution of (2.47) (with (F ⇤F )1/4 replaced by F 1/2
]

),
where the regularization parameter is computed using the Morozov discrepancy principle.
We define

I
F](z) = 1/kg↵

z,]
k
2. (2.62)
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Figure 2.1. Output of four different imaging functions. First row: IGLSM0; second row:
ILSM; third row: IF] ; and fourth row: IGLSM. The columns correspond to different noise levels �:
from left to right, � = 0, 1, and 5%. Reproduced from [13] with permission.

In the spirit of the GLSM algorithm one can improve the reconstruction provided
by I

GLSM by using g↵
z

as an initial guess to compute a minimizing sequence of (2.38).
Figure 2.2 shows how one can obtain better resolutions after applying some gradient de-
scent iterations. For these numerical results the parameter ↵ in (2.38) is taken as ↵ =
↵M/(kF �k(1 + �)), where ↵M is the Morozov parameter used in (2.16). The function
I
GLSMoptim has the same expression as IGLSM but with g↵

z
being the computed minimiz-

ing sequence.

2.5.4 Application to Differential Measurements

We here present an application of the GLSM method to the imaging problem where one
would like to identify a change in the background using differential measurements. As-
sume, for instance, that a reference medium is defined by an index of refraction n0, and let
us denote by F0 the far field operator associated with this medium. Applying any of the
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Figure 2.2. First row: IGLSM; second row: IGLSMoptim. The columns correspond to
different noise levels � = 1% left and � = 5% right. Reproduced from [13] with permission.

algorithms above would provide an approximation of D0, the support of n0 � 1. Assume
that a change occurred in the medium modifying n0 locally and denote by n the new re-
fractive index. Let F be the far field operator associated with n, and let D be the support
of n�1. The inverse problem we would like to address here is the identification of D \D0

from the knowledge of F and F0 (without reconstructing n and n0 or D and D0). We
present here the method proposed in [12] in the simple case where D = D0 [ D1 with
D0 \D1 = ; and n = n0 in D0. The inverse problem is then to reconstruct D1 from F0

and F . For the analysis of more complex configurations we refer the reader to [7] and [12].
The differential approach has been also applied for crack inverse problems in [148].

Denoting by itp(n,D) the interior transmission problem (2.6), we assume here that
itp(n,D) and itp(n0, D0) are both well-posed. We shall exploit in the following that the
solutions of itp(n,D) and itp(n0, D0) coincide in D0 if the boundary data coincide on
@D0. This is easily verified given the special configuration of D.

We also assume that there exists ✓ 2 [0,⇡] such that the assumptions of the refractive
index in Theorem 2.32 hold for n in D and n0 in D0. We then set

B = F ✓
]

and B0 = F ✓0,].

(See (2.57) for the definition of F ✓
]

. The operator F ✓0,] is defined similarly.) Consider

J↵(z; g) := ↵(Bg, g)L2(S2) + kFg � �(·, z)k2
L2(S2)

and

J0,↵(z; g) := ↵(B0g, g)L2(S2) + kF0g � �(·, z)k
2
L2(S2)

and gz
↵

and gz0,↵ in L2(S2) such that

J↵(z; g
z

↵
)  inf

g2L2(S2)
J↵(z; g) + p(↵)

and

J0,↵(z; g
z

0,↵)  inf
g2L2(S2)

J0,↵(z; g) + p(↵)
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with 0 < p(↵)
↵

! 0 as ↵ ! 0. Application of Theorem 2.34 to F and F0 in combination
with the arguments at the end of the proof of Theorem 2.3 show that if z is in D0, then
vgz
↵

and vgz
0,↵

converge in L2(D0) to the same function v (the fact that it is the same func-
tion comes form the considerations above on the solutions of itp(n,D) and itp(n0, D0)).
Therefore, if z is in D0, then

(B0(g
z

↵
� gz0,↵), (g

z

↵
� gz0,↵))L2(S2)  CkH0g

z

↵
�H0g

z

0,↵k
2
L2(D0)

! 0 (2.63)

as ↵! 0. Let us set

A(g) := (Bg, g)L2(S2) and D(g, g0) := (B0(g � g0), g � g0)L2(S2)

and introduce the indicator function

I(g, g0) :=
1

A(g)(1 +A(g)D(g, g0)�1)
.

Theorem 2.35. Let z 2 R3. Then z 2 D1 if and only if lim
↵!0

I(gz
↵
, gz0,↵) > 0.

Proof. If z /2 D, then from Theorem 2.34 we get that A(gz
↵
) ! +1 as ↵ ! 0 and

therefore lim
↵!0

I(gz
↵
, gz0,↵) = 0.

Consider now the case of z 2 D0. Theorem 2.34 implies that A(gz
↵
) is bounded

and converges to (T]u0, u0)L2(D) where (u, u0) is the solution of itp(n,D) with �(·, z)
and @�

@⌫
(·, z) as boundary data. Since z 2 D0 and D0 \ D1 = ; then u0 = �(·, z) (and

u = 0) in D1. Consequently (T]u0, u0)L2(D) > 0. Combining this fact with (2.63) implies
lim
↵!0

I(gz
↵
, gz0,↵) = 0.

We now treat the case of z 2 D1. From Theorem 2.34 applied to F0, we get that
(B0gz0,↵, g

z

0,↵)L2(S2) is unbounded as ↵ ! 0, while the same theorem applied to F
implies that (B0gz↵, g

z

↵
)L2(S2) is bounded. Consequently D(gz

↵
, gz0,↵) is unbounded as

↵ ! 0. On the other hand, Theorem 2.34 implies that A(gz
↵
) is bounded. We then get

lim
↵!0

I(gz
↵
, gz0,↵) > 0, which finishes the proof.

Indeed, as for GLSM, in the case of a noisy operator B� such that kB�
�Bk  �kB�

k,
the indicator function has to be modified by replacing A(g) with

A
�(g) := (B�g, g)L2(S2) + �kB�

kkgk2
L2(S2),

while D(g) is simply replaced with

D
�(g, g0) := (B�

0(g � g0), g � g0)L2(S2).

For the analysis of the noisy case we refer the reader to [7] and [12].
We now give a two-dimensional numerical example due to Audibert illustrating the

performance of the indicator function described above. The medium configuration is de-
scribed in Figure 2.3 where the solid line indicates the boundary of D0 while the dashed
line indicates the boundary of D1. The index of refraction in D0 is n0 = 2 + 0.5i and the
index of refraction in D1 is equal to 3. The wave number is k = 2⇡. Figure 2.4 indicates
the reconstructions obtained using the GLSM algorithm with optimization as described in
the previous section for D0 and D using, respectively, F0 and F . The reconstruction of
D1 using directly F and F0 as suggested by Theorem 2.35 (i.e., without relying on the
reconstruction of D0 and D) is shown on the right of Figure 2.4 and clearly indicates that
the proposed indicator function provides satisfactory results. We again refer the reader to
[7] for a more extensive discussion of numerical issues related to this type of indicator
function and applications to imaging in a randomly fluctuating background.
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Figure 2.3. The medium configuration: D1 dashed line, D0 solid line.

Figure 2.4. Left: Reconstruction of D0 using GLSM. Middle: Reconstruction of D using
GLSM. Right: Reconstruction of D1 using differential measurements. The data are corrupted with
1% random noise.

2.6 Application of Sampling Methods to Anisotropic
Media

We now consider the inverse scattering problem associated with the model discussed in
Section 1.4 that corresponds to an anisotropic medium characterized by a 3⇥ 3 symmetric
matrix with L1(D)-entries such that

⇠ · <(A)⇠ � � |⇠|2 and ⇠ · =(A)⇠  0

for all ⇠ 2 C3 and almost every x 2 D and some constant � > 0. Here D is the support of
the inhomogeneity which is assumed to be a bounded Lipschitz domain such that R3

\D is
connected. The assumptions on n are the same as in Section 1.2. See Section 1.4.1 for the
definition of the far field operator and some basic properties associated with this operator.

Using Theorem 1.39, let us define for' 2 L2(D)3 and  2 L2(D) the unique function
w 2 H1

loc
(R3) satisfying

8
>><

>>:

r ·Arw + k2nw = r · (I �A)'+ k2(1� n) in R3,

lim
R!1

Z

|x|=R

|@w/@|x|� ik w|2 ds = 0 (2.64)
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so that if  (x) = eikd·x and ' = r , then w = us(·, d) and the far field pattern w1

of w coincides with u1(·, d). The Herglotz operator is now defined as H : L2(S2) !

L2(D)3 ⇥ L2(D) with
Hg := (rvg|D, vg|D), (2.65)

where the Herglotz wave function vg is defined by (1.31). Setting Hinc(D) to be the closure
of the range of H in L2(D)3 ⇥ L2(D) we then consider the operator G : Hinc(D) !

L2(S2) defined by
G(', ) := w1, (2.66)

where w1 is the far field pattern of w 2 H1
loc

(R3) satisfying (2.64). This ensures the first
factorization F = GH.

We now proceed with giving the main ingredients for the justification of the LSM. We
again rely on the solvability of the interior transmission problem. In the present setting this
problem is phrased as (u, u0) 2 H1(D)⇥H1(D) such that

8
>>>>><

>>>>>:

r · (Aru) + k2nu = 0 in D,

�u0 + k2u0 = 0 in D,

u� u0 = f on @D,

@u/@⌫A � @u0/@⌫ = h on @D

(2.67)

for given (f, h) 2 H1/2(@D) ⇥ H�1/2(@D), where ⌫ denotes the outward normal on
@D. Values of k for which this problem is not well-posed are referred to as transmission
eigenvalues. We refer the reader to the next two chapters for the analysis of this problem
and content ourselves here with the following assumption.

Assumption 2.5. We assume that the matrix A, the index n, and the wave number k are
such that (2.67) defines a well-posed problem.

Lemma 2.36. The operator H defined by (2.65) is compact and injective. Let Hinc(D) be
the closure of the range of H in L2(D)3 ⇥ L2(D). Then

Hinc(D) = {(', ) = (rv, v); v 2 H1(D); �v + k2v = 0 in D}.

Proof. The first part follows from the same arguments as in Lemma 2.1. For the second
part of the lemma, we also proceed similarly to the proof of Lemma 2.1. Set gHinc(D) :=
{(', ) = (rv, v); v 2 H1(D); �v + k2v = 0 in D}. Then obviously Hinc(D) ⇢

gHinc(D). To prove the theorem it is then sufficient to prove that H⇤ : L2(D)3⇥L2(D) !
L2(S2), the adjoint of the operator H, which is given by

H
⇤(', )(x̂) :=

Z

D

(�ikx̂ ·'(y) +  (y))e�ikx̂·y dy, (2.68)

is injective on gHinc(D). Let (', ) = (ru0, u0) with u0 2 H1(D) satisfying �u0 +
k2u0 = 0 in D. We set

u(x) :=

Z

D

(ry�(x, y) ·ru0(y) + �(x, y)u0(y)) dy, x 2 R3.
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From the regularity of volume potentials (Theorem 1.8), we infer that u 2 H1
loc

(R3) and
satisfies Z

R3

(�ru ·rv + k2uv) dx = �

Z

D

(ru0 ·rv + u0v) dx (2.69)

for all v 2 H1
loc

(R3) with compact support (together with the Sommerfeld radiation condi-
tion). Since by construction 4⇡u1 = H

⇤(', ), then H
⇤(', ) = 0 implies that u1 = 0

and therefore u = 0 in R3
\ D by Rellich’s Lemma. The regularity u 2 H1

loc
(R3) then

implies u 2 H1
0 (D). Equation (2.69) then gives
Z

D

(�ru ·rv + k2uv) dx = �

Z

D

(ru0 ·rv + u0v) dx

for all v 2 H1(D). Taking v = u0 implies

ku0k
2
H1(D) = �

Z

D

(�ru ·ru0 + k2uu0) dx = 0,

where the last equality follows from�u0 + k2u0 = 0 in D and u 2 H1
0 (D).

We remark that Hinc(D) can be identified with H1
inc(D) ⇢ H1(D) defined by

H1
inc(D) := {v 2 H1(D); �v + k2v = 0 in D}

through the isomorphism

I : H1
inc(D) ! Hinc(D); I(v) = (rv, v).

Setting, for g 2 L2(S2),
H

1(g) := I
�1

H(g) = v|D,

we also have the following lemma as an immediate corollary of Lemma 2.36.

Lemma 2.37. The operator H1 : L2(S2) ! H1
inc(D) ⇢ H1(D) is compact and injective

with dense range.

Setting
G1 = GI, (2.70)

one observes that F = GH = G1
H

1 and the subsequent analysis can indeed be done with
either factorization. We prefer the first one since it leads to explicit expressions for the
middle operator in the second factorization introduced below. We now state the following
reciprocity lemma, which can be proved in exactly the same way as in Lemma 2.2.

Lemma 2.38. Let ('0, 0) and ('1, 1) be as in L2(D)3 ⇥ L2(D), and let w0 and
w1 2 H1

loc
(R3) be the corresponding solutions satisfying (2.64). Then

Z

D

((I�A)rw0 ·'1�k2(1�n)w0 1) dx =

Z

D

((I�A)rw1 ·'0�k2(1�n)w1 0) dx.

The following theorem gives one of the main ingredients for the justification of LSM
and GLSM.
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Theorem 2.39. Assume that Assumption 2.5 holds. Then the operator G : Hinc(D) !

L2(S2) defined by (2.66) is injective with dense range. Moreover, �1(·, z) 2 R(G) if and
only if z 2 D. The same holds for G1 : H1

inc(D) ! L2(S2) defined by (2.70).

Proof. We prove the result for G1. The result for G then directly follows from (2.70). The
proof is very similar to the proof of Theorem 2.3, and we give here a short outline. Let
(', ) = I(u0) with u0 2 H1

inc(D) and w satisfying (2.2). From (1.56) we get

w1(x̂) = �
1

4⇡

Z

D

�
ikx̂ · (I �A)r(u0 + w) + k2(1� n)(u0 + w)

�
e�ikx̂·y dy.

It is then easy to deduce from Lemma 2.38 that

(G1(H1'), g)L2(S2) = (G1(H1g),')L2(S2) for all g,' 2 L2(S2). (2.71)

Using this identity, the remainder of the proof can be copied line by line from the proof
of Theorem 2.3 after identity (2.14), replacing G and H by G1 and H

1, respectively, and
substituting references to the interior transmission problem (2.6) with references to the
interior transmission problem (2.67) with appropriate changes of solution spaces.

We proceed now with the second factorization of the far field operator. From (1.56) we
obtain

G(', ) = �
1

4⇡

Z

D

�
ikx̂ · (I �A)('+rw) + k2(1� n)( + w)

�
e�ikx̂·y dy.

Using (2.68) we get that G = H
⇤T , where T : L3(D) ⇥ L2(D) ! L3(D) ⇥ L2(D) is

defined by

T (', ) := �
1

4⇡

�
(A� I)('+rw), k2(1� n)( + w)

�
(2.72)

with w being the solution of (2.64). One then ends up with the second factorization

F = H
⇤TH. (2.73)

We now give the final additional theorem needed for GLSM and the inf-criterion, which is
the following coercivity property of the operator T .

Assumption 2.6. We assume that n 2 L1(R3), =(n) � 0, A 2 L1(R3)6, and =(A)  0.
Furthermore, we assume that either of the following conditions applies:

• <(A� I)� ↵=(A) is positive definite on D for some constant ↵ � 0.

• <(A) is positive definite on D and there exist constants ↵ � 0, 0 < ⌘  1, and
✓ > 0 such that

(I�<(A))X ·X+(1�⌘)<(A)Y ·Y �↵=(A)(X+Y ) ·(X+Y ) � ✓|X|
2 (2.74)

on D for all X and Y in C3.

Theorem 2.40. Assume that Assumptions 2.5 and 2.6 hold. Then the operator T defined
by (2.72) satisfies the coercivity property

|(T I(v), I(v))L2(D)4 | � ✓kvk2
H1(D) for all v 2 H1

inc(D) (2.75)
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for some positive constant ✓. This implies in particular that T satisfies (2.22) with Y =
Y ⇤ = L3(D)⇥ L2(D) and the operator H = H defined by (2.65).

Proof. With ( , ) denoting the L2(D)4 scalar product, for (', ) = I(v), v 2 H1
inc(D),

and w 2 H1
loc

(R3) a solution of (2.64), we have that

(T I(v), I(v)) = �
1

4⇡

Z

D

((A� I)r(v + w) ·rv + k2(1� n)(v + w)v) dx. (2.76)

From the variational formulation of (2.64) (see, for instance, (1.55)) with test function
equal to w and BR a ball of radius R containing D, we get that

Z

D

((A� I)r(v + w) ·rw + k2(1� n)(v + w)w) dx

= �

Z

BR

(|rw|2 � k2|w|2) dx+

Z

|x|=R

@w

@r
w ds. (2.77)

We recall that, due to the Sommerfeld radiation condition,

lim
R!1

=

0

B@
Z

|x|=R

@w

@r
w ds

1

CA = k

Z

S2
|w1|

2ds.

Therefore, taking the imaginary part and letting R ! 1 yields

=

Z

D

((A� I)r(v + w) ·rw + k2(1� n)(v + w)w) dx = k

Z

S2
|w1|

2ds.

Consequently, using the identities

(v + w)v = |v + w|2 � (v + w)w,

(A� I)r(v + w) ·rv = (A� I)r(v + w) ·r(v + w)� (A� I)r(v + w) ·rw

in (2.76) and taking the imaginary part implies (the general form of (2.35))

4⇡=(T I(v), I(v)) =

Z

D

�=(A)r(v + w) ·r(v + w)dx

+ k2
Z

D

=(n)|v + w|2dx+ k

Z

S2
|w1|

2ds. (2.78)

We are now in position to prove the desired coercivity property using a contradiction argu-
ment. Assume, for instance, the existence of a sequence v` 2 R(H) such that

kv`kH1(D) = 1 and |(T I(v`), I(v`))| ! 0 as `! 1.

We denote by w` 2 H1
loc

(R3) the solution of (2.64) with (', ) = I(v`). Elliptic reg-
ularity implies that kw`kH2(B\D) is bounded uniformly with respect to ` for all bounded
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domains B containing D. Then up to changing the initial sequence, one can assume that v`
weakly converges to some v in H1(D) and w` converges weakly in H1

loc
(R3)\H2

loc
(R3

\

D) to some w 2 H1
loc

(R3)\H2
loc

(R3
\D). It is then easily seen that w and (', ) = I(v)

satisfy (2.64), and
�v + k2v = 0 in D. (2.79)

Identity (2.78) and |(T I(v`), I(v`))| ! 0 imply that w`
1

! 0 in L2(S2) and therefore
w1 = 0. Rellich’s Lemma implies w = 0 outside D. Consequently, u = w + v 2

H1(D) and v 2 H1(D) form a solution to the interior transmission problem (2.67) with
f = g = 0. This implies that w = v = 0. Identity (2.76) applied to v` and w`, the fact that
|(T I(v`), I(v`))| ! 0, and the Rellich compact embedding theorem imply that

Z

D

(A� I)r(v` + w`) ·rv`dx ! 0 (2.80)

as `! 1. From (2.77) applied to v` and w` and the Rellich compact embedding theorem
we get Z

D

(A� I)r(v` + w`) ·rw` +

Z

BR

|rw`|
2dx ! 0 (2.81)

as `! 1. We now consider two separate cases. Consider first the case when <(A� I)�
↵=(A) is positive definite on D for some constant ↵ � 0. Taking the sum of (2.80) and
(2.81) we get

Z

D

(A� I)r(v` + w`) ·r(v` + w`)dx+

Z

BR

|rw`|
2dx ! 0 (2.82)

as ` ! 1. On the other hand, using the assumption on A (after adding and subtracting
↵=(A) to <(A� I)), we easily observe that

✓

0

@
Z

D

|r(v` + w`)|
2dx+

Z

BR

|rw`|
2dx

1

A



������

Z

D

(A� I)r(v` + w`) ·r(v` + w`)dx+

Z

BR

|rw`|
2

������
dx

for some positive constant ✓ independent of `. We then obtain using the triangle inequality
that krv`kL2(D) ! 0. Combined with the Rellich compact embedding theorem, this
implies that v` ! 0 strongly in H1(D), which gives a contradiction.

Consider now the case when (2.74) holds and <(A) is positive definite on D. Taking
the difference between (2.81) and (2.80) yields

Z

D

(I �A)rv` ·rv`dx+

Z

BR

Arw` ·rw`dx

+

Z

D

((I �A)rw` ·r(v` + w`)� (I �A)rw` ·r(v` + w`)) dx ! 0
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and taking the real part implies

Z

D

(I �<(A))rv` ·rv`dx+

Z

BR

<(A)rw` ·rw`dx

� i

Z

D

(=(A)rw` ·r(v` + w`)�=(A)rw` ·r(v` + w`)) dx ! 0.

Taking the imaginary part of (2.82) implies that

�

Z

D

=(A)r(v` + w`) ·r(v` + w`)dx ! 0.

Now let � be a positive parameter that will be fixed later. The last two identities give

Z

D

(I�<(A))rv`·rv`dx+

Z

D

<(A)rw`·rw`dx��

Z

D

=(A)r(v`+w`)·r(v`+w`)dx

� i

Z

D

(=(A)rw` ·r(v` + w`)�=(A)rw` ·r(v` + w`)) dx ! 0.

Let us denote by M(rv`,rw`) the term under the integral over D in this identity. We
observe that

M(X,Y ) = (I �<(A))X ·X + (1� ⌘)<(A)Y · Y � �=(A)(X + Y ) · (X + Y )

+ |(⌘<(A))1/2Y + i(⌘<(A))�1/2
=(A)(X + Y )|2 � |(⌘<(A))�1/2

=(A)(X + Y )|2.

Choosing
� > ↵+ sup

x2D

k=(A)(x)k/(⌘k<(A)(x)k)

we obtain from assumption (2.74) that

M(X,Y ) � ✓|X|
2.

This implies that krv`kL2(D) ! 0 and therefore yields a contradiction as in the first
case.

In view of Theorems 2.40 and 2.39 we now can state the following application of
Corollary 2.8 and Theorem 2.14.

Theorem 2.41. Assume that Assumptions 2.5 and 2.6 hold. Then the results of Theorems
2.4, 2.18, and 2.19 hold true in the present case.

For the factorization method, a splitting of the real part of the operator T into a coercive
real operator and a compact operator is needed.

Let BR be a ball of radius R containing D. With the notation of the proof of The-
orem 2.40, if w 2 H1

loc
(R3) (respectively, w0

2 H1
loc

(R3)) is the solution of 2.64 with
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(', ) = I(v) (respectively, (', ) = I(v0)) and v 2 H1
inc(D) (respectively, v0 2

H1
inc(D)), then

(T I(v), I(v0)) = �
1

4⇡

Z

D

((A� I)r(v + w) ·rv0 + k2(1� n)(v + w)v0) dx (2.83)

and from the variational formulation of (2.64) (see, for instance, (1.55)) with test function
equal to w0,

Z

D

((A� I)r(v + w) ·rw0 + k2(1� n)(v + w)w0) dx

+

Z

BR

(rw ·rw0
� k2ww0) dx�

Z

|x|=R

@w

@r
w0 ds = 0. (2.84)

Consequently, adding (2.84) to �4⇡ times (2.83) gives

� 4⇡(T I(v), I(v0)) =

Z

D

(A� I)r(v + w) · (rv0 +rw0)dx+

Z

BR

rw ·rw0dx

+

Z

D

k2(1� n)(v + w)(v0 + w0) dx�

Z

BR

k2ww0dx�

Z

|x|=R

@w

@r
w0 ds. (2.85)

Adding (2.84) to 4⇡ times (2.83) implies

4⇡(T I(v), I(v0)) = �

Z

D

(A� I)r(v + w) · (rv0 �rw0)dx�

Z

BR

rw ·rw0dx

�

Z

D

k2(1� n)(v + w)(v0 � w0) dx+

Z

BR

k2ww0dx+

Z

|x|=R

@w

@r
w0 ds

and rearranging the terms on the right-hand side we get

4⇡(T I(v), I(v0)) =

Z

D

(I �A)rv ·rv0dx+

Z

BR

Arw ·rw0dx

+

Z

D

((I �A)rw ·rv0 � (I �A)rw0
·rv) dx

�

Z

D

k2(1� n)(v + w)(v0 � w0) dx+

Z

BR

k2ww0dx+

Z

|x|=R

@w

@r
w0 ds. (2.86)

Let us introduce the operators T±

0 : L2(D)3 ⇥ L2(D) ! L2(D)3 ⇥ L2(D) such that

�4⇡(T�

0 I(v), I(v0)) =

Z

D

(A�I)r(v+w)·(rv0+rw0)dx+

Z

BR

rw·rw0dx+

Z

D

vv0dx

(2.87)
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and

4⇡(T+
0 I(v), I(v0)) =

Z

D

(I �A)rv ·rv0dx+

Z

BR

Arw ·rw0dx

+

Z

D

((I �A)rw ·rv0 � (I �A)rw0
·rv) dx+

Z

D

vv0dx. (2.88)

Then, from the fact that w,w0
2 H2

loc
(R3

\D) and the Rellich compact embedding theo-
rems, one easily concludes that

T � T±

0 : H1
inc(D) ! L2(D)3 ⇥ L2(D)

is compact. We already see from the expression of T+
0 that the case of I � A positive

definite on D is more delicate to analyze since T+
0 is not self-adjoint, nor can it be writ-

ten as the sum of self-adjoint and compact operators. For instance, one cannot apply the
(F ⇤F )1/4 method in this case. However, in the case when A is real and A � I is positive
definite on D we can state the following.

Theorem 2.42. Assume that A and n are real valued, A� I is positive definite on D, and
k is not a transmission eigenvalue. Then z 2 D if and only if �1(·, z) is in the range of
(F ⇤F )1/4.

Proof. We recall that in this case the operator F is normal (Theorem 1.43). One easily
sees from (2.87) that T�

0 is self-adjoint and coercive on H1
inc(D). Moreover, since k is not

a transmission eigenvalue, we have that F is injective with dense range, and from the first
part of the proof of Theorem 2.40 we get that =(T ) is positive. We then conclude the result
using Theorem 2.24 and Lemma 2.43

Lemma 2.43. For z 2 R3 we have that z 2 D if and only if �z is in the range of H⇤.

Proof. This lemma is a simple consequence of Lemma 2.21 since H
⇤(0, ·) coincides with

the operator H⇤ in Lemma 2.21.

We now consider the F] method. Once again, the case A � I nonnegative can be
treated in a similar way as in the case A = I . With the notation of Section 2.4.4 we have
the following theorem.

Theorem 2.44. Assume that there exists ✓ 2 [�⇡/2, 0] such that <(ei✓(A� I)) is positive
definite in D. Assume in addition that k is not a transmission eigenvalue. Then z 2 D if
and only if �1(·, z) is in the range of (F ✓

]
)1/2.

Proof. The case ✓ = �⇡/2 is the case where =(A) is positive definite in D. Then using
(2.35) one gets that T ✓ = =(T ) satisfies Assumption 2.4 with Y = Y ⇤ = L2(D)4. For the
case ✓ 6= �⇡/2, we get from (2.87) that the operator <(ei✓T�

0 ) is coercive on H1
inc(D).

As in the proof of Lemma 2.25, =(T ✓) is injective on the range R(H) since k is not a
transmission eigenvalue. Assumption 2.4 is then verified.

In the case A� I nonpositive we content ourselves with the following result, assuming
that the imaginary part is not too large.
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Theorem 2.45. Assume that k is not a transmission eigenvalue, <(I�A)⇠ · ⇠̄ � ↵|⇠|2 and
<(A)⇠ · ⇠̄ � �|⇠|2 for all ⇠ 2 C3 in D. Assume in addition that k=(A)kL1(D) <

p
↵�.

Then z 2 D if and only if �1(·, z) is in the range of (F])1/2.

Proof. We observe from (2.88) that

4⇡<(T+
0 I(v), I(v)) =

Z

D

<(I �A)rv ·rvdx+

Z

BR

<(A)rw ·rwdx

� i

Z

D

(=(A)rw ·rv �=(A)rw ·rv) dx+

Z

D

vvdx.

The assumptions on A then ensure that <(T+
0 ) is coercive on H1

inc(D). We then conclude
as in the proof of Theorem 2.44.

The conditions of Theorem 2.44 can be weakened but at the expense of changing the
expression for F] (adding a sufficiently large imaginary part). This is left as an exercise to
the reader.



Chapter 3

The Interior
Transmission Problem

The interior transmission problem, as already mentioned in Chapter 2, plays an essential
role in inverse scattering theory for inhomogeneous media. It is a boundary value problem
for a coupled pair of partial differential equations in a bounded domain which corresponds
to the support of the scatterer. This boundary value problem is not elliptic in the sense of
Agmon–Douglas–Nirenberg and hence its study calls for new techniques. The homoge-
neous form of the interior transmission problem is referred to as the transmission eigen-
value problem and the corresponding eigenvalues as transmission eigenvalues. Typical
concerns associated with these problems are (1) the Fredholm property and solvability of
the interior transmission problems, (2) the discreteness of the transmission eigenvalues, (3)
the existence of transmission eigenvalues, and (4) the determination of transmission eigen-
values from scattering data and the relationship between them and the material properties
of the inhomogeneous medium. All these questions are at the core of inverse scattering the-
ory. This chapter is concerned with the Fredholm property and solvability of the interior
transmission problem corresponding to different kinds of inhomogeneous media.

We discuss in Section 3.1 the isotropic problem and more specifically the simple case
where the contrast n � 1 does not change sign in D. In this case a formulation of the
problem as a fourth order partial differential equation can be obtained and then studied
variationally. This approach that was first employed in [154] is also very convenient for
the study of the existence of transmission eigenvalues, which is the subject of the next
chapter. We then discuss in Section 3.1.2 the more delicate case where n� 1 can vanish in
a region strictly included in D. In this case, one can still derive a variational formulation
similar to the previous case by including the equations in the region n = 1 as a constraint
in the variational space. This section can be skipped in a first reading. A more general
problem is discussed in Section 3.1.3 where the contrast may change sign in a domain
strictly contained in D. This case was first investigated in [159] (see also the approach
in [124] for smooth coefficients). Our discussion follows the approach due to Kirsch in
[111] where the same results as in [159] are obtained for a real valued refractive index by
using a variational approach. Contrary to the case with voids, this approach cannot fit into
the analytical framework developed in the next chapter to study existence of transmission
eigenvalues. We introduce in Section 3.1.4 an alternative approach to study the interior
transmission problem (3.1) based on boundary integral equations. Although the boundary
integral method recovers the same type of solvability results discussed in Section 3.1.3 we
believe that it merits discussion in this monograph for its mathematical and computational
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interest. Our presentation closely follows [79]. This section can also be skipped in a first
reading.

The anisotropic problem is considered in Section 3.2. When a contrast is present in the
main operator, the functional framework for the interior transmission problem becomes
different, and hence a different approach is used to treat this case. As for the isotropic
problem, we first consider the simpler case where a contrast sign is the same in all of D
as presented in [31] and [45]. This configuration is treated in Section 3.2.1 first in the case
n = 1 and second in the case n 6= 1, where the functional framework is different. The
case where the anisotropic contrast changes sign inside D is treated using the T-coercivity
approach as in [24] and [60]. We also refer the reader to [125] for methods based on elliptic
theory for partial differential equations.

The differences in the treatment of the isotropic and anisotropic cases clearly indicate
that the study of the problem where both configurations are mixed on the boundary is more
difficult and would require new approaches.

3.1 Solvability of the Interior Transmission Problem for
Isotropic Media

Let D ⇢ R3 be the support of an isotropic inhomogeneous media with refractive index
n 2 L1(D) such that <(n) � n0 > 0 and =(n) � 0. Throughout this chapter, we
assume that @D is Lipschitz unless otherwise indicated. The interior transmission problem
corresponding to the scattering problem for this isotropic inhomogeneous medium was
already introduced in (2.6). Here we recall it for the reader’s convenience: Given f 2

H
3
2 (@D) and h 2 H

1
2 (@D) find w 2 L2(D), v 2 L2(D) with w � v 2 H2(D) such that

8
>>>>><

>>>>>:

�w + k2nw = 0 in D,

�v + k2v = 0 in D,

w � v = f on @D,

@w

@⌫
�
@v

@⌫
= h on @D,

(3.1)

where the equations for w and v are understood in the distributional sense and the boundary
conditions are well defined for the difference w � v.

Definition 3.1. Values of k 2 C for which the homogeneous interior transmission problem
8
>>>>><

>>>>>:

�w + k2nw = 0 in D,

�v + k2v = 0 in D,

w = v on @D,

@w

@⌫
=
@v

@⌫
on @D

(3.2)

has nontrivial solutions w 2 L2(D) and v 2 L2(D), such that w� v 2 H2
0 (D), are called

transmission eigenvalues.

At first glance it seems unclear why we are not formulating the problem in the usual
energy space H1(D). However, there is a simple observation which indicates that the
interior transmission problem does not fit into the standard framework of partial differential
equations of the second order. For simplicity assume that f = 0. Then we multiply the
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first equation by a test function ' and the second equation by a test function  such that
' =  on @D, integrate by parts, and use the boundary condition to obtain

�

Z

D

rw ·r' dx+

Z

D

rv ·r dx+ k2
Z

D

(nw'� v ) dx = �

Z

@D

h'. (3.3)

Obviously, this cannot be a compact perturbation of a coercive antilinear form due to the
fact that the norm of the gradient of w and v appear with different signs. Hence in the
isotropic case the standard variational approach for elliptic equations does not apply to the
above variational equation in the energy space H1(D). We remark that if there is contrast
in the main operator (i.e., in the anisotropic case that will be discussed in Section 3.2), the
corresponding H1(D) variational formulation leads to a compact perturbation of a coercive
problem under some kind of sign control on the contrast. Furthermore, it is easy to find a
function in L2(D) with its gradient not in L2(D), and this function satisfies both equations
in (3.1) with right-hand sides and zero boundary data, meaning that in general solutions to
(3.1) can simply be in L2(D). As will become clear as we proceed with our discussion, the
interior transmission problem (3.1) essentially depends on the contrast n�1 of the medium
and different analytical techniques are needed to study it depending on the assumptions on
n� 1.

Given the structure of the boundary conditions in (3.1), it makes sense to introduce the
difference u := w � v as a new unknown and try to obtain an equation for u. Indeed,
subtracting the second equation from the first, we have that

�u+ k2nu = �k2(n� 1)v in D, (3.4)

which should be considered together with

�v + k2v = 0 in D (3.5)

and the boundary conditions

u = f and
@u

@⌫
= h on @D. (3.6)

To eliminate v we should be able to divide by n�1 and then apply the Helmholtz operator.
This motivates us to consider in the following the case when the division by n � 1 is
possible, i.e., n� 1 is bounded away from zero.

3.1.1 The Case of One Sign Contrast
We start by assuming that the real part of the contrast n � 1 does not change sign in D,
more specifically, either <(n(x)) � 1 � ↵ > 0 or 1 � <(n(x)) � ↵ > 0 for almost all
x 2 D and some ↵ > 0. Letting

n⇤ = inf
D

<(n) and n⇤ = sup
D

<(n), (3.7)

the above assumption means that either n⇤ > 1 or 0 < n⇤ < 1. Under this assumption it
is now possible to write (3.1) as a boundary value problem for the fourth order equation

�
�+ k2n

� 1

n� 1

�
�+ k2

�
u = 0 in D, (3.8)

u = f and
@u

@⌫
= h on @D, (3.9)



80 Chapter 3. The Interior Transmission Problem

where it is assumed that u := w � v 2 H2(D). The functions v and w are related to u
through

v = �
1

k2(n� 1)
(�u+ k2nu) and w = �

1

k2(n� 1)
(�u+ k2u). (3.10)

This fourth order formulation of the interior transmission problem was first introduced in
[154] and later used in [44], [46], and [144] (see also [47]). For given f 2 H

3
2 (@D) and

h 2 H
1
2 (@D) let ✓ 2 H2(D) be a lifting function [131] such that ✓ = f and @✓/@⌫ = h

on @D and k✓kH2(D)  c
�
kfk

H
3
2 (@D)

+ khk
H

1
2 (@D)

�
for some c > 0. Then letting

u0 := u � ✓ 2 H2
0 (D), we can write (3.8)–(3.9) as an equivalent variational problem for

u0: Find a function u0 2 H2
0 (D) such that

Z

D

1

n� 1
(�u0+k2u0)(� +k2n ) dx =

Z

D

1

n� 1
(�✓+k2✓)(� +k2n ) dx (3.11)

for all  2 H2
0 (D). Obviously,

F :  7!

Z

D

1

n� 1
(�✓ + k2✓)(� + k2n ) dx

is a bounded antilinear functional on H2
0 (D). Let ` 2 H2

0 (D) be such that F ( ) =
(`, )

H2(D) for all  2 H2
0 (D), which is uniquely provided by the Riesz representation

theorem and satisfies

k`kH2(D)  c1k✓kH2(D)  c2
⇣
kfk

H
3
2 (@D)

+ khk
H

1
2 (@D)

⌘
. (3.12)

Problem (3.11), and hence the original interior transmission problem (3.1), is equivalent to
the following operator equation in H2

0 (D) for u0,

Tu0 � k2T1u0 + k4T2u0 = `, (3.13)

where T :H2
0 (D) ! H2

0 (D), T1 :H2
0 (D) ! H2

0 (D), and T2 : H2
0 (D) ! H2

0 (D) are the
bounded linear operators defined by the mean of the Riesz representation theorem as

(Tu, )
H2(D) =

Z

D

1

n� 1
�u� dx for all u, 2 H2

0 (D), (3.14)

(T1u, )H2(D) = �

Z

D

1

n� 1
u � dx�

Z

D

n

n� 1
�u dx (3.15)

= �

Z

D

1

n� 1

�
�u + u � 

�
dx+

Z

D

ru ·r dx for all u, 2 H2
0 (D),

(T2u, )H2(D) =

Z

D

n

n� 1
u dx for all u, 2 H2

0 (D). (3.16)

The operator T in the case of n⇤ > 1 (or �T in the case of 0 < n⇤ < 1) is coercive since
when 1 < n⇤  <(n)  n⇤

< (Tu, u)
H2(D) �

1

n⇤ � 1
(�u,�u)L2(D) � ckukH2(D)
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(with a similar calculation when 0 < n⇤ < 1), where we have used that, for u 2 H2
0 (D),

kukH2(D) is equivalent to k�ukL2(D) [131]. Furthermore, the bounded linear operators
T1 and T2 are compact, which is a consequence of the compact embedding of H2

0 (D) in
L2(D). For the reader’s convenience we prove the compactness of T1. Indeed for the part
T(1)
1 of the operator T1 given by the first integral in (3.15) we have

kT(1)
1 ukH2 = sup

0 6= 2H2

1

k kH2

������

Z

D

1

n� 1
u � dx

������
 CkukL2 ,

and hence for a sequence {un} bounded in H2(D), thanks to the compact embedding
of H2

0 (D) in L2(D), we obtain that a subsequence of
�
T(1)
1 un

 
converges strongly in

H2(D). The second integral in (3.15) yields the same result (consider the adjoint). Hence
we can conclude that T1 is compact. Exactly the same reasoning holds for T2. Thus we can
conclude that the Fredholm alternative can be applied to (3.13); in particular, uniqueness
implies the existence of a unique solution. The homogeneous equation

(T� k2T1 + k4T2)u = 0 (3.17)

is equivalent to the transmission eigenvalue problem (see Definition 3.1).
We have now proven the following theorem concerning the solvability of the interior

transmission problem (3.1) in the case when n 2 L1(D), such that <(n) � n0 > 0 and
=(n) � 0, and either n⇤ > 1 or n⇤ < 1, where n⇤ and n⇤ are given by (3.7).

Theorem 3.2. Assume that k 2 C is not a transmission eigenvalue. Then for any given
f 2 H

3
2 (@D) and h 2 H

1
2 (@D) there exists a unique solution of the interior transmission

problem (3.1) such that w 2 L2(D), v 2 L2(D), u := w � v 2 H2(D), and

kwkL2(D) + kvkL2(D)  C
⇣
kfk

H
3
2 (@D)

+ khk
H

1
2 (@D)

⌘

for some positive constant C > 0, with a similar estimate for kukH2(D).

Theorem 3.3. If n 2 L1(D) is such that =(n) > 0 almost everywhere in region D0 ⇢ D
with positive measure, then there are no real transmission eigenvalues.

Proof. Assume that w and v solve the transmission eigenvalue problem corresponding to
a real transmission eigenvalue k, i.e., u := w � v 2 H2

0 (D) solves (3.11) with ✓ = 0.
Taking  = u in (3.11) and regrouping the terms yields

Z

D

1

n� 1
|�u+ k2u|2 dx+ k4

Z

D

|u|2 dx� k2
Z

D

|ru|2 dx = 0.

Since =(1/(n � 1)) < 0 in D0 and all the terms in the above equation are real except for
the first one, by taking the imaginary part we obtain that �u+ k2u = 0 in D0 and hence,
from (3.10), w = 0 in D0. By Weyl’s lemma w 2 H2

loc
(D). The unique continuation

principle implies that w = 0 in D. Therefore since w � v = u we have that the Cauchy
datum of v = �u is zero on @D, which finally implies that also v = 0 in D. Hence k real
is not a transmission eigenvalue.

Theorem 3.4. Assume that n 2 L1(D) such that <(n) � n0 > 0, =(n) � 0, and
either n⇤ > 1 or n⇤ < 1, where n⇤ and n⇤ are given by (3.7). Then the set of transmission
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eigenvalues k 2 C is discrete (possibly empty) with +1 as the only possible accumula-
tion point. The multiplicity of the eigenvalues is finite with finite-dimensional generalized
eigenspaces.

Proof. As discussed above, k 2 C is a transmission eigenvalue if and only if

Tu� ⌧T1u+ ⌧2T2u = 0 (3.18)

has nonzero solution u 2 H2
0 (D), where T, T1, and T2 are defined by (3.14), (3.15), and

(3.16), respectively, where we set ⌧ := k2.
Assume first that =(n) > 0 almost everywhere in a region D0 ⇢ D with positive

measure. We have that T is coercive, and ⌧T1� ⌧2T2 is compact and depends analytically
on ⌧ 2 C. From Theorem 3.3 we have that the kernel of T� ⌧T1 + ⌧2T2 is trivial for real
⌧ > 0. Now the Analytic Fredholm Theorem 1.12 implies that the kernel of T�⌧T1+⌧2T2

is trivial for all ⌧ 2 C except for a discrete set of ⌧ 2 C with infinity as the only possible
accumulation point, which proves the statement of the theorem in this case.

Next if =(n) = 0 in D, then the coercive operator T, compact operator T1, and non-
negative compact operator T2 are all self-adjoint. Therefore T 1

2 is positive and T�
1
2 exists.

Hence we have that (3.18) becomes

u� ⌧K1u+ ⌧2K2u = 0,

where the compact operators K1 : H2
0 (D) ! H2

0 (D) and K2 : H2
0 (D) ! H2

0 (D) are
given by K1 = T�1/2T1T�1/2 and K2 = T�1/2T2T�1/2. Now noting that K2 is nonneg-
ative, we set U :=

�
u, ⌧K1/2

2 u
�

to obtain
✓
K�

1

⌧
I

◆
U = 0, U 2 H2

0 (D)⇥H2
0 (D)

with the compact operator K : H2
0 (D)⇥H2

0 (D) ! H2
0 (D)⇥H2

0 (D) given by

K :=

 
K1 �K1/2

2

K1/2
2 0

!
.

Then the theorem follows from the spectral properties of compact operators in Hilbert
spaces.

Theorems 3.2 and 3.4 state that the interior transmission problem is well-posed for all
k 2 C except for at most a countable discrete set of wave numbers k with infinity as the
only possible accumulation point.

3.1.2 Variational Approach for Media with Voids
The above analysis can be extended to inhomogeneous media with voids, i.e., the inho-
mogeneity D ⇢ R3 contains regions D0 ⇢ D which can possibly be multiply connected
such that D \D0 is connected, for which n(x) = 1. For the purpose of discussion in this
section we still assume that the real part of n(x)� 1 is bounded away from zero and keeps
the same sign in D \D0 and for technical reasons here we will assume that both @D and
@D0 are C2-smooth surfaces with ⌫ the unit normal vector directed outwards to D and
D0 (see Figure 3.1). We will denote by n⇤ and n⇤ the essential infimum and supremum
of n 2 L1(D \D0), i.e., given by (3.7), where D is replaced by D \D0. Here we will
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Figure 3.1. Configuration of the media with voids.

present an approach introduced in [33] (see [78] for Maxwell’s equations). In the next
section we present a more general approach to study the interior transmission problem for
media with changing sign contrast which includes the case of interior voids. The analytical
framework developed in this section will be used in the next chapter to prove the existence
of real transmission eigenvalues as well as estimates for them. Similarly to Section 3.1.1,
since 1/(n� 1) is bounded in D \D0, we obtain for u := w � v

�
�+ k2n

� 1

n� 1

�
�+ k2

�
u = 0 in D \D0, (3.19)

together with

u = f and
@u

@⌫
= h on @D. (3.20)

Inside D0 one has �
�+ k2

�
u = 0 in D0 (3.21)

with the continuity of the Cauchy data across @D0

u+ = u� and
@u+

@⌫
=
@u�

@⌫
, (3.22)

where, for a generic function �,

�±(x) = lim
h!0+

�(x± h⌫x) and
@�±(x)

@⌫x
= lim

h!0+
⌫x ·r�(x± h⌫x) (3.23)

for x 2 @D0. The latter equations for u are not sufficient to define w and v inside @D0,
and therefore one needs to add an additional unknown inside D0, for instance, the function
w that satisfies �

�+ k2
�
w = 0 in D0 (3.24)

with the continuity of the Cauchy data across @D0 that can be written as
✓

�1

k2(n� 1)

�
�+ k2

�
u

◆+

= w� and (3.25)

@

@⌫

✓
�1

k2(n� 1)

�
�+ k2

�
u

◆+

=
@w�

@⌫
.

We note that (3.25) is interpreted as equalities between functions in H�
1
2 (@D0) and

H�
3
2 (@D0), respectively.
It is easily verified that the solutions u 2 H2(D) and w 2 L2(D0) to (3.19)–(3.25)

equivalently define a weak solution w and v to (3.1) by

w :=
�1

k2(n� 1)

�
�+ k2

�
u in D \D0 and v := w � u in D. (3.26)



84 Chapter 3. The Interior Transmission Problem

We establish existence and uniqueness results for the solution of the above interior trans-
mission problem using a variational approach. The main difficulty in obtaining the varia-
tional formulation is to properly choose the function space that correctly handles the trans-
mission conditions (3.22) and (3.25). More precisely, classical variational formulations
of equations (3.19), (3.21), and (3.24) would require u 2 H2(D \D0) \ H1(D) and
v 2 H1(D0) but this regularity is not sufficient to handle all boundary terms in (3.22) and
(3.25). The proposed approach in the following treats equation (3.19) variationally and
includes (3.21)–(3.22) in the variational space. More precisely we define

V (D,D0, k) := {u 2 H2(D) such that�u+ k2u = 0 in D0}, (3.27)

which is a Hilbert space equipped with the H2(D) scalar product and look for the solution
u in V (D,D0, k). We also consider the closed subspace

V0(D,D0, k) := {u 2 H2
0 (D) such that�u+ k2u = 0 in D0}. (3.28)

Let u 2 V (D,D0, k) and consider a test function  2 V0(D,D0, k). For the sake of
presentation we assume that u and  are regular enough to justify the various integration
by parts and then use a denseness argument. Multiplying (3.19) by  and integrating by
parts we obtain

0 =

Z

D\D0

�
�+ k2n

� 1

n� 1

�
�+ k2

�
u  ̄ dx (3.29)

=

Z

D\D0

✓�
�+ k2

� 1

n� 1

�
�+ k2

�
u+ k2(�+ k2)u

◆
 ̄ dx

=

Z

D\D0

1

n� 1

�
�+ k2

�
u
�
�+ k2

�
 ̄ dx+ k4

Z

D\D0

u  ̄ dx+ k2
Z

D\D0

�u  ̄ dx

+

Z

@D0

1

n� 1

�
�+ k2

�
u
@ ̄

@⌫
ds�

Z

@D0

@

@⌫

✓
1

n� 1

�
�+ k2

�
u

◆
 ̄ ds.

Using the fact that  ̄ 2 V0(D,D0, k), the boundary conditions (3.25), and equation (3.24)
we obtain that

Z

@D0

1

n� 1

�
�+ k2

�
u
@ ̄

@⌫
ds�

Z

@D0

@

@⌫

✓
1

n� 1

�
�+ k2

�
u

◆
 ̄ ds = 0. (3.30)

Therefore we finally have that
Z

D\D0

1

n� 1

�
�+ k2

�
u
�
�+ k2

�
 ̄ dx+ k2

Z

D\D0

(�u+ k2u)  ̄ dx = 0, (3.31)

which is required to be valid for all  2 V0(D,D0, k). For given f 2 H
3
2 (@D) and

h 2 H
1
2 (@D) let ✓ 2 H2(D) be the lifting function such that ✓ = f and @✓/@⌫ = h on

@D as discussed in Section 3.1. Using a cutoff function we can guarantee that ✓ = 0 in D✓

such that D0 ⇢ D✓ ⇢ D. The variational formulation amounts to finding u0 = u � ✓ 2
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V0(D,D0, k) such that
Z

D\D0

1

n� 1

�
�+ k2

�
u0

�
�+ k2

�
 ̄ dx+ k2

Z

D\D0

(�u0 + k2u0)  ̄ dx

=

Z

D\D0

1

n� 1

�
�+ k2

�
✓
�
�+ k2

�
 ̄ dx+ k2

Z

D\D0

(�✓ + k2✓)  ̄ dx (3.32)

for all  2 V0(D,D0, k). As one can see, the above variational formulation involves only
u (in particular, it does not involve w). The following lemma shows that the existence of
w is implicitly contained in the variational formulation.

Lemma 3.5. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue for �� in
D0, and let (�,↵) 2 H�

1
2 (@D0)⇥H�

3
2 (@D0) such that

h�, @ /@⌫i
H

� 1
2 (@D0),H

1
2 (@D0)

� h↵,  i
H

� 3
2 (@D0),H

3
2 (@D0)

= 0 (3.33)

for all  2 V0(D,D0, k). Then there exists a unique w 2 L2(D0) such that�w+k2w = 0
in D0 and (w, @w/@⌫) = (�,↵) on @D0.

Proof. Assume that k2 is not a Dirichlet eigenvalue for �� in D0. Let w 2 L2(D0) be a
weak solution of�w+ k2w = 0 in D0 and w = � on @D0 (see remark below on how one
can construct this solution from H1(D0) solutions by using a classical duality argument,
i.e., the traces of w and @w/@⌫ can be defined in this case by a duality argument; see also
[131]). Then applying Green’s formula to w and a test function  2 V0(D,D0, k) we get

hw, @ /@⌫i
H

� 1
2 (@D0),H

1
2 (@D0)

� h@w/@⌫,  i
H

� 3
2 (@D0),H

3
2 (@D0)

= 0 (3.34)

and therefore
h@w/@⌫ � ↵,  i

H
� 3

2 (@D0),H
3
2 (@D0)

= 0 (3.35)

for all  2 V0(D,D0, k). We know that the traces of Herglotz wave functions are dense
in H

3
2 (@D0) (see [169, Theorem 4]) provided that k2 is not a Dirichlet eigenvalue for

�� in D0 and, since V0(D,D0, k) contains the set of Herglotz wave functions, we can
conclude that the traces on @D0 of functions in V0(D,D0, k) are dense in H

3
2 (@D0).

Hence @w/@⌫ = ↵ and the result follows. The case when k2 is not a Neumann eigenvalue
can be treated by choosing w 2 L2(D0) to be a weak solution of �w + k2w = 0 in
D0 such that @w/@⌫ = ↵ on @D0 and using the denseness of normal traces on @D0 of
functions in V0(D,D0, k) in H

1
2 (@D0) (the denseness result follows from [169, Theorem

3]). The uniqueness of w is obvious.

Remark 3.6. We briefly recall the construction of L2 solutions for the Helmholtz equation
in D0. Assume that k2 is not a Dirichlet eigenvalue and let g 2 H

1
2 (@D0) and u 2

H1(D0) satisfy �u + k2u = 0 in D0 and u = g on @D0. Let v 2 H1(D0) be a
solution of �v + k2v = u such that v = 0 on @D0. Then standard regularity results
imply that v 2 H2(D0), and there exists a constant c independent of v and u such that
kvkH2(D0)  ckukL2(D0). Using Green’s formula one easily obtains

kuk2
L2(D0)

=

������

Z

@D0

g @v/@⌫ ds

������
 kgk

H
� 1

2 (@D0)
k@v/@⌫k

H
1
2 (@D0)

 Ckgk
H

� 1
2 (@D0)

kukL2(D0), (3.36)
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and therefore the solution operator g ! u is continuous from H�
1
2 (@D0) into L2(D0).

Similar arguments also show that if k2 is not an eigenvalue for the Neumann problem,
then the solution operator g ! u where u 2 H1(D0) satisfies �u + k2u = 0 in D0 and
@u/@⌫ = g is continuous from H�

3
2 (@D0) into L2(D0).

Remark 3.7. If the solution of the variational problem (3.32) is in H4(D \D0), then one
can use the Calderòn projection [133] operator to construct w in D0 and thus avoid the
assumption on k2 in Lemma 3.5.

We now can state the equivalence between solutions to interior transmission problem
(3.1) and solutions to the variational formulation (3.32).

Theorem 3.8. Assume that k2 is not both a Dirichlet and a Neumann eigenvalue for ��
in D0 and either n⇤ > 1 or 0 < n⇤ < 1. Then the existence and uniqueness of a solution
w 2 L2(D) and v 2 L2(D), u := w � v 2 H2

0 (D), to the interior transmission problem
(3.1) is equivalent to the existence and uniqueness of a solution u0 2 V0(D,D0, k) of the
variational problem (3.32).

Proof. It remains only to verify that any solution to (3.32) defines a weak solution w and
v to the interior transmission problem (3.1). Taking a test function  to be a C1 function
with compact support in D \D0, one can easily verify from (3.31) that u satisfies (3.19).
In particular, the function

w+ :=

✓
�

1

k2(n� 1)
(�+ k2)u

◆

|D\D0

satisfies w+
2 L2(D \D0) and (� + k2n)w+ = 0 in D \D0. For an arbitrary test

function  2 C1(D \D0) we can apply Green’s formula and (3.31) to obtain
⌦
w+, @ /@⌫

↵
H

� 1
2 (@D0),H

1
2 (@D0)

�
⌦
@w+/@⌫,  

↵
H

� 3
2 (@D0),H

3
2 (@D0)

= 0. (3.37)

Finally, applying Lemma 3.5, we now obtain the existence of w�
2 L2(D0) satisfying

(3.24) and (3.25).

We now proceed with the proof of existence of a solution to (3.32).

Theorem 3.9. Let f 2 H
3
2 (@D) and h 2 H

1
2 (@D) and assume that n 2 L1(D) is such

that n = 1 in D0, <(n) � c > 0, and =(n) � 0 almost everywhere in D \ D0. Assume
further that either n⇤ > 1 or 0 < n⇤ < 1. Then (3.32) satisfies the Fredholm alternative.
In particular, if the homogeneous variational problem (i.e., (3.32) with ✓ = 0) has only the
trivial solution u0 = 0, then (3.32) has a unique solution which depends continuously on
the data f and h.

Proof. We define the following bounded sesquilinear forms on V0(D,D0, k)⇥V0(D,D0, k):

A(u0, ) =

Z

D\D0

1

n� 1

�
�u0� ̄ +ru0 ·r ̄ + u0  ̄

�
dx

±

Z

D0

�
ru0 ·r ̄ + u0  ̄

�
dx

(3.38)
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and

Bk(u0, ) = k2
Z

D\D0

1

n� 1

�
u0(� ̄ + k2 ̄) + (�u0 + k2nu0) ̄

�
dx

�

Z

D\D0

1

n� 1

�
ru0 ·r ̄ + u0  ̄

�
dx⌥

Z

D0

�
ru0 ·r ̄ + u0  ̄

�
dx,

(3.39)

where the upper sign corresponds to the case when n⇤ > 1, whereas the lower sign corre-
sponds to the case when n⇤ < 1. In terms of these forms the variational equation (3.32)
for u0 2 V0(D,D0, k) becomes

A(u0, ) + Bk(u0, ) = A(✓, ) + Bk(✓, ) for all  2 V0(D,D0, k). (3.40)

It is clear that if the real part of 1/(n�1) is positive definite or negative definite, then there
exists a positive constant �, which only depends on n, such that

|A(u0, u0)| � �(k�u0k
2
L2(D\D0)

+ ku0k
2
H1(D)). (3.41)

Let ✏ = 1/(1 + k4), so that 0 < ✏ < 1 and ✏k4 < 1. Since �u0 = �k2u0 in D0 one also
has that

|A(u0, u0)| � �✏k�u0k
2
L2(D) + �(1� ✏k4)ku0k

2
H1(D)

= (�/(1 + k4))(k�u0k
2
L2(D) + ku0k

2
H1(D)).

(3.42)

From standard elliptic regularity results we deduce that

|A(u0, u0)| � (�̃/(1 + k4))ku0k
2
H2(D), (3.43)

where �̃ only depends on D and n. Therefore A defines a continuous and coercive
sesquilinear form on V0(D,D0, k) ⇥ V0(D,D0, k). Moreover if |1/(n � 1)| and n are
bounded, then the compact embedding of H2

0 (D) into H1(D) (Rellich’s theorem) implies
that Bk defines a compact perturbation of A, while the right-hand side of (3.40) defines a
continuous antilinear form on V0(D,D0, k). The result of our theorem now follows from
an application of the Fredholm alternative.

We can prove a similar result as in Theorem 3.3 concerning uniqueness of the varia-
tional equation (3.32).

Theorem 3.10. If n 2 L1(D) is such that Im(n) > 0 almost everywhere in D \D0, then
there are no real transmission eigenvalues.

Proof. Assume that the homogeneous problem

A(u0, ) + Bk(u0, ) = 0 for all  2 V0(D,D0, k) (3.44)

has a nontrivial solution u0 2 V0(D,D0, k). First taking  = u0 in (3.44) we obtain

0 =

Z

D\D0

1

n� 1
|�u0 + k2u0|

2 dx+ k4
Z

D\D0

|u0|
2 dx (3.45)

� k2
Z

D\D0

|ru0|
2 dx� k2

Z

@D0

ū+
0

@u+
0

@⌫
ds.
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Using Green’s first identity for u0 in D0 and the continuity of the Cauchy data of u0 across
@D0 we can rewrite (3.45) as

0 =

Z

D\D0

1

n� 1
|�u0 + k2u0|

2 dx+ k4
Z

D\D0

|u0|
2 dx� k2

Z

D\D0

|ru0|
2 dx

+ k4
Z

D0

|u0|
2 dx� k2

Z

D0

|ru0|
2 dx. (3.46)

Since =(1/(n� 1)) < 0 in D \D0 and all the terms in the above equation are real except
for the first one, by taking the imaginary part we obtain that �u0 + k2u0 = 0 in D \D0,
and since u0 has zero Cauchy data on @D we obtain that u0 = 0 in D \D0 and therefore
k is not a transmission eigenvalue. Note that the proof requires that =(n) > 0 almost
everywhere in all of D \D0.

Remark 3.11. Note that, by Theorem 3.8, if k2 is not both a Dirichlet and a Neumann
eigenvalue for �� in D0, then the uniqueness of (3.32) is equivalent to k 2 C not being
a transmission eigenvalue (see also Remark 3.7). Furthermore, under the additional as-
sumptions of Theorem 3.9, the interior transmission problem (3.1) has a unique solution
depending continuously on the data, provided that k 2 C is not a transmission eigenvalue.

It is possible to use the analytical framework developed here to prove that (3.32) and
hence (3.1) fails to have a unique solution for at most a discrete set of values of k with
+1 as the only possible accumulation point. However, in the next section we will prove
discreteness of transmission eigenvalues for a larger class of refractive indices which es-
tablishes this result as a special case since the set of Dirichlet and Neumann eigenvalues
for �� in D0 consists of a discrete set of real k2 accumulating at +1. We refer interested
readers to Section 4.2.1 in [33] for the proof of this discreteness result using the variational
approach of this section.

Remark 3.12. The approach described in this section provides a general analytical frame-
work to analyze the interior transmission problem for inhomogeneous media containing
different types of inclusions D0. We refer the reader to [43] to see how the approach can
be modified to the case when D0 is a nonpenetrable inclusion with Dirichlet boundary
condition.

3.1.3 The Case of Sign Changing Contrast

In this section we investigate the solvability of the interior transmission problem (3.1)
under less restrictive assumptions on the real part of the contrast. More specifically, we as-
sume that there is a neighborhood of the boundary N (that is an open subdomain N ⇢ D
with @D ⇢ N ) where we impose conditions on the contrast n � 1 (to become precise
later on), and in D \ N the contrast n � 1 can be anything (of course under the phys-
ical assumptions on the refractive index n stated at the beginning of this chapter). The
Fredholm property of the interior transmission problem and the discreteness of transmis-
sion eigenvalues for this general case were first investigated in [159]. The approach in
[159] was revisited in [111] for real valued refractive index where the same results were
obtained by using a variational approach. Our discussion follows the approach due to
Kirsch in [111].
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We recall the interior transmission problem formulated for u := 1
k2 (w � v) and v:

Given f 2 H
3
2 (@D) and h 2 H

1
2 (@D), find u 2 H2(D) and v 2 L2(D) such that

8
>>><

>>>:

�u+ k2nu = �(n� 1)v in D,

�v + k2v = 0 in D,

u = f and
@u

@⌫
= h on @D.

(3.47)

With the help of a lifting function ✓ 2 H2(D) such that ✓ = f and @✓/@⌫ = h on @D
introduced in Section 3.1, it is possible to transform (3.47) into the following problem:
Given F 2 L2(D), find u 2 H2

0 (D) and v 2 L2(D) such that
8
>>><

>>>:

�u+ k2nu = �(n� 1)v + F in D,

�v + k2v = 0 in D,

u = 0 and
@u

@⌫
= 0 on @D.

(3.48)

The above equations are assumed to be satisfied in the following weak sense:
Z

D

(� + k2 )v dx = 0,

Z

D

(�u+ k2nu+ (n� 1)v)' dx =

Z

D

F ' dx

for all  2 H2
0 (D) and ' 2 L2(D). Let us denote X(D) := H2

0 (D) ⇥ L2(D) equipped
with the norm k(u, v)kX(D) = kukH2(D)+kvkL2(D), and the corresponding inner product
h·, ·i

X(D). Then (3.48) can be written in the following equivalent variational form: Find
(u, v) 2 X(D) such that for all ( ,') 2 X(D)

Z

D

(� + k2 )v dx+

Z

D

(�u+ k2nu)'+ (n� 1)v' dx =

Z

D

F ' dx. (3.49)

For any k 2 C we define the sesquilinear form Ak : X(D)⇥X(D) ! C by

Ak(u, v; ,') :=

Z

D

(� + k2 )v dx+

Z

D

(�u+ k2nu)'+ (n� 1)v' dx (3.50)

for all (u, v) 2 X(D) and ( ,') 2 X(D). For later use we also define the following
auxiliary sesquilinear form Âk : X(D)⇥X(D) ! C:

Âk(u, v; ,') :=

Z

D

(� + k2 )v dx+

Z

D

((�u+ k2u)'+ (n� 1)v') dx (3.51)

for all (u, v) 2 X(D) and ( ,') 2 X(D). The Riesz representation theorem yields the
existence of bounded linear operators Ak, Âk : X(D) ! X(D) such that

Ak(u, v; ,') = hAk(u, v), ( ,')iX(D) for all (u, v), ( ,') 2 X(D) (3.52)
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with an analogous expression for Âk. Hence the interior transmission problem is equivalent
to the following operator equation:

Ak(u, v) = `, (u, v) 2 X(D), (3.53)

where ` 2 X(D) is the Riesz representative of the antilinear functional ' 7!
R
D
F ' dx.

Theorem 3.13. For any two k1, k2 2 C the differences Ak1 � Âk2 and Ak1 � Ak2 are
compact.

Proof. Let (uj , vj) 2 X(D) converge weakly to zero in X(D), and let ( ,') 2 X(D).
Then we have

⇣
Ak1 � Âk2

⌘
(uj , vj ; ,') = (k21 � k22)

Z

D

 vj dx+

Z

D

�
k21n� k22

�
uj' dx.

Since uj * 0 in H2
0 (D), Rellich’s compact embedding theorem implies that uj ! 0 in

L2(D). Furthermore,
������

Z

D

�
k21n� k22

�
uj' dx

������
 kk21n� k21kL1(D)kujkL2(D)k'kL2(D). (3.54)

Next let zj 2 H1(D) with �zj = vj in D and zj = 0 on @D. Since zj * 0 in H1(D),
then zj ! 0 in L2(D) and thus we have

������

Z

D

 vj dx

������
=

������

Z

D

 �zj dx

������
=

������

Z

D

� zj dx

������
 kzjkL2(D)k kH2(D). (3.55)

Thus (3.54) and (3.55) imply

k(Ak1 � Âk2)(uj , vj)kX(D) = sup
0 6=( ,')2X(D)

���
⇣
Ak1 � Âk2

⌘
(uj , vj ; ,')

���

 C
�
kujkL2(D) + kzjkL2(D)

�
,

whence (Ak1 � Âk2)(uj , vj) converges strongly to zero in X(D). This prove compactness
of Ak1 � Âk2 . The proof for Ak1 �Ak2 follows along the same lines.

Theorem 3.13 suggests that we need to show the invertibility of Âk for some k 2 C.
At this point we need to assume that <(n(x)) � 1 � ↵ > 0 or 1 � <(n(x)) � ↵ > 0 for
almost all x 2 N and some ↵ > 0. Denoting

n? = inf
N

<(n) and n? = sup
N

<(n) (3.56)

(notice that here the inf and sup are taken over the boundary neighborhood N as opposed
to the entire D as in (3.7)), the latter assumption means that either n? > 1 or 0 < n? < 1.

Lemma 3.14. Assume that n 2 L1(D) is such that either n? > 1 or 0 < n? < n? < 1.
Then there exist constants c > 0 and d > 0 such that for all k = i,  > 0, the following
estimate holds: Z

D\N

|v|2 dx  ce�2d

Z

N

|<(n)� 1||v|2 dx (3.57)

for all solutions v 2 L2(D) of �v � 2v = 0 in D.
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Proof. We choose a neighborhood N
0 of the boundary @D such that d = dist(D \

N ,N 0) > 0 and a function ⇢ 2 C1(D) with compact support in D such that ⇢ = 1
in D \ N

0. Applying Green’s formula (1.10) to ⇢v and noting that ⇢v ⌘ v in D \ N
0, that

is, �⇢v � 2⇢v = 0 in D \ N
0, yields

⇢(x)v(x) = �

Z

D

⇥
�(⇢v)(y)� 2(⇢v)(y)

⇤ e�|x�y|

|x� y|
dy

= �

Z

N 0

[2r⇢(y) ·rv(y) + v(y)�⇢(y)]
e�|x�y|

|x� y|
dy

=

Z

N 0


2r ·r⇢(y)

e�|x�y|

|x� y|
��⇢(y)

e�|x�y|

|x� y|

�
v(y) dy.

For x 2 D \ N we can conclude that

|v(x)|  c1e
�d

Z

N 0

|v(y)| dy

for some constant c1 > 0 that depends only on D, N , N 0, and ⇢. Thus, from the above,
using the Cauchy–Schwarz inequality we now obtain

|v(x)|2  c21e
�2d

|N |

Z

N

|v(y)|2 dx 
c21|N |

�
e�2d

Z

N

|<(n)(y)� 1||v(y)|2 dy,

where � = n? � 1 if n? > 1 or � = 1 � n? if n? < 1. Integrating with respect to x over
D \ N implies the result.

Theorem 3.15. There exists a 0 > 0 and a positive constant c > 0 such that for all
 � 0

sup
( ,') 6=0

���Âi(u, v; ,')
���

k( ,')kX(D)
� ck(u, v)kX(D) for all (u, v) 2 X(D). (3.58)

Proof. Thanks to Lemma 3.14 we can find a 0 > 0 such that
Z

D\N

|<(n)� 1||v|2 dx  k(n� 1)kL1(D)

Z

D\N

|v|2 dx 
1

2

Z

N

|<(n)� 1||v|2 dx (3.59)

for all solutions of �v � 2v = 0 in D and all  � 0. Let us assume by contradiction
that a constant c > 0 such that (3.58) holds does not exist, in which case we can find a
sequence {(uj , vj)} 2 X(D) with k(uj , vj)kX(D) = 1 and

sup
( ,') 6=0

���Âi(uj , vj ; ,')
���

k( ,')kX(D)
! 0, j ! 1. (3.60)

There is a weakly convergent subsequence (still denoted by {(uj , vj)}) such that uj * u
in H2

0 (D) and vj * v in L2(D) for some (u, v) 2 X(D). From (3.60) we see that (u, v)
satisfy�v � 2v = 0 and�u� 2u = �(n� 1)v in D.
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As a first step, we show that the weak limits are zero, i.e., u = v = 0 in D. To this end,
we notice that

<

⇣
Âi(u, v;�u, v)

⌘
=

Z

D

<(n� 1)|v|2 dx = 0. (3.61)

Now using (3.59), (3.61), and the fact that <(n)� 1 has one sign in N , we have

Z

N

|<(n)� 1||v|2 dx =

������

Z

N

<(n� 1)|v|2 dx

������
=

�������

Z

D\N

<(n� 1)|v|2 dx

�������



Z

D\N

|<(n� 1)||v|2 dx 
1

2

Z

N

|<(n)� 1||v|2 dx,

and thus v = 0 in N . Unique continuation yields that v = 0 in D and hence also u = 0 in
D since 0 = �Âi(u, 0; 0, u) =

R
D

�
|ru|2 + 2|u|2

�
dx.

We now arrive at a contradiction. We choose a neighborhood N
0 of @D such that

N 0 ⇢ N [ @D and a nonnegative function ⌘ 2 C1(D) such that ⌘ = 0 in D \ N and
⌘ = 1 in N

0. Set  = ⌘uj and ' = �⌘vj in (3.60). Since {(⌘uj ,�⌘vj)} is bounded in
X(D) we have that
Z

N

(�⌘uj � 2⌘uj)vj dx�

Z

N

[(�uj � 2uj)⌘vj + (n� 1)⌘|vj |
2] dx ! 0, j ! 1,

and hence

<

0

@
Z

N

⇥
2vjr⌘ ·ruj + ujvj�⌘ � (n� 1)⌘|vj |

2
⇤
dx

1

A! 0, j ! 1. (3.62)

Since uj * u in H2
0 (D) then kujkH1(D) ! 0 due to the compact embedding of H2(D)

in H1(D). Hence the first two terms of (3.62) go to zero as j ! 1 and we are left with
Z

N

(<(n)� 1)⌘|vj |
2 dx ! 0, j ! 1.

Since <(n)� 1 has one sign in N and |<(n)� 1|⌘ > ↵ > 0 in N
0 (↵ = n? if n? > 1 and

↵ = n? if n? < 1 in N ), we can conclude that vj ! 0 in L2(N 0).
Now we choose a third neighborhood N

00 of @D such that N 00 ⇢ N
0
[ @D and a

nonnegative function ⌘̃ 2 C1(D) such that ⌘̃ = 0 in N
00 and ⌘ = 1 in D \ N

0. Let
zj 2 H2(D) be the solution of�zj �2zj = vj in D and zj = 0 on @D. Taking  = ⌘̃zj
and ' = 0 in (3.60) and noting that {⌘̃zj} is bounded in H2(D) yields

Z

D\N 00

⇥
�(⌘̃zj)� 2⌘̃zj

⇤
vj dx ! 0, j ! 1,

that is,
Z

D\N 00

⇥
⌘̃|vj |

2 + 2(r⌘̃ ·rzj)vj + zj�⌘̃vj
⇤
dx ! 0, j ! 1. (3.63)
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Since vj * 0 in L2(D) we conclude that zj * 0 in H2(D) and hence zj ! 0 in H1(D).
Noting that ⌘̃ = 1 in D \N

0 and is nonnegative in D \N
00 we have that in addition vj ! 0

in L2(D \ N
0). Altogether we have shown that vj ! 0 in L2(D). Finally, let  = 0 and

' = �uj � 2uj in (3.60), which yields

1

k�uj � 2ujkL2(D)

Z

D

[|�uj �
2uj |

2+(n� 1)vj(�uj �
2uj)] dx ! 0, j ! 1,

that is,

k�uj � 2ujkL2(D) +

Z

D

(n� 1)vj
�uj � 2uj

k�uj � 2ujkL2(D)
dx ! 0, j ! 1,

which since vj ! 0 in L2(D) implies that �uj � 2uj ! 0 in L2(D). Therefore �uj

converges strongly to zero in L2(D) (note that uj * 0 in H2
0 (D) and hence uj ! 0 in

L2(D)). Since k�ujkL2(D) is equivalent to kujkH2
0 (D) we have shown that uj ! 0 in

H2(D0).
Concluding, we have shown that (uj , vj) ! 0 in X(D), which is a contradiction. This

proves the theorem.

Appealing to the inf-sup condition in Theorem 3.15 implies the following invertibility
property for Âk.

Corollary 3.16. Let  > 0 be such that the inf-sup condition (3.58) is valid. Then the
operator Âi : X ! X is invertible with bounded inverse.

Combining Theorem 3.13 and Corollary 3.16, we have the following theorem concern-
ing the solvability of the interior transmission problem.

Theorem 3.17. Assume that n 2 L1(D) with <(n) > n0 > 0 and =(n) � 0 almost
everywhere in D and either infN <(n) > 1 or sup

N
<(n) < 1 for some neighborhood N

of the boundary @D. Furthermore, assume that k 2 C is not a transmission eigenvalue.
Then for any given f 2 H

3
2 (@D) and h 2 H

1
2 (@D), the interior transmission problem

(3.1) has a unique solution w 2 L2(D) and v 2 L2(D) with w � v 2 H2(D) and the
following a priori estimates hold:

kwkL2(D) + kvkL2(D)  C
⇣
kfk

H
3
2 (@D)

+ khk
H

1
2 (@D)

⌘
,

kukH2(D)  C
⇣
kfk

H
3
2 (@D)

+ khk
H

1
2 (@D)

⌘

with some positive constant C > 0.

Next we derive sufficient conditions under which the set of transmission eigenvalues
in C is discrete (possibly empty) with +1 as the only accumulation point. To this end we
first show that there exists a wave number k that is not a transmission eigenvalue.

Theorem 3.18. Assume that n 2 L1(D) with <(n) > n0 > 0, =(n) � 0 almost
everywhere in D, and sup

N
<(n) < 1 for some neighborhood N of the boundary @D.

Then, for some  > 0, the operator Ai : X(D) ! X(D) is invertible with bounded
inverse.
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Proof. It suffices to prove that Ai : X(D) ! X(D) is injective for some  since Âi :
X(D) ! X(D) is invertible and Âi � Ai : X(D) ! X(D) is compact. We prove it
by contradiction, i.e., we assume that for every  > 0 there exist functions (u, v) 2 X(D)
with k(u, v)kX(D) = 1 and Ai(u, v) = 0. Therefore, u 2 H2

0 (D) and v 2 L2(D) satisfy

�u� 2nu = �(n� 1)v and �v � 2v = 0 in D. (3.64)

We let � = kn � 1kL1(D)ce
�2d, where c > 0 is the constant appearing in Lemma 3.14.

Multiplying the first equation in (3.64) by v, integrating over D, and using Green’s second
identity and the second equation in (3.64) yields

Z

D

2(n� 1)uv dx =

Z

D

(n� 1)|v|2 dx. (3.65)

Multiplying the first equation in (3.64) by u, integrating over D, and using Green’s first
identity together with (3.65) yields

Z

D

⇥
|ru|2 + 2n|u|2

⇤
dx =

Z

D

(n� 1)vudx =
1

2

Z

D

(n� 1)|v|2 dx. (3.66)

Since <(n) > n0 in D and kuk > 0, on one hand we see from (3.66) that
R
D
(<(n) �

1)|vj |2 dx > 0. On the other hand, recalling that sup
N
<(n) < 1, from Lemma 3.14 it

follows that
Z

D

(<(n)� 1)|v|2 dx =

Z

N

(<(n)� 1)|v|2 dx+

Z

D\N

(<(n)� 1)|v|2 dx

=

Z

N

(<(n)� 1)|v|2 dx+O(e�2d) < 0

for  > 0 sufficiently large, which is a contradiction.

Remark 3.19. The proof of Theorem 3.18 in fact shows that there are possibly at most
finitely many transmission eigenvalues in the imaginary axis.

Remark 3.20. It is possible to prove the result in Theorem 3.18 also for the case when
infN <(n) > 1. We do not present the proof here since it is more technical. Instead
we refer the reader to the proof of Theorem 2.7 in [111] for the proof of this result when
=(n) = 0 almost everywhere in D and infN n > 1. The proof there can be easily adapted
to the case of =(n) > 0 and infN <(n) > 1.

We are ready now to state the result concerning the discreteness of transmission eigen-
values.

Theorem 3.21. Assume that n 2 L1(D) with <(n) > n0 > 0, =(n) � 0 almost
everywhere in D, and either sup

N
<(n) < 1 or infN <(n) > 1 for some neighborhood

N of the boundary @D. Then the set of transmission eigenvalues is at most discrete with
+1 as the only accumulation point.

Proof. As discussed above, transmission eigenvalues are the values of k 2 C for which the
kernel of Ak is nontrivial. Thanks to Theorem 3.18 and Remark 3.20 we choose 0 > 0
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such that Ai0 is invertible and write the equation Ak(u, v) = 0 in the form

(u, v) +A�1
i0

(Ak �Ai0)(u, v) = 0.

Now the fact that Ak � Ai0 : X(D) ! X(D) is compact, due to Theorem 3.13, allows
us to prove the result of the theorem by appealing to the Analytic Fredholm Theorem 1.12.

Remark 3.22. It is possible to relax the coercivity assumption on the contrast n� 1 in the
case when n is complex valued. More specifically, in [159] it is shown that transmission
eigenvalues form at most a discrete set if infN <(ei✓(n � 1)) > 0 in some neighborhood
N of the boundary @D for some ✓ 2 (�⇡/2,⇡/2). These assumptions are not optimal.
Nevertheless it seems that some type of sign condition on the contrast n � 1 near the
boundary is necessary for the interior transmission problem to be of Fredholm type [21].

3.1.4 Boundary Integral Equation Method

In this section we introduce an alternative approach to studying the interior transmis-
sion problem (3.1) based on boundary integral equations. Although the boundary integral
method recovers the same type of solvability results discussed in the previous sections of
this chapter, we believe that it merits discussion in this monograph for its mathematical
and computational interest. Our presentation follows closely [79].

We start by assuming that the refractive index 0 < n 6= 1 is a positive constant differ-
ent from one and that @D is a smooth surface of class C2 (the smoothness of the boundary
is needed for certain mapping properties of boundary integral operators although this as-
sumption is not necessary in the analysis of the interior transmission problem). Introducing
the notation kn :=

p
nk, the interior transmission problem for this particular case reads as

follows: Given f 2 H
3
2 (@D) and h 2 H

1
2 (@D) find w 2 L2(D), v 2 L2(D), such that

w � v 2 H2(D) satisfies

8
>>>>>><

>>>>>>:

�w + k2
n
w = 0 in D,

�v + k2v = 0 in D,

w � v = f on @D,

@w

@⌫
�
@v

@⌫
= h on @D.

(3.67)

We recall the fundamental solution to the Helmholtz equation introduced in (1.8),

�k(x, y) :=
1

4⇡

eik|x�y|

|x� y|
, x 6= y, (3.68)

where here we indicate the dependence on k. A formal application of Green’s representa-
tion formula to the solution v and w of (3.67) gives that for x 2 D

v(x) =

Z

@D

✓
@v(y)

@⌫y
�k(x, y)� v(y)

@

@⌫y
�k(x, y)

◆
dsy, (3.69)

w(x) =

Z

@D

✓
w(y)

@

@⌫y
�kn(x, y)�

@w(y)

@⌫y
�kn(x, y)

◆
dsy. (3.70)
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Now for a generic function u defined in R3
\ @D we denote

u±(x) = lim
h!0+

⌫ · u(x± h⌫), x 2 @D,

@u(x)

@⌫

±

= lim
h!0+

⌫ ·ru(x± h⌫), x 2 @D,

where we recall that ⌫ is the unit outward normal vector to @D. We denote by Sk and Dk

the single and double layer boundary potentials defined by

(Sk ) (x) :=

Z

@D

 (y)�k(x, y) dy, x 2 R3
\ @D, (3.71)

(Dk ) (x) :=

Z

@D

 (y)
@

@⌫y
�k(x, y) dy, x 2 R3

\ @D, (3.72)

with similar expressions for Skn and Dkn . It can be shown [99], [119], [133] that for
�1  s  1, the mapping Sk : Hs�

1
2 (@D) ! Hs+1

loc
(R3) is continuous and the mappings

Dk : Hs+ 1
2 (@D) ! Hs+1

loc
(R3

\ D) and Dk : Hs+ 1
2 (@D) ! Hs+1(D) are continuous.

We define the restriction of Sk and Dk to the boundary @D by

(Sk )(x) :=

Z

@D

 (y)�(x, y)dsy, x 2 @D, (3.73)

(Kk )(x) :=

Z

@D

 (y)
@

@⌫y
�(x, y)dsy, x 2 @D, (3.74)

and the restriction of the normal derivative of Sk and Dk to the boundary @D by

(K 0

k
 )(x) :=

@

@⌫x

Z

@D

 (y)�(x, y)dsy, x 2 @D, (3.75)

(Tk )(x) :=
@

@⌫x

Z

@D

 (y)
@

@⌫y
�(x, y)dsy, x 2 @D. (3.76)

It is known that [99], [133]

Sk : H�
1
2+s(@D) �! H

1
2+s(@D), Kk : H

1
2+s(@D) �! H

1
2+s(@D), (3.77)

K 0

k
: H�

1
2+s(@D) �! H�

1
2+s(@D), Tk : H

1
2+s(@D) �! H�

1
2+s(@D), (3.78)

are continuous for �1  s  1. It can be shown [119] that for smooth densities the single
layer potential and the normal derivative of the double layer potential are continuous across
@D, i.e.,

(Sk )
+ = (Sk )

� = Sk on @D, (3.79)
@(Dk )+

@⌫
=
@(Dk )�

@⌫
= Tk on @D, (3.80)

while the normal derivative of the single layer potential and the double layer potential are
discontinuous across @D and satisfy the following jump relations:

@(Sk )±

@⌫
= K 0

k
 ⌥

1

2
 on @D, (3.81)

(Dk )
± = Kk ±

1

2
 on @D. (3.82)
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As the reader has already seen, the solutions v and w of the interior transmission problem
(3.1) are simply L2

�(D) functions, where

L2
�(D) :=

�
u 2 L2(D) such that �u 2 L2(D)

 

with a similar definition for L2
�(R3

\D). Therefore (cf. Remark 3.6) their trace and their
normal derivative on the boundary live in H�

1
2 (@D) and H�

3
2 (@D), respectively. Hence

the representation formulas (3.69) and (3.70) suggest that we must work with single layer
potentials Sk with density in H�

3
2 (@D) and double layer potentials Dk with density in

H�
1
2 (@D) (i.e., for s = �1 in the above). Both obviously satisfy the Helmholtz equation

in the distributional sense, and hence we can conclude that Sk : H�
3
2 (@D) ! L2

�(D),
Sk : H�

3
2 (@D) ! L2

�(R3
\ D), and Dk : H�

1
2 (@D) ! L2

�(D), L2
�(R3

\ D) are
continuous. More importantly, by a duality argument, it is possible to extend the jump
relations (3.79), (3.80), (3.81), and (3.82) to the case of potentials with weaker densities.
More specifically, the following lemma is proven in Theorem 3.1 in [79] (see also [133]).

Lemma 3.23. The single layer potential Sk : H�
3
2 (@D) ! L2

�(D), Sk : H�
3
2 (@D) !

L2
�(R3

\ D) and the double layer potential Dk : H�
1
2 (@D) ! L2

�(D), L2
�(R3

\ D)
satisfy the jump relations on @D

(Sk )
+ = (Sk )

� = Sk and
@(Sk )±

@⌫
= K 0

k
 ⌥

1

2
 in H�

1
2 (@D),

(Dk )
± = Kk ±

1

2
 and

@(Dk )+

@⌫
=
@(Dk )�

@⌫
= Tk in H�

3
2 (@D),

where the bounded linear operators

Sk : H�
3
2 (@D) �! H�

1
2 (@D), Kk : H�

1
2 (@D) �! H�

1
2 (@D),

K 0

k
: H�

3
2 (@D) �! H�

3
2 (@D), Tk : H�

1
2 (@D) �! H�

3
2 (@D),

are given by (3.73), (3.74), (3.75), and (3.76), respectively.

To arrive at a system of boundary integral equations equivalent to the interior transmis-
sion problem (3.1) for v 2 L2(D) and w 2 L2(D) we introduce two unknowns

↵ :=
@v

@⌫

����
@D

2 H�
3
2 (@D) and � := v|@D 2 H�

1
2 (@D) (3.83)

and use the ansatz (3.69) and (3.70) along with the boundary conditions in (3.1) to write

v = Sk↵�Dk� and w = Skn↵�Dkn� + Sknh�Dknf, (3.84)

where we note
@w

@⌫

����
@D

= ↵+ f and w|@D = � + h. (3.85)

Using the jump relations in Lemma 3.23 and once again the boundary conditions in (3.1)
we arrive at the following system of integral equations:

Zn(k)

✓
↵
�

◆
= Fn(k)

✓
h
f

◆
, (3.86)
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where

Zn(k) :=

✓
Skn � Sk �Kkn +Kk

�K 0

kn
+K 0

k
Tkn � Tk

◆
(3.87)

and

Fn(k) :=

✓
�Skn

1
2I +Kkn

�
1
2 +K 0

kn
�Tkn

◆
.

Since h 2 H
1
2 (@D) and f 2 H

3
2 (@D), the mapping properties (3.77) and (3.78) for s = 1

imply that Fn(k)
�
h

f

�
2 H

3
2 (@D)⇥H

1
2 (@D).

To understand the mapping properties of the operator Zn(k) we must recall some regu-
larity results concerning single and double layer potentials and consequently the associated
boundary integral operators. Notice that the components in (3.87) are more regular that
each of the operators involved since the singular part, which is independent of k, cancels.

Lemma 3.24. Assume that k, kn 2 C have nonzero real part. Then the operators Sk �

Skn : H�
3
2 (@D) ! H3(D) and Dk �Dkn : H�

1
2 (@D) ! H3(D) are continuous.

Proof. We sketch here the proof following the proof of Theorem 3.2 in [79]. First we
notice that Vk � Vkn , where Vk is the volume potential defined by

(Vk ) (x) :=

Z

D

 (y)�k(x, y) dy,

is a pseudodifferential operator of order �4. This follows from applying Theorem 7.1.1
in [99] on integral operators with pseudohomogeneous kernels to the operator Vk � Vkn

whose kernel takes the form a(x, x� y), where

a(x, z) :=
eik|z| � eikn|z|

4⇡|z|

=
i

4⇡
(k � kn)�

1

4⇡

1X

j=0

ij

(j + 2)!
(kj+2

� kj+2
n

)|z|j+1.

Now using Theorem 8.5.8 in [99] it is possible to deduce from this the regularity result for
the difference of the single layer potentials Sk � Skn . Finally, the fact that

(Dk �Dkn) = �r · (Sk � Skn)(⌫ ) (3.88)

implies that the regularity result for Dk � Dkn can also be deduced from the regularity
property of the difference of the single layer potentials.

Later on in our analysis we would like to decompose the operator Zn(k) into an invert-
ible operator and a compact operator. Hence we will need to find more regular operators,
and the way to achieve this is to eliminate the principal part in the asymptotic expansion of
the kernel of the operator Vk � Vkn . To this end we consider the operator

(Vk � Vkn) + �(k)(Vi|k| � Vi|kn|
),

where

�(k) :=
k2 � k2

n

|k|2 � |kn|2
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and which has the kernel ã(x, x� y), where

ã(x, z) :=
eik|z| � eikn|z|

4⇡|z|
+

e�|kz|
� e�|knz|

4⇡|z|

=
1

4⇡


i(k � kn)�

k2 � k2
n

|k|+ |kn|

�
�

1X

j=0

ãj+2(x, z)

with

ãj+2(x, z) :=
1

4⇡(j + 3)!

⇥
ij+1(kj+3

� kj+3
n

) + (�1)j
�
|k|j+3

� |kn|
j+3
�
�(k)

⇤
|z|j+2

for all j � 0, which satisfies

ãp(x, tz) = tpãp(x, z).

From [99, Theorem 7.1.1], we deduce that
�
(Vk � Vkn) + �(k)(Vi|k| � Vi|kn|

)
�
'(x) =

Z

D

ã(x, x� y)'(y)dy

is a pseudodifferential operator of order �5 since ã is a pseudohomogeneous kernel of
degree 2. Then, applying Theorem 8.5.8 in [99] and (3.88), we can immediately prove
the following regularity result for the operators (Sk � Skn) + �(k)(Si|k| � Si|kn|

) and
(Dk �Dkn) + �(k)(Di|k| �Di|kn|

).

Lemma 3.25. Assume that k, kn 2 C have nonzero real part. Then the operators

(Sk � Skn) + �(k)(Si|k| � Si|kn|
) : H�

3
2 (@D) ! H3(D)

and
(Dk �Dkn) + �(k)(Di|k| �Di|kn|

) : H�
1
2 (@D) ! H3(D)

are continuous.

We now return to our main system of integral equation (3.86) which, if it is uniquely
solvable, is equivalent to the interior transmission problem (3.1) via Green’s representation
formulas (3.69) and (3.70) using (3.83) and (3.85). Lemma 3.24 implies that Zn(k) :
H�

3
2 (@D)⇥H�

1
2 (@D) ! H

3
2 (@D)⇥H

1
2 (@D) is continuous.

In the next step we want to show that Zn(k) is a Fredholm operator of index zero. To
this end we decompose Zn(k) as

Zn(k) = ��(k)Zn(i|k|) + (Zn(k) + �(k)Zn(i|k|)) .

From Lemma 3.25 and the classic trace theorems we know that Zn(k) + �(k)Z(i|k|) :
H�

3
2 (@D) ⇥ H�

1
2 (@D) ! H

3
2 (@D) ⇥ H

1
2 (@D) is compact. Hence it suffices to show

that Zn(i|k|) : H�
1
2 (@D) ! H

3
2 (@D)⇥H

1
2 (@D) is invertible.

Lemma 3.26. Zn(i|k|) : H�3/2(@D) ⇥ H�1/2(@D) ! H3/2(@D) ⇥ H1/2(@D) is
coercive, i.e.,

����

⌧
Zn(i|k|)

✓
↵
�

◆
,

✓
↵
�

◆����� � C

✓
k↵k2

H
3
2 (@D)

+ (k�k2
H

1
2 (@D)

◆
,

where h·, ·i denotes the duality between H�
3
2 (@D)⇥H�

1
2 (@D) and H

3
2 (@D)⇥H

1
2 (@D).
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Proof. For simplicity we set  := |k| and n := |kn|. Let ↵ be in H�3/2(@D) and
� 2 H�1/2(@D) and consider the following problem:

8
>>>>><

>>>>>:

(�� 2)(�� 2
n
)u = 0 in R3

\@D,

[�u]
@D

= �(2
n
� 2) on @D,


@(�u)

@⌫

�

@D

= ↵(2
n
� 2) on @D,

(3.89)

where for a generic function u, [u] := u+
�u� denotes the jump of u across the boundary

@D. Multiplying the first equation by ' 2 H2(R3), integrating by parts on both sides
of @D, and using the jump conditions on @D, we can reformulate (3.89) as the following
variational problem: Find u 2 H2(R3) such that

Z

R3\@D

(�u� 2u)(�'� 2
n
')dx = �

Z

@D

(2
n
� 2)

✓
↵'� �

@'

@⌫

◆
ds (3.90)

for all ' 2 H2(R3). We remark that u = (Sin � Si)↵ � (Din � Di)� obviously
solves (3.90). Using the Lax–Milgram theorem, the existence and uniqueness of a solution
u 2 H2(R3) to (3.90) can be established. Thus the only solution to (3.90) is u = (Sin �

Si)↵� (Din �Di)�. In particular,

u|@D = (Sin�Si)↵�(Kin�Ki)� and
@u

@⌫

����
@D

= (K 0

in
�K 0

i
)↵�(Tin�Ti)�.

Taking ' = u in (3.90) we obtain
Z

R3\@D

(�u� 2u)(�u� 2
n
u)dx = �

Z

@D

(2
n
� 2)

✓
↵u� �

@u

@⌫

◆
ds. (3.91)

The inequality Z

R3\@D

(�u� 2u)(�u� 2
n
u)dx � Ckuk2

H2(R3)

along with (3.91) implies that
�����h↵, uiH� 3

2 (@D),H
3
2 (@D)

�

⌧
�,
@u

@⌫

�

H
� 1

2 (@D),H
1
2 (@D)

����� � C 0
kuk2

H2(R3). (3.92)

Next we want to show that there exists C1 > 0 such that k↵k
H

� 3
2 (@D)

 C1kukH2(R3).

To this end, we take ' 2 H3/2(@D) such that k'kH3/2(@D) = 1. Then there exists
'̃ 2 H2(R3) such that '̃|@D = ' and @'̃

@⌫
|@D = 0. From (3.90) we have that

���h↵,'i
H

� 3
2 (@D),H

3
2 (@D)

��� =
1

|2
n
� 2|

�������

Z

R3\@D

(�u� 2u)(�'̃� 2
n
'̃)dx

�������

 CkukH2(R3)k'̃kH2(R3)  C1kukH2(R3)

because k'̃kH2(R3)  k'kH3/2(@D) = 1. Hence k↵kH�3/2(@D)  C1kukH2(R3).
Similarly we show that k�kH�1/2(@D)  C2kukH2(R3) for some constant C2 > 0.

Indeed, take  2 H1/2(@D) such that k kH1/2(@D) = 1 and choose  ̃ 2 H2(R3) such
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that  ̃|@D = 0 and @ ̃

@⌫
|@D =  . Then

���h�, i
H

� 1
2 (@D),H

1
2 (@D)

��� =
1

|2
n
� 2|

�������

Z

R3\@D

(�u� 2u)(� ̃ � 2
n
 ̃)dx

�������

 CkukH2(R3)k ̃kH2(R3)  C2kukH2(R3)

since k ̃kH2(R3)  k kH1/2(@D) = 1, whence k�kH�1/2(@D)  C2kukH2(R3).
We have now all the ingredients to show the coercivity property for Z(i|k|). Thus,

����

⌧
Zn(i|k|)

✓
↵
�

◆
,

✓
↵
�

◆����� =
���h(Sin � Si)↵� (Kin �Ki)�,↵i

H
� 3

2 (@D),H
3
2 (@D)

+
⌦
�(K 0

in
�K 0

i
)↵+ (Tin � Ti)�, ,�

↵
H

1
2 (@D),H� 1

2 (@D)

���

�

�����hu|@D,↵i
H

3
2 (@D),H� 3

2 (@D)
+

⌧
�
@u

@⌫
|@D,�

�

H
1
2 (@D),H� 1

2 (@D)

�����

� C 0
kuk2

H2(R3) �
C 0

C1
k↵k2

H�3/2(@D) +
C 0

C2
k�k2

H�1/2(@D),

which proves the result.

Summarizing the above analysis, we can now state the following result.

Theorem 3.27. The operator Zn(k) : H�
1
2 (@D) ! H

3
2 (@D) ⇥H

1
2 (@D) is Fredholm

with index zero and is analytic on k 2 C \ R�. The kernel of Zn(k) is trivial for all
k 2 C \ R� except for at most a discrete set with +1 as the only possible accumulation
point.

Proof. Thanks to Lemma 3.25 along with the classic trace theorems and Lemma 3.26, the
operator Zn(k) is the sum of the compact operator Zn(k) + �(k)Z(i|k|) and the coercive
operator ��(k)Z(i|k|). Hence it is Fredholm of index zero. The analyticity of Zn(k) on
k is a direct consequence of the fact that the kernels of the boundary integral operators that
compose Zn(k) are analytic functions of k 2 C \ R�. Finally, since Z(i) for  > 0 is
invertible, an application of the Analytic Fredholm Theorem 1.12 implies that the kernel
of Zn(k) is trivial for all k 2 C \R� except for at most a discrete set with +1 as the only
possible accumulation point.

We remark that the set of values of k 2 C for which the kernel of Zn(k) fails to be
trivial is larger than the set of transmission eigenvalues. In addition to transmission eigen-
values, it also contains the so-called exterior transmission eigenvalues (see [38] and [72]
for the relevance of the exterior transmission eigenvalues to the scattering theory of inho-
mogeneous media). The next theorem shows the relation between transmission eigenvalues
and the kernel of Zn(k) using the fact that in the Green’s representation (3.69) and (3.70)
a solution to (3.1) corresponds to nonradiating fields. To this end, let

P1(↵,�)(x̂) =
1

4⇡

Z

@D

✓
�(y)

@e�ikx̂·y

@⌫(y)
� ↵(y)e�ikx̂·y

◆
ds(y),

P1

n
(↵,�)(x̂) =

1

4⇡

Z

@D

✓
�(y)

@e�iknx̂·y

@⌫(y)
� ↵(y)e�iknx̂·y

◆
ds(y),

which are the far field patterns of v and w defined by (3.69) and (3.70), respectively.
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Theorem 3.28. The following statements are equivalent:

(i) There exist a nontrivial solution v, w 2 L2(D) to (3.1) such that w � v 2 H2(D).

(ii) There exist ↵ 6= 0 in H�3/2(@D) and � 6= 0 in H�1/2(@D) such that

Zn(k)

✓
↵
�

◆
= 0 and P1(↵,�) = 0.

(iii) There exist ↵ 6= 0 in H�3/2(@D) and � 6= 0 in H�1/2(@D) such that

Zn(k)

✓
↵
�

◆
= 0 and P1

n
(↵,�) = 0.

Proof. From the construction of the operator Zn, it remains to show that (ii) implies (i)
and that (iii) implies (i). Assume that there exist ↵ 2 H�1/2(@D) and � 2 H1/2(@D)

satisfying Zn(k)
�
↵

�

�
= 0. We define v = Sk↵�Dk� and w = Skn↵�Dkn� in R3

\@D.

The mapping properties of single and double layer potentials show that v and w are in
L2(D) and w � v 2 H2(D) and they satisfy �v + k2v = 0 and �w + k2nw = 0 in D.
Now assume that P1(↵,�) = 0. We want to show that v 6= 0. From Rellich’s Lemma
we deduce that v = 0 in Rd

\D. Assume that v = 0 also in D. We have in particular
that [v]

@D
=
⇥
@v

@⌫

⇤
@D

= 0, and from the jump properties of the single and double layer
potentials we also have that [v]

@D
= �� and

⇥
@v

@⌫

⇤
@D

= �↵. This contradicts the fact that
(↵,�) 6= (0, 0). Then v 6= 0 in D. In a similar way we can show that if P1

n
(↵,�) = 0,

then w 6= 0.

We can now use the integral equation framework to study the solvability of the interior
transmission problem and show the discreteness of transmission eigenvalues for media
with contrasts. To present the idea we first consider piecewise homogeneous media where
we assume that D = D1 [ D2 such that D1 ⇢ D and D2 := D \ D1 and consider the
simple case when n := n1 in D1 and n := n2 in D2, where n1 > 0, n2 > 0 are two
positive constants such that (n1�1)(n2�1) < 0. We denote ⌃ = @D1, which is assumed
to be a C2 smooth surface with ⌫ the unit normal vector to either @D or ⌃ outward to
D and D1, respectively (see Figure 3.2). We let k1 = k

p
n1 and k2 = k

p
n2. In the

following we use the notation S
@D

k
, D@D

k
, and S

⌃
k

, D⌃
k

in order to differentiate between
the potentials with densities defined on @D or ⌃. We also use the notation

�
S@D
k
 
�
(x) =

Z

@D

 (y)�(x, y)dsy, x 2 @D,

�
S⌃
k
 
�
(x) =

Z

⌃

 (y)�(x, y)dsy, x 2 ⌃,

⇣
S@D,⌃
k

 
⌘
(x) =

Z

@D

 (y)�(x, y)dsy, x 2 ⌃,

⇣
S⌃,@D

k
 
⌘
(x) =

Z

⌃

 (y)�(x, y)dsy, x 2 @D,

with the respective notation for the other operators Kk, K
0

k
, and Tk. Letting

↵ :=
@v

@⌫

����
@D

=
@w

@⌫

����
@D

� f 2 H�
3
2 (@D) and � := v|@D = w|@D � h 2 H�

1
2 (@D)



3.1. Solvability of the Interior Transmission Problem for Isotropic Media 103

D1

D2

n

n

S
n1

n2 Dδ

Figure 3.2. Configuration of the geometry for two homogeneous media.

and

↵̃ :=
@w

@⌫

����
⌃

2 H�
1
2 (⌃) and �̃ := w|⌃ 2 H

1
2 (⌃),

the solution to (3.1) can be written as

v = S
@D

k
↵�D

@D

k
� in D (3.93)

and

w =

8
<

:

S
@D

k2
↵�D

@D

k2
� + S

@D

k2
h�D

@D

k2
f � S

⌃
k2
↵̃+D

⌃
k2
�̃ in D2,

S
⌃
k1
↵̃�D

⌃
k1
�̃ in D1.

(3.94)

Note that the interior regularity for the solutions to the Helmholtz equation implies that v
and w are at least in H1

loc
(D) . Using the boundary conditions on @D and continuity of the

Cauchy data of w across ⌃, we arrive at the following system of integral equations:

0

@
S@D
k2

� S@D
k

�K@D

k2
+K@D

k

�K
0
@D

k2
+K

0
@D

k
T @D
k2

� T @D
k

1

A

| {z }
=Z@Dn2

(k)

0

@
↵

�

1

A�

0

B@
S⌃,@D

k2
�K⌃,@D

k2

�K
0⌃,@D

k2
T⌃,@D

k2

1

CA

| {z }
=Z⌃,@D(k)

0

@
↵̃

�̃

1

A

=

0

@
�S@D

k2

1
2I +K@D

k2

�
1
2 +K

0
@D

k2
�T @D

k2

1

A

| {z }
=Fn2 (k)

0

@
h

f

1

A

and

0

@
S⌃
k2

+ S⌃
k1

�K⌃
k2

�K⌃
k1

�K
0⌃
k2

�K
0⌃
k1

T⌃
k2

� T⌃
k1

1

A

| {z }
=Z̃⌃

n1,n2
(k)

0

@
↵̃

�̃

1

A =

0

B@
�S@D,⌃

k2
K@D,⌃

k2

K
0
@D,⌃
k2

�T @D,⌃
k2

1

CA

| {z }
=Z@D,⌃(k)

0

@
↵

�

1

A .
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The operator Z̃⌃
n1,n2

(k) : H�
1
2 (⌃) ⇥ H

1
2 (⌃) ! H�

1
2 (⌃) ⇥ H

1
2 (⌃) is invertible since

it corresponds to the following transmission problem: For given � 2 H
1
2 (⌃) and  2

H�
1
2 (⌃) find v 2 H1(R3

\D1) and w 2 H1(D1) such that
8
>>>>>>>>>>><

>>>>>>>>>>>:

�w + k2n1w = 0 in D1,

�! + k2n2! = 0 in R3
\D1,

w � ! = � on ⌃,

@w

@⌫
�
@!

@⌫
=  on ⌃,

lim
r!1

r

✓
@!

@r
� ik

p
n2!

◆
= 0,

(3.95)

which is well known to be uniquely solvable [29] (see also Chapter 1 of this book). Indeed,
using Green’s representation formula for the solution ! and w of (3.95) it is easy to see
that (3.95) is equivalent to the integral equation

Z̃⌃
n1,n2

(k)

0

@
@!

@⌫

����
⌃

!|⌃

1

A =

0

@
�S⌃

k1

1
2I +K⌃

k1

�
1
2 +K

0⌃
k1

�T⌃
k1

1

A
✓
 
�

◆
.

The interior transmission problem can clearly be written as

Z(k)

✓
↵
�

◆
= Fn2(k)

✓
h
f

◆
, (3.96)

where Z(k) : H�
3
2 (@D)⇥H�

1
2 (@D) ! H

3
2 (@D)⇥H

1
2 (@D) is given by

Z(k) = Z@D
n2

(k) + Z⌃,@D(k)
⇣
Z̃⌃
n1,n2

(k)
⌘�1

Z@D,⌃(k).

Now the operator Z@D
n2

(k) corresponds to the interior transmission problem with n := n2

which is studied above and, thanks to Theorem 3.27, is a Fredholm operator of index zero.
Furthermore, the operator Z⌃,@D(k)

�
Z̃⌃
n1,n2

(k)
��1

Z@D,⌃(k) is compact as a product of
compact operators and bounded operators. All operators involved in the expression of
Z(k) are analytic k 2 C \ R�. Thus we have shown the following result.

Theorem 3.29. The operator Z(k) : H�
3
2 (@D)⇥H�

1
2 (@D) ! H

3
2 (@D)⇥H

1
2 (@D) is

Fredholm with index zero and is analytic on k 2 C \ R�.

The idea presented above for the case of a piecewise homogeneous medium can be
generalized to a more general case when the medium inside D1 is not necessarily homoge-
neous. More specifically, in the more general case where the refractive index n(x) in D1

is such that n 2 L1(D1), <(n) � ↵ > 0, =(n) � 0, and n 6= 1 is a positive constant in
D2, we can use exactly the same approach as above to prove the result in Theorem 3.27
by replacing the fundamental solution �k1(·, y) with the free space fundamental solution
G(·, y) of

�G(·, y) + k2n(x)G(·, y) = ��y in R3

in the distributional sense together with the Sommerfeld radiation condition, where n(x)
is extended by its constant value in D2 to the whole space R3. Because �k2(·, y)�G(·, y)
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solves the Helmholtz equation with wave number k2 in the neighborhood of � the mapping
properties of the integral operators do not change. We refer the reader to Section 4.2 of
[79] for more details.

In fact the above idea can be applied even in a more general case, provided that n is
a positive constant not equal to one in a neighborhood of @D. More precisely, consider a
neighborhood D2 of @D in D with a C2 smooth boundary (e.g., one can take D2 to be the
region in D bounded by @D and ⌃ := {x� ✏⌫(x), x 2 @D} for some ✏ > 0 where ⌫ is
the outward unit normal vector to @D). Assume that the refractive index in D2 is a positive
constant n 6= 1, whereas in D1 := D\D2 the refractive index is such that the transmission
problem 8

>>>>>>>>>>><

>>>>>>>>>>>:

�w + k2n(x)w = 0 in D1,

�! + k2n! = 0 in R3
\D1,

w � ! = � on ⌃,

@w

@⌫
�
@!

@⌫
=  on ⌃,

lim
r!1

r

✓
@!

@r
� ik

p
n2!

◆
= 0

(3.97)

is well-posed. Then a result similar to that in Theorem 3.27 holds true in this case. Indeed,
without going into details, in D2 we can express v and w by (3.93) and (3.94), respectively,
and in D1 we leave the expressions for v and w in the form of a partial differential equation
with Cauchy data connected to w in D2. Hence it is possible to obtain an equation of the
form (3.96), where the operator Z(k) is written as

Z(k) = Z@D
n

(k) + Z⌃,@D(k) (A(k))�1 Z@D,⌃(k),

where now A(k) is the invertible solution operator corresponding to the well-posed trans-
mission problem (3.97).

The above discussion implies that the Fredholm alternative can be applied to the in-
terior transmission problem (3.1), provided that the refractive index is a positive constant
different from one in a neighborhood of the boundary @D and otherwise satisfies the as-
sumptions for which the direct scattering problem is well-posed. Note that this analysis
includes the case when inside D there are obstacles with different types of boundary con-
ditions. The solvability of the interior transmission problem (3.1) for almost all k 2 C
amounts to proving that there exists a wave number k which is not a transmission eigen-
value. Assumptions on n under which the latter is true are discussed in Section 3.1.3 and
in [159]. It is possible to derive different boundary integral equations equivalent to the
interior transmission problem. In [50] the transmission eigenvalue problem is analyzed as
one single boundary integral equation in terms of the Dirichlet-to-Neumann or Robin-to-
Neumann operators. In particular, when this formulation is used to compute transmission
eigenvalues, it results in a noticeable reduction of computational costs.

3.2 Solvability of the Interior Transmission Problem for
Anisotropic Media

We turn our attention to the interior transmission problem corresponding to the scattering
problem for the anisotropic inhomogeneous media introduced in Section 1.4.2, which reads
as follows: Given f 2 H

1
2 (@D), h 2 H�

1
2 (@D), `1 2 H�1(D), and `2 2 L2(D), find
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w 2 H1(D) and v 2 H1(D) satisfying

8
>>>>><

>>>>>:

r ·Arw + k2nw = `1 in D,

�v + k2v = `2 in D,

w � v = f on @D,

@w

@⌫A
�
@v

@⌫
= h on @D,

(3.98)

where
@u

@⌫A
:= ⌫ ·Aru.

Definition 3.30. Values of k 2 C for which the homogeneous interior transmission
problem

8
>>>>><

>>>>>:

r ·Arw + k2nw = 0 in D,

�v + k2v = 0 in D,

w = v on @D,

@w

@⌫A
=
@v

@⌫
on @D

(3.99)

has nontrivial solutions w 2 H1(D) and v 2 H1(D) are called transmission eigenvalues.

As in the case of isotropic media we are concerned with whether the interior trans-
mission problem, or a compact perturbation of it, has a unique solution that depends con-
tinuously on the data. In many applications discussed in Chapter 2, (3.98) appears with
`1 = `2 = 0. However, in our presentation here we include possibly nonzero `1 and `2;
this case is needed, for instance, in the proof of the uniqueness theorem in Section 1.4.2. In
general we will assume that the support D ⇢ R3 of the anisotropic inhomogeneous media
has Lipschitz boundary @D, unless mentioned otherwise, and ⌫ is the unit normal vector
directed outwards to D. The assumptions on the constitutive material properties are those
introduced in Section 2.5, which we recall here for the sake of the reader’s convenience: A
is a 3⇥ 3 symmetric matrix with L1(D)-entries such that

⇠ · <(A)⇠ � � |⇠|2 and ⇠ · =(A)⇠  0

for all ⇠ 2 C3, almost everywhere for x 2 D and some constant � > 0, whereas n 2

L1(D) is a complex valued scalar function such that <(n) > 0 and =(n) � 0. For the
purpose of this section and for later use we make the following notation:

a⇤ := inf
D

inf
|⇠|=1

⇠ · <(A)⇠ > 0,

a⇤ := sup
D

sup
|⇠|=1

⇠ · <(A)⇠ < 1,

n⇤ := inf
D

<(n) > 0 and n⇤ := sup
D

<(n) < 1.

(3.100)

Various techniques are used to analyze the interior transmission problem depending on
the assumptions on the constitutive material parameters A and n.
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3.2.1 The Case of One Sign Contrast in A

In this section we consider the case when the contrast A � I does not change sign in
D; more specifically, we assume that either a⇤ > 1 or 0 < a⇤ < 1. To present our
ideas we start the discussion with the case when a⇤ > 1 following [31] and [45] (see also
[29]). We first study an intermediate problem called the modified interior transmission
problem, which turns out to be a compact perturbation of our original transmission prob-
lem. The following is the modified interior transmission problem: Given f 2 H

1
2 (@D),

h 2 H�
1
2 (@D), a real valued function � 2 C(D̄), and two functions `1 2 L2(D) and

`2 2 L2(D), find w 2 H1(D) and v 2 H1(D) satisfying
8
>>>>><

>>>>>:

r ·Arw � �w = `1 in D,

�v � v = `2 in D,

w � v = f on @D,

@w

@⌫A
�
@v

@⌫
= h on @D.

(3.101)

This is exactly the problem whose well-posedness is needed in the proof of the uniqueness
theorem in Section 1.4.2. We now reformulate (3.101) as an equivalent variational problem.
To this end, we define the Hilbert space

W (D) :=
n
v 2

�
L2(D)

�3
: r · v 2 L2(D) and r⇥ v = 0

o

equipped with the norm kvk2
W

= kvk2
L2(D)+kr·vk2

L2(D). We denote by h·, ·i the duality
pairing between H

1
2 (@D) and H�

1
2 (@D). The duality pairing

h',  · ⌫i =

Z

D

' r · dx+

Z

D

r' · dx (3.102)

for (', ) 2 H1(D)⇥W (D) will be of particular interest in what follows.
We next introduce the sesquilinear form A defined on {H1(D)⇥W (D)}2 by

A(U, V ) =

Z

D

Arw ·r'̄ dx+

Z

D

mw '̄ dx+

Z

D

r · vr ·  ̄ dx+

Z

D

v ·  ̄ dx

�
⌦
w,  ̄ · ⌫

↵
� h'̄, v · ⌫i , (3.103)

where U := (w,v) and V := (', ) are in H1(D)⇥W (D). We denote by L : H1(D)⇥
W (D) ! C the bounded antilinear functional given by

L(V ) =

Z

D

(`1 '̄+ `2 r ·  ̄) dx+ h'̄, hi �
⌦
f,  ̄ · ⌫

↵
. (3.104)

Then the variational formulation of problem (3.101) is to find U = (w,v) 2 H1(D) ⇥
W (D) such that

A(U, V ) = L(V ) for all V 2 H1(D)⇥W (D). (3.105)

The following theorem states the equivalence between problems (3.101) and (3.105); for
the proof see Theorem 6.5 of [29].

Theorem 3.31. The problem (3.101) has a unique solution (w, v) 2 H1(D) ⇥H1(D) if
and only if the problem (3.105) has a unique solution U = (w,v) 2 H1(D) ⇥ W (D).
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Moreover if (w, v) is the unique solution to (3.101), then U = (w,rv) is the unique
solution to (3.105). Conversely, if U = (w,v) is the unique solution to (3.105), then the
unique solution (w, v) to (3.101) is such that v = rv.

We now investigate the modified interior transmission problem in the variational for-
mulation (3.105).

Lemma 3.32. Assume that a⇤ > 1 and �(x) � a⇤. Then problem (3.105) has a unique
solution U = (w,v) 2 H1(D)⇥W (D). This solution satisfies the a priori estimate

kwkH1(D) + kvk
W

 2C
a⇤ + 1

a⇤ � 1

⇣
k`1kL2(D) + k`2kL2(D)

+ kfk
H

1
2 (@D)

+ khk
H

� 1
2 (@D)

⌘
,

(3.106)

where the constant C > 0 is independent of `1, `2, f , h, and a⇤.

Proof. The trace theorems and Schwarz’s inequality ensure the continuity of the antilinear
functional L on H1(D)⇥W (D) and the existence of a constant C independent of ⇢1, ⇢2,
f , and h such that

kLk  C
⇣
k`1kL2 + k`2kL2 + kfk

H
1
2
+ khk

H
� 1

2

⌘
. (3.107)

On the other hand, if U = (w,v) 2 H1(D) ⇥ W (D), the assumptions that a⇤ > 1 and
�(x) � a⇤ imply

|A(U,U)| � a⇤ kwk
2
H1 + kvk2

W
� 2Re (hw̄, vi) . (3.108)

According to the duality identity (3.102), one has by Schwarz’s inequality that

| hw̄, vi |  kwk
H1 kvkW

and therefore
|A(U,U)| � a⇤ kwk

2
H1 + kvk2

W
� 2 kwk

H1 kvkW .

Using the identity ↵x2 + y2 � 2xy = ↵+1
2

�
x�

2
↵+1 y

�2
+ ↵�1

2 x2 + ↵�1
↵+1y

2 with ↵ = a⇤,
we conclude that

|A(U,U)| �
a⇤ � 1

a⇤ + 1

⇣
kvk2

W
+ kwk2

H1

⌘
,

whence A is coercive. The continuity of A follows easily from Schwarz’s inequality and
the classic trace theorems. Lemma 3.32 is now a direct consequence of the Lax–Milgram
lemma applied to (3.105).

Combining Theorem 3.31 and Lemma 3.32 gives the following result concerning the
well-posedness of the modified interior transmission problem.

Corollary 3.33. Assume that a⇤ > 1 and �(x) � a⇤. Then the modified interior transmis-
sion problem (3.101) has a unique solution (w, v) that satisfies

kwk
H1(D) + kvk

H1(D)  c
⇣
k`1kL2(D) + k`2kL2(D) + kfk

H
1
2 (@D)

+ khk
H

� 1
2 (@D)

⌘

with c > 0 independent of `1, `2, f , h.
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It is possible to perform the same analysis for the case when 0 < a⇤ < 1 and prove a
statement similar to that in Corollary 3.33 for � chosen such that a⇤ < � < 1. This is done
by arriving at a similar variational formulation where the roles of w and v are interchanged,
i.e., making the substitution rw = w (see [45] for the details).

Summarizing the above analysis, we can state the following result concerning the solv-
ability of interior transmission problem (3.98).

Theorem 3.34. Assume that either a⇤ > 1 or 0 < a⇤ < 1. Then the Fredholm alternative
can be applied to (3.98). In particular if k is not a transmission eigenvalue, then (3.98)
has a unique solution (w, v) 2 H1(D)⇥H1(D) that satisfies the estimate

kwk
H1(D) + kvk

H1(D)  c
⇣
k`1kL2(D) + k`2kL2(D) + kfk

H
1
2 (@D)

+ khk
H

� 1
2 (@D)

⌘

with c > 0 independent of `1, `2, f , h.

Proof. Let us consider a⇤ > 1 (the other case can be handled in exactly the same way).
Set

X (D) =
�
(w, v) 2 H1(D)⇥H1(D) : r·Arv 2 L2(D) and �w 2 L2(D)

 
(3.109)

and consider the operator G from X (D) into L2(D) ⇥ L2(D) ⇥ H
1
2 (@D) ⇥ H�

1
2 (@D)

defined by

G(w, v) =

 
r·Arw � �w,�v � v, (w � v)|@D ,

✓
@w

@⌫
�
@v

@⌫

◆

|@D

!

with a constant � > 1. Obviously G is continuous, and from Corollary 3.33 we know that
the inverse of G exists and is continuous. Now consider the operator T from X (D) into
L2(D)⇥ L2(D)⇥H

1
2 (@D)⇥H�

1
2 (@D) defined by

T (w, v) =
�
(k2 n+ �)w, (k2 + 1)v, 0, 0

�
.

From the compact embedding of H1(D) into L2(D), the operator T is compact. Hence
the injectivity of G + T , which is equivalent to k not being a transmission eigenvalue,
implies (G + T )�1 exists (i.e., the existence of a unique solution to (3.98)) and is bounded
(i.e., this solution satisfies the a priori estimate stated in the formulation of Theorem 3.34).

In general we cannot conclude the solvability of the interior transmission problem as k
may be a transmission eigenvalue (see Definition 3.30). Similarly to the case of isotropic
media, it is of great interest to know what assumptions on A and n guarantee that trans-
mission eigenvalues either do not exist or form a countable set. The following theorem
concerning the nonexistence of transmission eigenvalues holds under no assumptions on
the contrasts A� I and n� 1.

Theorem 3.35. Assume that A 2
�
C1(D)

�3⇥3 and n 2 C(D). If either =(n) > 0 or
=
�
⇠̄ ·A ⇠

�
< 0 at a point x0 2 D, then the interior transmission problem (3.98) has at

most one solution for k real (i.e., there are no transmission eigenvalues).

Proof. Let w and v be a solution of the homogeneous interior transmission problem
(3.99). Applying the divergence theorem to w and Arw, using the boundary condition,
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and applying Green’s first identity to v and v, we obtain
Z

D

rw ·Arw dy �

Z

D

k2n|w|2 dy =

Z

@D

w ·
@w

@⌫A
dy =

Z

D

|rv|2 dy �

Z

D

k2|v|2 dy.

Hence

=

0

@
Z

D

rw ·Arw dy

1

A = 0 and =

0

@
Z

D

n|v|2 dy

1

A = 0. (3.110)

If =(n) > 0 at a point x0 2 D, and hence by continuity in a small disk ⌦✏(x0), then
the second equality of (3.110) and the unique continuation principle (Theorem 17.2.6 in
[98]) imply that v ⌘ 0 in D. From the boundary conditions in (3.99), and the integral
representation formula, w also vanishes in D. In the case when =

�
⇠̄ ·A ⇠

�
< 0 at a point

x0 2 D for all ⇠ 2 C3, and hence by continuity in a small ball ⌦✏(x0), from the first
equality of (3.110) we obtain that rw ⌘ 0 in ⌦✏(x0) and from the equation w ⌘ 0 in
⌦✏(x0), whence again from the unique continuation principle w ⌘ 0 in D. Similarly as
above, this implies that v = 0 also, which ends the proof.

Remark 3.36. The result of Theorem 3.35 holds true for A 2 (L1(D))3⇥3 and n 2

L1(D), but in this case one has to assume that either =(n) > 0 or =
�
⇠̄ ·A ⇠

�
< 0 almost

everywhere in D

In view of Theorem 3.35 and Remark 3.36 we now assume that both A and n are real
valued, and show that under appropriate assumptions the transmission eigenvalues k 2 C
form at most a discrete set with +1 as the only accumulation point. To this end, it suffices
to show that there exists a  2 C which is not a transmission eigenvalue. Indeed, let us
define the operator Lk from X (D) into L2(D)⇥ L2(D)⇥H

1
2 (@D)⇥H�

1
2 (@D) by

Lk(w, v) =

 
r·Arw + k2nw,�v + k2v, (w � v)|@D ,

✓
@w

@⌫
�
@v

@⌫

◆

|@D

!
,

where X (D) is defined by (3.109). Obviously the family of operators Lk depends analyt-
ically on k 2 C. If we can show that L is injective for some  2 C (i.e., this  is not a
transmission eigenvalue), then, thanks to Theorem 3.34, L�1


exists and is bounded. Then,

writing
Lk = L

�
I � L

�1


(L � Lk)
�
,

the discreteness of transmission eigenvalues follows form the fact that

L � Lk =
�
(2 � k2)nw, (2 � k2)v, 0, 0

�

is compact. The approach to showing that L is injective for some  2 C depends fun-
damentally on whether n ⌘ 1 or n 6⌘ 1. Hence in the following we distinguish between
these two cases.

Discreteness of Transmission Eigenvalues for n ⌘ 1. Here we assume that =(A) = 0
and either a⇤ > 1 or 0 < a⇤ < 1. The transmission eigenvalue problem for n ⌘ 1 reads

8
>>>>><

>>>>>:

r ·Arw + k2w = 0 in D,

�v + k2v = 0 in D,

w = v on @D,

@w

@⌫A
=
@v

@⌫
on @D

(3.111)
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with v 2 H1(D) and w 2 H1(D). The structure of this problem resembles the problem
studied in Section 3.1.1. The main idea is to make an appropriate substitution and rewrite
it as a transmission eigenvalue problem with contrast in the lower order terms and hence
use a fourth order formulation as in Section 3.1.1. This approach was first introduced in
[34] and later used in [30] and [46]. To this end, let w 2 H1(D) and v 2 H1(D) satisfy
(3.111) and make the substitution

w = Arw 2 L2(D)3 and v = rv 2 L2(D)3.

Since from (3.100) A�1 exists and is bounded, we have that

rw = A�1w.

Taking the gradient of the first two equations in (3.111), we obtain that w and v satisfy

r(r ·w) + k2A�1w = 0 (3.112)

and
r(r · v) + k2v = 0, (3.113)

respectively, in D. Obviously the second boundary condition in (3.111) implies that

⌫ · v = ⌫ ·w on @D, (3.114)

whereas the equations in (3.111) yield

�k2w = r ·w and � k2v = r · v

which together with the first boundary condition in (3.111) give

r ·w = r · v on @D. (3.115)

We can now formulate the interior transmission eigenvalue problem (3.111) in terms of
w and v. In addition to the usual energy spaces H1(D) and H1

0 (D), we introduce the
Sobolev spaces

H(div, D) :=
�
u 2 L2(D)3 : r · u 2 L2(D)

 
,

H0(div, D) := {u 2 H(div, D) : ⌫ · u = 0 on @D}

and

H(D) :=
�
u 2 H(div, D) : r · u 2 H1(D)

 
,

H0(D) :=
�
u 2 H0(div, D) : r · u 2 H1

0 (D)
 

(3.116)

equipped with the scalar product

(u,v)
H(D) := (u,v)

L2(D) + (r · u,r · v)
H1(D) .

Letting N := A�1, in terms of new vector valued functions w and v the transmission
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eigenvalue problem (3.111) can be written as the equivalent problem
8
>>>><

>>>>:

r(r ·w) + k2Nw = 0 in D,

r(r · v) + k2v = 0 in D,

⌫ ·w = ⌫ · v on @D,

r ·w = r · v on @D

(3.117)

with w 2 (L2(D))3, v 2 (L2(D))3 such that w � v 2 H0(D).
Following Section 3.1.1, we can now write (3.117) as an equivalent eigenvalue problem

for u := w � v 2 H0(D) satisfying the forth order equation
�
rr ·+k2N

�
(N � I)�1

�
rr · u+ k2u

�
= 0 in D, (3.118)

which in the variational form reads as follows: Find u 2 H0(D) such that
Z

D

(N � I)�1
�
rr · u+ k2u

�
·
�
rr · u0 + k2Nu0

�
dx = 0 (3.119)

for all u0
2 H0(D). The variational equation (3.119) can in turn be written as an operator

equation

Aku� k2Bu = 0 or Ãku� k2Bu = 0 for u 2 H0(D), (3.120)

where the bounded linear operators Ak : H0(D) ! H0(D), Ãk : H0(D) ! H0(D), and
B : H0(D) ! H0(D) are defined by means of the Riesz representation theorem

(Aku,u
0)H0(D) = Ak(u,u

0) and (Ãku,u
0)H0(D) = Ãk(u,u

0) (3.121)

and
(Bu,u0)H0(D) = B(u,u0) (3.122)

with the sesquilinear forms Ak, Ãk, and B given by

Ak(u,u
0) :=

�
(N � I)�1

�
rr · u+ k2u

�
,
�
rr · u0 + k2u0

��
D
+ k4 (u,u0)

D
,

Ãk(u,v) :=
�
N(I �N)�1

�
rr · u+ k2u

�
,
�
rr · u0 + k2u0

��
D

+(rr · u,rr · v)
D
,

and
B(u,v) := (r · u,r · v)

D
,

respectively, where (·, ·)
D

denotes the L2(D)-inner product.
In our discussion we must distinguish between the two cases a⇤ > 1 and 0 < a⇤ < 1

(note that a⇤ and a⇤ are the infimum in D of the smallest eigenvalue of A and the supremum
in D of the largest eigenvalue of A, respectively). The assumption that 0 < a⇤  a⇤ < 1
implies that ⇠ · (N � I)�1⇠ � ↵|⇠|2 for all ⇠ 2 R3 almost everywhere in D and some
constant ↵ > 0 since

inf
⇠ 2 C3

k⇠k = 1

⇠̄ · (A�1
� I)�1 ⇠ =

1

sup
⇠
⇠̄ ·A�1 ⇠ � 1

�
1

1/a⇤ � 1
= ↵,
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where
↵ :=

a⇤

1� a⇤
> 0. (3.123)

On the other hand, the assumption that 1 < a⇤  a⇤ < 1 implies that ⇠ ·N(I�N)�1⇠ �
↵|⇠|2 for all ⇠ 2 R3 almost everywhere in D and some constant ↵ > 0. Indeed, noting that
A�1(I �A�1)�1 = (I �A�1)�1

� I we have

inf
⇠ 2 C3

k⇠k = 1

⇠̄ ·A�1(I �A�1)�1 ⇠ = inf
⇠

⇠̄ · (I �A�1)�1 ⇠ � 1

=
1

1� sup
⇠
⇠̄ ·A�1 ⇠

� 1 �
1

1� 1/a⇤
� 1 = ↵,

where
↵ :=

1

a⇤ � 1
> 0. (3.124)

Theorem 3.37. Let �1(D) be the first eigenvalue of �� on D. Then

1. for 0 < a⇤ < 1, real wave numbers k > 0 such that k2 < a⇤�1(D) are not
transmission eigenvalues;

2. for a⇤ > 1, real wave numbers k > 0 such that k2 < �1(D) are not transmission
eigenvalues.

Proof. First we recall that for r · u 2 H1
0 (D), using the Poincaré inequality, we have that

kr · uk2
L2(D) 

1

�1(D)
krr · uk2

L2(D), (3.125)

where �1(D) is the first Dirichlet eigenvalue of �� on D.
Now assume that a⇤ < 1 which from the above implies ⇠ · (N(x)� I)�1⇠ � ↵|⇠|2 for

all ⇠ 2 R3 and almost every x 2 D with ↵ given by (3.123). Then we have that

Ak(u,u) � ↵krr · u+ k2uk2
L2(D) + k4kuk2

L2(D).

Setting X = krr · ukL2(D) and Y = k2kukL2(D) we have that

krr · u+ k2uk2
L2(D) � X2

� 2XY + Y 2

and therefore
Ak(u,u) � ↵X2

� 2↵XY + (↵+ 1)Y 2. (3.126)

From the identity,

↵X2
� 2↵XY + (↵+ 1)Y 2 = ✏

⇣
Y �

↵

✏
X
⌘2

+

✓
↵�

↵2

✏

◆
X2 + (1 + ↵� ✏)Y 2

for ↵ < ✏ < ↵+ 1 and (3.125) we have that

Ak(u,u)� k2B(u,u) �

✓
↵�

↵2

✏

◆
krr · uk2

L2(D) + (1 + ↵� ✏)k2kuk2
L2(D)

� k2
1

�1(D)
krr · uk2

L2(D).
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Therefore, if k2 <
�
↵� ↵2/✏

�
�1(D) for every ↵ < ✏ < ↵+1, then Ak(·, ·)�k2B(·, ·) is

coercive and hence Ak � k2B is invertible. In particular taking ✏ arbitrarily close to ↵+ 1
we have that if k2 < ↵

1+↵�1(D) = a⇤�1(D), then k is not a transmission eigenvalue,
which proves the first part.

Next, let a⇤ > 0, which from the above implies ⇠ ·N(x)(I�N(x))�1⇠ � ↵|⇠|2 for all
⇠ 2 R3 almost everywhere for x 2 D with ↵ given by (3.124). Then in exactly the same
way as for the first part we obtain

Ãk(u,u)� k2B(u,u) � (1 + ↵� ✏)krr · uk2
L2(D) +

✓
↵�

↵2

✏

◆
k2kuk2

L2(D)

� k2
1

�1(D)
krr · uk2

L2(D).

In particular, Ãk(·, ·)� k2B(·, ·) is coercive as long as k2 < (1 + ↵� ✏)�1(D). Hence by
taking ✏ > 0 arbitrarily close to ↵ we have that, for k2 < �1(D), Ãk � k2B is invertible,
which proves the second part.

Combining Theorem 3.37 with the discussion right below Remark 3.36, we can state
the following result.

Theorem 3.38. Assume that n ⌘ 1, =(A) = 0, and either a⇤ > 1 or 0 < a⇤ < 1. Then the
transmission eigenvalues form a discrete (possibly empty) set in C with +1 as the only
possible accumulation point.

Discreteness of Transmission Eigenvalues for n 6⌘ 1. Again from Theorem 3.35 and
Remark 3.36 we can assume that =(A) = 0 and =(n) = 0, and either a⇤ > 1 or 0 <
a⇤ < 1, and we consider the transmission eigenvalue problem (3.99). While we have
assumed that the contrast A � I does not change sign in D, our goal here is to prove
the discreteness of transmission eigenvalues under less restrictive assumptions on n � 1,
more specifically, allowing n � 1 to change sign in D. To this end, we see that a natural
variational formulation equivalent to the transmission eigenvalue problem is as follows:
Find (w, v) 2 H(D) such that
Z

D

Arw ·rw0 dx�

Z

D

rv ·rv0 dx� k2
Z

D

nww0 dx+ k2
Z

D

v v0 dx = 0 (3.127)

for all (w0, v0) 2 H(D), where H(D) denotes the Sobolev space

H(D) :=
�
(w, v) 2 H1(D)⇥H1(D) : w � v 2 H1

0 (D)
 
, (3.128)

equipped with the H1(D) Cartesian product norm. To this end, taking w0 = v0 = 1 in
(3.127), we first notice that the solution (w, v) of (3.99) satisfies

k2
Z

D

(nw � v)dx = 0.

This suggests considering (3.127) in a subspace of H(D) defined by

Y(D) :=

8
<

:(w, v) 2 H(D) such that
Z

D

(nw � v)dx = 0

9
=

; .
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Now suppose
R
D
(n � 1)dx 6= 0. Arguing by contradiction, one can in a standard manner

prove the existence of a Poincaré constant CP > 0 (which depends only on D and n) such
that

kwk2
D
+ kvk2

D
 CP (krwk2

D
+ krvk2

D
) for all (w, v) 2 Y(D). (3.129)

We observe that k 6= 0 is a transmission eigenvalue if and only if there exists a nontrivial
element (v, w) 2 Y(D) such that

ak((w, v), (w
0, v0)) = 0 for all (w0, v0) 2 Y(D),

where the sesquilinear from ak(·, ·) : Y(D)⇥ Y(D) ! C is defined by

ak((w, v), (w
0, v0)) :=

Z

D

Arw ·rw0 dx�

Z

D

rv ·rv0 dx�k2
Z

D

nww0 dx+k2
Z

D

v v0 dx.

If Ak : Y(D) ! Y(D) is the bounded linear operator defined by means of the Riesz
representation theorem by

(Ak(w, v), (w
0, v0))

Y(D) := ak((w, v), (w
0, v0)),

our goal is to find a k 2 C for which the operator Ak is invertible. To this end, we
observe that ak(·, ·) is not coercive for any k 2 C due to the different signs in front of the
gradient terms, but employing the arguments in [24] and [60], we show in the following
that ak(·, ·) is so-called T -coercive for some particular values of k, and this suffices to
show that Ak is invertible for those k. The T -coercivity property can be interpreted as a
form of the Babuška–Brezzi inf-sup conditions. More specifically, the idea behind it is to
replace ak(·, ·) by aT

k
(·, ·) defined by

aT
k
((w, v), (w0, v0)) := ak((w, v),T(w0, v0)) (3.130)

for all ((w, v), (w0, v0)) 2 Y(D) ⇥ Y(D) with the operator T : Y(D) ! Y(D) being
an isomorphism. If we can choose the isomorphism T such that aT (·, ·) is coercive, then,
using the Lax–Milgram theorem and the fact that T is an isomorphism, we can deduce that
the operator Ak : Y(D) ! Y(D) is invertible.

To present the idea of how to apply the T -coercivity approach, we focus on the case
when 0 < a⇤ < 1. Letting

�(v) := 2

R
D
(n� 1)v dxR

D
(n� 1) dx

,

we consider the mapping T : Y(D) ! Y(D) defined by

T : (w, v) 7! (w � 2v + �(v),�v + �(v)).

Note that �(�(v)) = 2�(v), which implies that T2 = I , and hence T is an isomorphism
in Y(D). Then for all (w, v) 2 Y(D) we have that

��aT
k
((w, v), (w, v))

��

= |(Arw,rw)D + (rv,rv)D � 2(Arw,rv)D

� k2 ((nw,w)D + (v, v)D � 2(nw, v)D)
��

� (Arw,rw)D + (rv,rv)D � 2 |(Arw,rv)D|

� |k|2 ((nw,w)D + (v, v)D + 2 |(nw, v)D|)

� (1�
p

a⇤) ((Arw,rw)D + (rv,rv)D)

� |k|2
⇣
1 +

p

n⇤)((nw,w)D + (v, v)D
⌘
, (3.131)
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where in the first inequality we use the fact that
R
D
(nw�v)dx = 0 and hence �(v) cancels.

Note that in fact we introduce �(v) to ensure that the operator T has values in Y(D).
Now, if we choose k 2 C such that

|k|2 <
a⇤(1�

p
a⇤)

CP max(n⇤, 1) (1 +
p
n⇤)

, (3.132)

then aT
k

and hence Ak are invertible in Y(D); in other words all k 2 C satisfying (3.132)
are not transmission eigenvalues.

The case a⇤ > 1 can be handled in a similar way by using the isomorphism T :
Y(D) ! Y(D) defined by

T : (w, v) 7! (w � �(w),�v + 2w � �(w)).

In particular in this case all k 2 C such that

|k|2 <
(1� 1/

p
a⇤))

CP max(n⇤, 1) (1 + 1/
p
n⇤)

(3.133)

are not transmission eigenvalues.
Combining the above analysis with the discussion right below Remark 3.36, we can

prove the following result.

Theorem 3.39. Assume that either 0 < a⇤ < 1 or a⇤ > 1, and
R
D
(n � 1)dx 6= 0. Then

the transmission eigenvalues form a discrete (possibly empty) set in C with +1 as the only
possible accumulation point.

Summarizing, in the case when <(A) � I is bounded away from zero and does not
change sign in D, and either =(A) < 0 or =(n) > 0 in a subset of D, then the interior
transmission problem (3.98) has a unique solution which depends continuously on the
data. Furthermore, if =(A) = 0 and =(n) = 0 in D, and A � I is bounded away from
zero and does not change sign in D and

R
D
(n � 1)dx 6= 0, then the interior transmission

problem (3.98) has a unique solution depending continuously on the data except for a
possibly discrete set of wave numbers k 2 C with +1 the only possible accumulation
point, referred to as transmission eigenvalues.

3.2.2 The Case of Sign Changing Contrast in A

We return to the solvability question of (3.98), but here we allow for <(A) � I to change
sign inside D. The T -coercivity approach used to prove Theorem 3.39 can be applied to
study the interior transmission problem in this case. To this end, without loss of generality,
we can take f = 0 in (3.98). Otherwise from the trace theorem it is possible to find
v0 2 H1(D) supported in D such that v0|@D = f with kfk

H
1
2 (@D)

 Ckv0kH1(D) with
C a positive constant, and then w and v� v0 satisfy the interior transmission problem with
f := 0, h := h + @v0/@⌫, and ` := `2 + �v0 + k2v0. Similarly to (3.127), the interior
transmission problem (3.98) is equivalently formulated as follows: Find (w, v) 2 H(D)
such that

Z

D

Arw ·rw0 dx�

Z

D

rv ·rv0 dx� k2
Z

D

nww0 dx+ k2
Z

D

v v0 dx

=

Z

@D

hw0 ds�

Z

D

`1w0 dx�

Z

D

`2v0 dx for all (w0, v0) 2 H(D), (3.134)
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where H(D) is defined by (3.128). Let us define the bounded sesquilinear forms ak(·, ·),
a(·, ·), b(·, ·) : H(D)⇥H(D) ! C by

ak((w, v), (w
0, v0)) :=

Z

D

Arw·rw0 dx�

Z

D

rv·rv0 dx�k2
Z

D

nww0 dx+k2
Z

D

v v0 dx,

a((w, v), (w0, v0)) :=

Z

D

Arw ·rw0 dx�

Z

D

rv ·rv0 dx+2
Z

D

�ww0 dx�2
Z

D

v v0 dx

for some constants  > 0 and � > 0 (to become precise later) and

b((w, v), (w0, v0)) := �(2 + k2)

Z

D

(� � n)ww0 dx+ (2 + k2)

Z

D

v v0 dx,

and the bounded antilinear functional L : H(D) ! C by

L(w0, v0) :=

Z

@D

hw0 ds�

Z

D

`1w0 dx�

Z

D

`2v0 dx.

Letting A : H(D) ! H(D) and B : H(D) ! H(D) be the bounded linear operators
defined by means of the Riesz representation theorem

(Ak(w, v), (w
0, v0))

H(D) = ak((w, v), (w
0, v0)), (3.135)

(A(w, v), (w0, v0))
H(D) = a((w, v), (w0, v0)), (3.136)

(B(w, v), (w0, v0))
H(D) = b((w, v), (w0, v0)), (3.137)

respectively, and ` 2 H(D) the Riesz representative of L defined by

(`, (w0, v0))
H(D) = L(w0, v0),

then the interior transmission problem entails finding (w, v) 2 H(D) satisfying

Ak(w, v) := (A+B)(w, v) = `.

Thanks to the compact embedding of H1(D) in L2(D), B is a compact operator since
obviously kB(w, v)kH(D) is bounded by Ck(w, v)kL2(D)⇥L2(D), where C is a positive
constant. Hence it suffices to show that A is invertible for some  > 0 and � > 0 in order
to conclude that A + B is a Fredholm operator of index zero, in which case the interior
transmission problem (3.98) has a unique solution, provided k is not a transmission eigen-
value (see Definition 3.30). To prove the invertibility of A we employ the T -coercivity
argument as discussed above in Theorem 3.39.

At this point we need to assume that there exists a �-neighborhood N of the boundary
@D in D, i.e.,

N := {x 2 D : dist(x, @D) < �}

such that =(A) = 0 in N and either 0 < a? < 1 or a? > 1, where

a? := inf
x2N

inf
⇠ 2 R3
|⇠| = 1

⇠ ·A(x)⇠ > 0,

a? := sup
x2N

sup
⇠ 2 R3
|⇠| = 1

⇠ ·A(x)⇠ < 1.
(3.138)
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Note that the above requirements hold only in the boundary neighborhood N , whereas in
D \ N there are no assumptions on the contrast A � I and =(A) besides the physical
assumptions stated at the beginning of Sections 3.2.

Let us start with the case when 0 < a⇤ < 1 and choose 0 < � < 1. We introduce
� 2 C

1(D), a cutoff function such that 0  �  1 is supported in N and equals one in a
neighborhood of the boundary, and define the isomorphism T : H(D) ! H(D) by

T : (w, v) 7! (w � 2�v,�v).

(Note again that T is an isomorphism since T2 = I .) We then have that for all (w, v) 2
H(D)

��aT ((w, v), (w, v))
�� = |(Arw,rw)D + (rv,rv)D � 2(Arw,r(�v))D

+ 2 (�(w,w)D + (v, v)D � 2�(w,�v)D)
�� . (3.139)

Using Young’s inequality, we can write

2 |(Arw,r(�v))D|  2 |(�Arw,rv)N |+ 2 |(Arw,r(�)v)N |

 ⌘(Arw,rw)N + ⌘�1(Arv,rv)N (3.140)
+ ↵(Arw,rw)N + ↵�1(Ar(�)v,r(�)v)N

and
2 |(�w,�v)D|  �(�w,w)N + ��1(�v, v)N (3.141)

for arbitrary constants ↵ > 0, � > 0, and ⌘ > 0. Substituting (3.140) and (3.141) into
(3.139), we now obtain

��aT ((w, v), (w, v))
�� � (Arw,rw)

D\N
+ (rv,rv)

D\N

+ 2
⇣
�(w,w)

D\N
+ (v, v)

D\N

⌘
(3.142)

+ ((1� ⌘ � ↵)Arw,rw)N + ((I � ⌘�1A)rv,rv)N

+ 2((1� �)�w,w)N + ((2(1� ��1�)� sup
N

|r�|2 a?↵�1)v, v)N .

Taking ⌘, ↵, and � such that a? < ⌘ < 1, � < � < 1, and 0 < ↵ < 1� ⌘, and  > 0 large
enough we obtain the coercivity of aT (·, ·), which implies that A is invertible.

Exactly in the same way we can treat the case when a? > 1. More specifically we
chose � > 1, define the isomorphism T : H(D) ! H(D) by

T : (w, v) 7! (w,�v + 2�w),

and do exactly the same calculations as for the case of 0 < a? < 1 to obtain the T -
coercivity of a(·, ·) and consequently the invertibility of A.

Thus we have proven the following result.

Theorem 3.40. Assume that there exists a neighborhood N of the boundary @D where
=(A) = 0 and either 0 < a? < 1 or a? > 1 (see (3.138)). Then the interior transmis-
sion problem (3.98) satisfies the Fredholm alternative, i.e., there exists a unique solution
depending continuously on the data, provided k is not a transmission eigenvalue.

Remark 3.41. In view of the result of Theorem 3.36, the above theorem implies the well-
posedness of the interior transmission problem (3.98), provided that either =(A) < 0 in a
subregion of D \ N or =(n) > 0 is a subregion of D.
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Remark 3.42. The assumption that A is real in some neighborhood of @D in Theorem
3.41 can be relaxed. In particular, by taking the real part in (3.142) the estimates can be
carried through if either sup

N

⇠ · (�=(A))⇠ < inf
N

⇠ · <(A)⇠ or 0 < sup
N

⇠ · <(A)⇠ < 1, for

some neighborhood N of the boundary @D.

We conclude this section by proving a discreteness result concerning transmission
eigenvalues in the case when =(A) = =(n) ⌘ 0. To this end let us introduce

n? := inf
x2N

n(x) > 0 and n? := sup
x2N

n(x) < 1. (3.143)

Theorem 3.43. Assume that either 0 < a? < 1 and 0 < n? < 1 or a? > 1 and n? > 1.
Then the set of transmission eigenvalues k 2 C is discrete with +1 as the only possible
accumulation point.

Proof. First we notice that Ai for  > 0 is invertible. Indeed, Ai defined by (3.136)
coincides with A defined by (3.137), where � is replaced by n(x), and hence the proof
of T -coercivity occurs in the same way as in (3.142) thanks to the assumptions on n(x).
Then the result of the theorem follows from the fact that Ak � Ai is compact and by an
application of the Analytic Fredholm Theorem 1.12. Note that the mapping k 7! Ak is
analytic in k 2 C.

Remark 3.44. The state-of-the-art sufficient conditions on the real valued coefficients
A and n to ensure solvability of the interior transmission problem for all wave numbers
k 2 C except for an infinite discrete set of transmission eigenvalues that accumulate only
to infinity can be found in [140], [141]. More specifically, these assumptions are that the
matrix valued function A and the scalar function n are real valued and continuous in D
with C2 boundary @D such that

(A(x)⌫, ⌫) (A(x)⇠, ⇠)� (A(x)⌫, ⇠) 6= 1 for all x 2 @D

and for every unit vector ⇠ 2 R3
\ {0} orthogonal to the outward unit normal vector ⌫ at

any x 2 @D and
(A(x)⌫, ⌫)n(x) 6= 1 for all x 2 @D,

where (·, ·) denotes the inner product in R3. The first condition is known as the com-
plementing condition (see [2]). The analyses in these papers employ techniques that are
essentially different from the variational approach systematically developed throughout
this monograph. The interested reader can consult these papers for more details.

We end our discussion in this section by mentioning that, as indicated earlier in the
isotropic media case, some sign condition on the contrast A � I is needed to prove the
Fredholm property of the interior transmission problem as well as the discreteness of the set
of transmission eigenvalues. This is also the case in a series of papers [122], [123], [124],
[125], where an alternative approach to investigating the transmission eigenvalue problem
for anisotropic media was introduced, and a study of the counting function for transmission
eigenvalues was initiated. Although it is not yet understood whether the assumption on the
contrast A � I not changing sign in a neighborhood of the boundary is optimal, there is
an indication that it cannot be relaxed too much. More specifically, in [21] it is shown
that if the contrast A � I changes sign up to the boundary, then the interior transmission
problem may lose its Fredholm property. The extension to Maxwell’s equations of all the
techniques discussed in this chapter can be found in [23], [48], [54], [78].





Chapter 4

The Existence of
Transmission
Eigenvalues

In the previous chapter we have only considered the solvability of the interior transmission
problem and have provided sufficient conditions on the material properties that guarantee
that the transmission eigenvalues form at most a discrete set. The study of these questions
was mainly motivated by the application of sampling methods introduced in Chapter 2.
In particular, knowing that the transmission eigenvalues form at most a discrete set was
deemed to be sufficient since the transmission eigenvalues were something to be avoided
in the context of these reconstruction techniques. Our attention from now on will be to
obtain qualitative information on the material properties of the scattering media using real
transmission eigenvalues since, as we show in Section 5.1, they can be determined from
the far field data. Thus the existence of transmission eigenvalues as well as the derivation
of inequalities connecting transmission eigenvalues and the constitutive material proper-
ties become central questions, and this chapter is dedicated to their investigation. We
remind the reader that the transmission eigenvalue problem is non-self-adjoint and nonlin-
ear. Hence questions related to the existence of transmission eigenvalues or the structure
of associated eigenvectors appeal for nonstandard approaches.

Our discussion in this chapter will be mainly limited to the approach introduced in
[144] and refined in [44] which, under appropriate assumptions on the contrast in the
medium, transforms the transmission eigenvalue problem into a parametric eigenvalue
problem for an auxiliary self-adjoint operator, and this provides a structure to obtain Faber–
Krahn-type inequalities and monotonicity properties for the real transmission eigenvalues.
The abstract framework is presented in Section 4.1.

We proceed in Section 4.2 with the application of this theory to prove the existence of
real transmission eigenvalues for isotropic media under a fixed sign for the contrast. We
rely on the variational framework introduced in the previous chapter.

We show in Section 4.2.1 how the analysis can also be adapted to include the case of
media with voids discussed in Section 3.1.2. The main difficulty here is how to cope with
dependence of the variational space on k. The reader can skip this section in a first reading.

One of the interesting points of the analytical framework of Section 4.1 is that it allows
the derivation of inequalities on real transmission eigenvalues that may be exploited in the
inverse medium problem. We present these inequalities in Section 4.2.2 and complement
our discussion with some results from the literature on free zones for complex transmission
eigenvalues.
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When the index of refraction changes sign inside D, our analytical framework no
longer applies. As an opening for possible other strategies to prove the existence of trans-
mission eigenvalues, we outline at the end of Section 4.2.2 the approach proposed in [152]
that allows us to obtain information on the spectrum in the complex plane.

The study of the transmission eigenvalue problem in the case of absorbing media and
background was initiated in [35] (see also [80]), and we present some of these results in
Section 4.2.3

We address in Section 4.3.2 the general case of anisotropic media. The existence of
transmission eigenvalues for this case is more delicate since the nonlinear eigenvalue prob-
lem is no longer quadratic. We follow here the approach in [49] for fixed contrast sign.
Similarly to the case of isotropic media, alternative approaches have been introduced to in-
vestigate the spectral properties of the anisotropic transmission eigenvalue problem under
the assumptions that the contrast has one sign only in a neighborhood of the boundary (see,
for instance, [122] and [125]). These techniques are not presented here.

4.1 Analytical Tools
In this section we develop the general analytical framework that will be the theoretical
foundation of our method to prove the existence of real transmission eigenvalues.

Let X be an infinite-dimensional separable Hilbert space with scalar product (·, ·) and
associated norm k · k, and let A be a bounded, positive definite, and self-adjoint oper-
ator on X . Under these assumptions A±1/2 are well defined (cf. [151]). In particular,
A±1/2 are also bounded, positive definite, and self-adjoint operators, A�1/2A1/2 = I and
A1/2A1/2 = A. We shall consider the spectral decomposition of the operator A with re-
spect to self-adjoint nonnegative compact operators. The next two theorems [46] indicate
the main properties of such a decomposition.

Definition 4.1. A bounded linear operator A on a Hilbert space X is said to be non-
negative if (Au, u) � 0 for every u 2 X . A is said to be coercive (or positive definite) if
(Au, u) � �kuk2 for some positive constant �.

In the following N(B) denotes the null space of the operator B.

Theorem 4.2. Let A be a bounded, self-adjoint, and coercive operator on a Hilbert space,
and let B be a nonnegative, self-adjoint, and compact linear operator with null space
N(B). There exist an increasing sequence of positive real numbers (�j)j�1 and a sequence
(uj)j�1 of elements of X satisfying

Auj = �jBuj

and
(Buj , u`) = �j`

such that each u 2 [A(N(B))]? can be expanded in a series

u =
1X

j=1

�juj .

If N(B)? has infinite dimension, then �j ! +1 as j ! 1.

Proof. This theorem is a direct consequence of the Hilbert–Schmidt theorem applied to
the nonnegative self-adjoint compact operator B̃ = A�1/2BA�1/2. Let (µj)j�1 be the
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decreasing sequence of positive eigenvalues and (vj)j�1 the corresponding eigenfunctions
associated with B̃ that form an orthonormal basis for N(B̃)?. Note that zero is the only
possible accumulation point for the sequence (µj). Straightforward calculations show that

�j = 1/µj and uj =
p
�k A�1/2vj

satisfy
Auj = �jBuj .

Obviously if w 2 A (N(B)), then w = Az for some z 2 N(B) and hence

(uj , w) = �j(A�1Buj , w) = �j(A�1Buj ,Az) = �j(Buj , z) = 0,

which means that uj 2 [A (N(B))]?. Furthermore, any u 2 [A (N(B))]? can be written
as u =

P
j
�juj =

P
j
�j
p
�jA�1/2vj since A1/2u 2

⇥
N(A�1/2BA�1/2)

⇤?
. This ends

the proof of the theorem.

Theorem 4.3. Let A, B, and (�j)j�1 be as in Theorem 4.2 and define the Rayleigh
quotient as

R(u) =
(Au, u)
(Bu, u)

for u /2 N(B), where (· , ·) is the inner product on X . Then the following min-max princi-
ples hold:

�j = min
W2U

A
j

✓
max

u2W\{0}
R(u)

◆
= max

W2U
A
j�1

✓
min

u2(A(W+N(B)))?\{0}
R(u)

◆
,

where U
A
j

denotes the set of all j-dimensional subspaces of [A (N(B))]?.

Proof. The proof follows the classical proof of the Courant–Fischer min-max principle
[127] and is given here for the reader’s convenience. It is based on the fact that if u 2

[A(N(B))]?, then from Theorem 4.2 we can write u =
P

j
�juj for some coefficients �j ,

where the uj are defined in Theorem 4.2 (note that the uj are orthogonal with respect to
the inner product induced by the self-adjoint invertible operator A). Then using the facts
that (Buj , u`) = �j` and Auj = �jBuj it is easy to see that

R(u) =
1P

j
|�j |2

X

j

�j |�j |
2.

Therefore, if Wj 2 U
A
j

denotes the space generated by {u1, . . . , uj}, we have that

�j = max
u2Wj\{0}

R(u) = min
u2[A(Wj�1+N(B))]?\{0}

R(u).

Next let W be any element of UA
j

. Since W has dimension j and W ⇢ [A(N(B))]?, then
W \ [AWj�1 + A(N(B))]? 6= {0}. Therefore

max
u2W\{0}

R(u) � min
u2W\[A(Wj�1+N(B))]?\{0}

R(u)

� min
u2[A(Wj�1+N(B))]?\{0}

R(u) = �j ,
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which proves the first equality of the theorem. Similarly, if W has dimension j � 1 and
W ⇢ [A(N(B))]?, then Wj \ (AW )? 6= {0}. Therefore

min
u2[A(W+N(B))]?\{0}

R(u)  max
u2Wj\(AW )?\{0}

R(u)  max
u2Wj\{0}

R(u) = �j ,

which proves the second equality of the theorem.

The following corollary shows that it is possible to remove the dependence on A in the
choice of the subspaces in the min-max principle for the eigenvalues �j .

Corollary 4.4. Let A, B, (�j)j�1, and R be as in Theorem 4.3. Then

�j = min
W⇢Uj

✓
max

u2W\{0}
R(u)

◆
, (4.1)

where Uj denotes the set of all j-dimensional subspaces W of X such that W \N(B) =
{0}.

Proof. From Theorem 4.3 and the fact that UA
j
⇢ Uj it suffices to prove that

�j  min
W⇢Uj

✓
max

u2W\{0}
R(u)

◆
.

Let W 2 Uj and let v1, v2, . . . , vk be a basis for W . Each vector vj can be decomposed
into a sum v0

j
+ ṽj , where ṽj 2 [A(N(B))]? and v0

j
2 N(B) (which is the orthogonal

decomposition with respect to the inner product induced by A). Since W \N(B) = {0},
the space W̃ generated by ṽ1, ṽ2, . . . , ṽj has dimension j. Moreover, W̃ ⇢ [A(N(B))]?.
Now let ũ 2 W̃ . Obviously ũ = u� u0 for some u 2 W and u0

2 N(B). Since Bu0 = 0
and (Au0, ũ) = 0 we have that

R(u) =
(Aũ, ũ) + (Au0, u0)

(Bũ, ũ) = R(ũ) +
(Au0, u0)

(Bũ, ũ) .

Consequently, since A is positive definite and B is nonnegative, we obtain

R(ũ)  R(u)  max
u2W\{0}

R(u).

Finally, taking the maximum with respect to ũ 2 W̃ ⇢ [A(N(B))]? in the above inequal-
ity, we obtain from Theorem 4.3 that

�j  max
u2W\{0}

R(u),

which completes the proof after taking the minimum over all W ⇢ Uj .

The following theorem provides the theoretical basis of our analysis of the existence
of transmission eigenvalues. This theorem is a simple consequence of Theorem 4.3 and
Corollary 4.4.

Theorem 4.5. Let ⌧ 7�! A⌧ be a continuous mapping from ]0,1[ to the set of bounded,
self-adjoint, and coercive operators on the Hilbert space X , and let B be a self-adjoint
and nonnegative compact bounded linear operator on X . We assume that there exist two
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positive constants ⌧0 > 0 and ⌧1 > 0 such that

1. A⌧0 � ⌧0B is positive on X;

2. A⌧1 � ⌧1B is nonpositive on an `-dimensional subspace Wj of X .

Then each of the equations �j(⌧) = ⌧ for j = 1, . . . , ` has at least one solution in [⌧0, ⌧1],
where �j(⌧) is the jth eigenvalue (counting multiplicity) of A⌧ with respect to B, i.e.,
N(A⌧ � �j(⌧)B) 6= {0}.

Proof. First we can deduce from (4.1) that for all j � 1, �j(⌧) is a continuous function of
⌧ . Assumption 1 shows that �j(⌧0) > ⌧0 for all j � 1. Assumption 2 implies in particular
that Wj \ N(B) = {0}. Hence, another application of (4.1) implies that �j(⌧1)  ⌧1
for 1  j  `. The desired result is now obtained by applying the intermediate value
theorem.

We now explicitly state a particular case of Theorem 4.5, which is the version used in
[144] and is needed here to analyze the transmission eigenvalue problem for anisotropic
media. Let X be an infinite-dimensional separable Hilbert space, and let Tk : X ! X
be a family of compact symmetric bounded linear operators. Furthermore, assume that
the mapping k 7�! Tk from ]0, +1[ to the space of compact symmetric bounded linear
operators is continuous. The Hilbert–Schmidt theorem [151] ensures the existence of a
sequence of real eigenvalues (µj(k))j�1 of the operator Tk for any fixed k > 0, accu-
mulating to 0 where positive eigenvalues are ordered in the decreasing order and negative
eigenvalues ordered in the increasing order. The Courant–Fischer max-min principle (see
[127, page 319])

µj(k) = min
W2U

A
j

max
u2W\{0}

(Tku, u)X
kukX

= max
W2U

A
j�1

min
u2W?\{0}

(Tku, u)X
kukX

(4.2)

for positive eigenvalues (with a similar expression for negative eigenvalues since max-
min applied to �T gives min-max) implies that µj(k) are continuous function of k. The
question of interest is to find k > 0 for which the kernel of I+ Tk is nontrivial, where I is
the identity operator, in other words to find the zeros of

µj(k) + 1 = 0, j � 1.

Theorem 4.6. Assume that

1. there is a 0 such that I+ T0 is positive on X;

2. there is a 1 > 0 such that I+T1 is nonpositive on a p-dimensional subspace Wk

of X .

Then the equation µj(k) + 1 = 0 has p solutions in [0, 1] counting their multiplicity.

Proof. If I+T0 is positive, then from (4.2) µj(0)+1 > 0. Now assumption 2 and another
application of (4.2) imply that µj(1) + 1  0 for j = 1, . . . , p, counting the multiplicity.
Since µj(k) + 1 is a continuous function of k, the mean value theorem implies that for
each j, 1  j  p, there is a k 2 [0, 1] such that µj(k) + 1 = 0.
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4.2 Existence of Transmission Eigenvalues for
Isotropic Media

In this section we are concerned with proving the existence of real transmission eigenval-
ues, i.e., the values of k > 0 for which

�w + k2n(x)w = 0 and �v + k2v = 0 in D,

w = v and
@w

@⌫
=
@v

@⌫
on @D,

have nontrivial solutions w 2 L2(D) and v 2 L2(D), such that w � v 2 H2(D), which
are referred to as the corresponding eigenfunctions.

As already mentioned the transmission eigenvalue problem is non-self-adjoint, and
in Chapter 6 it is shown that for special cases of spherically stratified media there exist
complex eigenvalues (see also [71]). For general media, we limit ourselves to proving the
existence of real eigenvalues for two reasons: first, our approach based on auxiliary self-
adjoint operators works only for real eigenvalues, and second, the real eigenvalues are of
particular interest in the application to the inverse scattering problem since only they can
be measured from scattering data. Therefore in view of Theorem 3.3 we now assume that
n 2 L2(D) is a real valued function (i.e., =(n) ⌘ 0) such that

n⇤ = inf
x2D

n(x) > 0 and n⇤ = sup
x2D

n(x) < +1. (4.3)

For historical reasons we mention that the first result on the existence of real trans-
mission eigenvalues was obtained for spherically stratified media when D := BR, where
BR :=

�
x 2 R3 : |x| < R

 
is a ball of radius R centered at the origin and n := n(r) is a

radial function [69], which we include here for the sake of completeness.

Theorem 4.7. Assume that n 2 C2[0, R], =(n(r)) = 0, and either n(R) 6= 1 or n(R) = 1,
and 1

R

R
R

0

p
n(⇢)d⇢ 6= 1. Then there exists an infinite discrete set of transmission eigen-

values with spherically symmetric eigenfunctions.

Proof. To show existence, we restrict ourselves to spherically symmetric solutions to (3.30)
and look for solutions of the form

v(r) = a0j0(kr) and w(r) = b0
y(r)

r
,

where
y00 + k2n(r)y = 0, y(0) = 0, y0(0) = 1,

where j0(r) is the spherical Bessel function of order zero. Using the Liouville transforma-
tion

z(⇠) := [n(r)]
1
4 y(r), where ⇠(r) :=

rZ

0

[n(⇢)]
1
2 d⇢,

we arrive at the following initial value problem for z(⇠):

z00 + [k2 � p(⇠)]z = 0 , z(0) = 0 , z0(0) =
⇥
n(0)

⇤� 1
4 , (4.4)

where

p(⇠) :=
n00(r)

4[n(r)]2
�

5

16

[n0(r)]2

[n(r)]3
.
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Now exactly in the same way as in [69], [75], by writing (4.4) as a Volterra integral equation
and using the methods of successive approximations, for k > 0 we obtain the following
asymptotic behavior for y:

y(r) =
1

k
⇥
n(0)n(r)

⇤1/4 sin

0

@k

rZ

0

⇥
n(⇢)

⇤1/2
d⇢

1

A + O

✓
1

k2

◆
, (4.5)

y0(r) =


n(r)

n(0)

�1/4
cos

0

@k

rZ

0

[n(⇢)]1/2 d⇢

1

A + O

✓
1

k

◆
(4.6)

uniformly on [0, R]. Applying the boundary conditions on r = R, we see that a nontrivial
solution to (3.30) exists if and only if

d0(k) = det

0

BBB@

y(R)

R
j0(kR)

d

dr

✓
y(r)

r

◆

r=R

k j00(kR)

1

CCCA
= 0 .

Since j0(kr) = sin kr/kr, from the above asymptotic behavior of y(r) we have that

d0(k) =
1

kR2
[A sin(k�R) cos(kR)�B cos(k�R) sin(kR)] + O

✓
1

k2

◆
, (4.7)

where

� =
1

R

RZ

0

p
n(⇢)d⇢, A =

1

[n(0)n(R)]1/4
, B =


n(R)

n(0)

�1/4
.

If n(R) = 1, since � 6= 1 the first term in (4.7) is a periodic function if � is rational
and almost-periodic (see [75]) if � is irrational and in either case takes both positive and
negative values. This means that d0(k) has infinitely many real zeros, which proves the
existence of infinitely many real transmission eigenvalues. Now if n(R) 6= 1, then A 6= B
and the above argument holds independently of the value of �.

We refer the reader to Chapter 6 for more results on the spectral properties of the
transmission eigenvalue problem for spherically stratified media.

The following result is an important tool in our proofs of the existence of real eigen-
values for general media and can be obtained by separating variables in the transmission
eigenvalue problem (3.2).

Corollary 4.8. Let D := BR, and let n > 0 be a positive constant such that n 6= 1. The
infinitely many real zeros of

d`(k) = det

0

@
j`(ka) j`(k

p
na)

j0
`
(ka)

p
nj0
`
(k
p
na)

1

A = 0

are transmission eigenvalues for the media BR, n, where j`(r), ` � 0, are spherical Bessel
function of order n.
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We denote by ka,n the smallest real eigenvalue (which is not necessarily the smallest
real zero of d0(k))

We now turn our attention to general inhomogeneous media. Setting ⌧ := k2, in
Section 3.1 it is shown that the transmission eigenvalue problem is equivalent to

Z

D

1

n� 1
(�u+ ⌧u)(� + ⌧n ) dx = 0 for all  2 H0(D) (4.8)

or
Tu� ⌧T1u+ ⌧2T2u = 0, (4.9)

where the coercive operator T, compact operator T1, and nonnegative compact operator T2

are defined by (3.14), (3.15), and (3.16), respectively. Note that for real valued refractive
indices these operators are self-adjoint. However, the quadratic pencil of operators (4.9)
after linearization does not correspond to an eigenvalue problem for a self-adjoint compact
operator. Indeed, since T is coercive, T 1

2 is positive and T�
1
2 exists. Hence we have that

u� ⌧K1u+ ⌧2K2u = 0, (4.10)

where the self-adjoint compact operators K1 : H2
0 (D) ! H2

0 (D) and K2 : H2
0 (D) !

H2
0 (D) are given by K1 = T�1/2T1T�1/2 and K2 = T�1/2T2T�1/2. Now noting that

K2 is nonnegative, we set U := (u, ⌧K1/2
2 u) to obtain

✓
K�

1

⌧
I

◆
U = 0, U 2 H2

0 (D)⇥H2
0 (D),

for the compact (non-self-adjoint) operator K : H2
0 (D) ⇥ H2

0 (D) ! H2
0 (D) ⇥ H2

0 (D)
given by

K :=

 
K1 �K1/2

2

K1/2
2 0

!
.

Obviously although each of the entries in K are self-adjoint, K itself is not self-adjoint.
To proceed further, following [44] we define the following bounded sesquilinear forms

on H2
0 (D)⇥H2

0 (D),

A⌧ (u, ) =

✓
1

n� 1
(�u+ ⌧u), (� + ⌧ )

◆

D

+ ⌧2 (u,  )
D
, (4.11)

Ã⌧ (u, ) =

✓
1

1� n
(�u+ ⌧nu), (� + ⌧n )

◆

D

+ ⌧2 (nu,  )
D

(4.12)

=

✓
n

1� n
(�u+ ⌧u), (� + ⌧ )

◆

D

+ (�u, � )
D
,

B(u, ) = (ru, r )
D
, (4.13)

where (· , ·)
D

denotes the L2(D) inner product. Using the Riesz representation theorem we
now define the bounded linear operators A⌧ : H2

0 (D) ! H2
0 (D), Ã⌧ : H2

0 (D) ! H2
0 (D),

and B : H2
0 (D) ! H2

0 (D) by

(A⌧u, )H2(D) = A⌧ (u, ),
⇣
Ã⌧u, 

⌘

H2(D)
= Ã⌧ (u, ),

(Bu, )
H2(D) = B(u, ).
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In terms of these operators we can rewrite (4.8) as

(A⌧u� ⌧Bu, )
H2(D) = 0 or

⇣
Ã⌧u� ⌧Bu, 

⌘

H2(D)
= 0 (4.14)

for all  2 H2
0 (D), which means that k is a transmission eigenvalue if and only if ⌧ := k2

is such that the kernel of the operator A⌧u� ⌧B or the operator Ã⌧u� ⌧B is not trivial.
In order to analyze (4.14), we recall the following results from [46] about the properties

of the above operators. To this end, let �1(D) be the first Dirichlet eigenvalue for �� in
D and assume that either n⇤ < 1 or n⇤ > 1.

Lemma 4.9. The operators A⌧ : H2
0 (D) ! H2

0 (D), Ã⌧ : H2
0 (D) ! H2

0 (D), ⌧ > 0, and
B : H2

0 (D) ! H2
0 (D) are self-adjoint. If n⇤ > 1, then A⌧ is positive definite, whereas if

0 < n⇤ < n⇤ < 1, then Ã⌧ is positive definite. In addition, B is positive and compact.

Proof. Obviously A⌧ , Ã⌧ , and B are self-adjoint since n and ⌧ are real. Now assume that
n⇤ > 1. Then since 1

n(x)�1 > 1
n⇤�1 = � > 0 almost everywhere in D, we have

(A⌧u, u)H2(D) � �k�u+ ⌧uk2
L2 + ⌧2kuk2

L2

� �k�uk2
L2 � 2�⌧k�ukL2kukL2 + (� + 1)⌧2kuk2

L2 (4.15)

= ✏
⇣
⌧kukL2 �

�

✏
k�ukL2(D)

⌘2
+

✓
� �

�2

✏

◆
k�uk2

L2(D)

+ (1 + � � ✏)⌧2kuk2
L2

�

✓
� �

�2

✏

◆
k�uk2

L2(D) + (1 + � � ✏)⌧2kuk2
L2

for some � < ✏ < �+1. Furthermore, since ru 2 H1
0 (D)2, using the Poincaré inequality

we have that
kruk2

L2(D) 
1

�1(D)
k�uk2

L2(D).

Hence we can conclude that

(A⌧u, u)H2(D) � C⌧kuk
2
H2(D)

for some positive constant C⌧ . Consequently A⌧ is positive definite and hence invertible.
Exactly in the same way, one can prove that if 0 < n⇤ < 1, then

⇣
Ã⌧u, u

⌘

H2(D)
� C⌧kuk

2
H2(D)

for some positive constant C⌧ since in this case n(x)
1�n(x) > n⇤

1�n⇤
= � > 0 almost every-

where in D.
We now consider the operator B. By definition B is nonnegative, and furthermore the

compact embedding of H2(D) into H1(D) and the fact that ru 2 H1
0 (D) imply that

B : H2
0 (D) ! H2

0 (D) is compact since kBukH2(D)  ckukH1(D).

Lemma 4.10.

1. If n⇤ > 1, then

(A⌧u� ⌧Bu, u)
H2 � ↵kuk2

H2 for all 0 < ⌧ <
�1(D)

n⇤
.
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2. If n⇤ < 1, then
⇣
Ã⌧u� ⌧Bu, u

⌘

H2
� ↵kuk2

H2 for all 0 < ⌧ < �1(D).

Proof. Assume that n⇤ > 1. Then 1
n(x)�1 > 1

n⇤�1 = � > 0 almost everywhere in D. We
have

(A⌧u� ⌧Bu, u)
H

2
0
= A⌧ (u, u)� ⌧kruk2

L2 (4.16)

�

✓
� �

�2

✏

◆
k�uk2

L2 + (1 + � � ✏)kuk2
L2 � ⌧kruk2

L2

for � < ✏ < � + 1. Since ru 2 H1
0 (D), using the Poincaré inequality we have that

kruk2
L2(D) 

1

�1(D)
k�uk2

L2(D),

and hence we obtain

(A⌧u� ⌧Bu, u)
H

2
0
�

✓
� �

�2

✏
�

⌧

�1(D)

◆
k�uk2

L2 + ⌧(1 + � � ✏)kuk2
L2 .

Thus A⌧�⌧B is positive as long as ⌧ < (�� �
2

✏
)�1(D). In particular, choosing � = 1

n⇤�1 ,
and taking ✏ arbitrarily close to � + 1, the latter becomes ⌧ < �

1+��1(D) = �1(D)
n⇤ .

Next assume that 0 < n⇤ < 1. Then n(x)
1�n(x) >

n⇤
1�n⇤

= � > 0. Hence

⇣
Ã⌧u� ⌧Bu, u

⌘

H
2
0

= Ã⌧ (u, u)� ⌧kruk2
L2 (4.17)

� (1 + � � ✏� ⌧
1

�1(D)
)k�uk2

L2 +

✓
� �

�2

✏

◆
kuk2

L2

for � < ✏ < � + 1. Thus Ã⌧ � ⌧B is positive as long as ⌧ < (1 + � � ✏)�1(D). In
particular, taking ✏ arbitrarily close to �, the latter becomes ⌧ < �1(D).

Obviously A⌧ and Ã⌧ depend continuously on ⌧ 2 (0, +1). From the above discus-
sion, k > 0 is a transmission eigenvalue if for ⌧ = k2 the kernel of the operator A⌧ � ⌧B if
n⇤ > 1, or the kernel of the operator Ã⌧ � ⌧B if n⇤ < 1, is nontrivial. In order to analyze
the kernel of these operators, we consider the auxiliary eigenvalue problems

A⌧u� �(⌧)Bu = 0, u 2 H2
0 (D), if n⇤ > 1, (4.18)

and
Ã⌧u� �(⌧)Bu = 0, u 2 H2

0 (D), if n⇤ < 1. (4.19)

Thus a transmission eigenvalue k > 0 is such that ⌧ := k2 solves �(⌧) � ⌧ = 0, where
�(⌧) is an eigenvalue corresponding to (4.18) or (4.19) in the respective cases. Our goal
is now to apply Theorem 4.5 to (4.18) or (4.19) to prove the existence of an infinite set of
transmission eigenvalues.
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Remark 4.11. The multiplicity of transmission eigenvalues is finite since if k0 is a trans-
mission eigenvalue, then, letting ⌧0 := k20 , the kernel of I � ⌧0A�1/2

⌧0 BA�1/2
⌧0 if n⇤ > 1,

or I � ⌧0Ã�1/2
⌧0 BÃ�1/2

⌧0 if n⇤ < 1, is finite since the operators ⌧0A�1/2
⌧0 BA�1/2

⌧0 and
⌧0Ã�1/2

⌧0 BÃ�1/2
⌧0 are compact. (See also Theorem 3.4.)

We are now ready to prove the main theorem of this section.

Theorem 4.12. Let n 2 L1(D) satisfy either one of the following assumptions:

1. 1 < n⇤  n(x)  n⇤ < 1.

2. 0 < n⇤  n(x)  n⇤ < 1.

Then there exists an infinite set of real transmission eigenvalues with +1 as the only
accumulation point.

Proof. Assume that assumption 1 holds, which also implies that

0 <
1

n⇤ � 1


1

n(x)� 1


1

n⇤ � 1
< 1.

Therefore, from Lemma 4.9, A⌧ and B satisfy the requirement of Theorem 4.5 with X =
H2

0 (D), and from Lemma 4.10 they also satisfy assumption 1 of Theorem 4.5 with ⌧0 

�1(D)/n⇤.
Next let k1,n⇤ be the first transmission eigenvalue for the ball B of radius R = 1 and let

n := n⇤. By a scaling argument, it is obvious that k✏,n⇤ := k1,n⇤/✏ is the first transmission
eigenvalue corresponding to the ball of radius ✏ > 0 with index of refraction n⇤. Now take
✏ > 0 small enough such that D contains m := m(✏) � 1 disjoint balls B1

✏
, B2

✏
, . . . , Bm

✏
of

radius ✏, that is, Bj

✏ ⇢ D, j = 1, . . . ,m, and Bj

✏ \Bi
✏
= ; for j 6= i. Then k✏,n⇤ := k1,n⇤/✏

is the first transmission eigenvalue for each of these balls with index of refraction n⇤, and
let uB

j
✏ ,n⇤ 2 H2

0 (B
j

✏
), j = 1, . . . ,m, be the corresponding eigenfunction. The extension

by zero ũj of uB
j
✏ ,n⇤ to the whole of D is obviously in H2

0 (D) due to the boundary condi-
tions on @Bj

✏,n⇤ . Furthermore, the vectors {ũ1, ũ2, . . . , ũm
} are linearly independent and

orthogonal in H2
0 (D) since they have disjoint supports. From (4.8) we have that

0 =

Z

D

1

n⇤ � 1
(�ũj + k2

✏,n⇤ ũ
j)(�ũ

j

+ k2
✏,n⇤n⇤ũ

j

) dx (4.20)

=

Z

D

1

n⇤ � 1
|�ũj + k2

✏,n⇤ ũ
j
|
2 dx+ k4

✏,n⇤

Z

D

|ũj
|
2 dx� k2

✏,n⇤

Z

D

|rũj
|
2 dx

for j = 1, . . . ,m. Let us denote by U the m-dimensional subspace of H2
0 (D) spanned

by {ũ1, ũ2, . . . , ũm
}. Since each ũj , j = 1, . . . ,m, satisfies (4.20) and they have disjoint

supports, we have that for ⌧1 := k2
✏,n⇤ and for every ũ 2 U

(A⌧1 ũ� ⌧1Bũ, ũ)H2
0 (D) =

Z

D

1

n� 1
|�ũ+ ⌧1ũ|

2 dx+ ⌧21

Z

D

|ũ|2 dx� ⌧1

Z

D

|rũ|2 dx



Z

D

1

n⇤ � 1
|�ũ+ ⌧1ũ|

2 dx+ ⌧21

Z

D

|ũ|2 dx� ⌧1

Z

D

|rũ|2 dx=0. (4.21)
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This means that assumption 2 of Theorem 4.5 is also satisfied, and therefore we can con-
clude that there are m(✏) transmission eigenvalues (counting multiplicity) inside [⌧0, k✏,n⇤ ].
Note that m(✏) and k✏,n⇤ both go to +1 as ✏ ! 0. Since the multiplicity of each eigen-
value is finite, we have shown, by letting ✏ ! 0, that there exists an infinite countable set
of transmission eigenvalues that accumulate at 1.

If the index of refraction is such that assumption 2 holds, then we have that

0 <
n⇤

1� n⇤


n(x)

1� n(x)


n⇤

1� n⇤
< 1,

and therefore according to Lemmas 4.9 and 4.10, Ã⌧ and B, ⌧ > 0, satisfy the requirements
and assumption 1 of Theorem 4.5 with X = H2

0 (D) for ⌧0  �1(D). In this case we can
estimate
⇣
Ã⌧u� ⌧Bu, u

⌘

H
2
0 (D)

=

Z

D

n

1� n
|�u+ ⌧u|2 dx+

Z

D

|�u|2 dx� ⌧

Z

D

|ru|2 dx



Z

D

n⇤

1� n⇤
|�u+ ⌧u|2 dx+

Z

D

|�u|2 dx� ⌧

Z

D

|ru|2 dx. (4.22)

The rest of the proof for checking the validity of assumption 2 of Theorem 4.5 goes exactly
in the same way as for the previous case if one replaces n⇤ by n⇤. This proves the result.

4.2.1 Media with Voids
The above analysis can be adapted to include the case of media with voids discussed in
Section 3.1.2. In this case the transmission eigenvalue problem is formulated in variational
form as finding u 2 V0(D,D0, k) such that

Z

D\D0

1

n� 1

�
�+ k2

�
u
�
�+ k2

�
 ̄ dx+ k2

Z

D\D0

(�u+ k2u)  ̄ dx = 0 (4.23)

for all  2 V0(D,D0, k), where the Hilbert space V0(D,D0, k) is defined by (3.27).
As shown in Section 3.1.2, this variational formulation is equivalent to the transmission
eigenvalue problem, provided that k2 is not both a Dirichlet and a Neumann eigenvalue for
�� in D0. With this understanding, our goal is to show the existence of k > 0 such that
the homogeneous problem

A(u, ) + Bk(u, ) = 0 for all  2 V0(D,D0, k) (4.24)

has a nonzero solution u 2 V0(D,D0, k), where the sesquilinear forms A(·, ·) and B(·, ·)
on V0(D,D0, k) ⇥ V0(D,D0, k) are defined by (3.38) and (3.39), respectively. Let Ak :
V0(D,D0, k) ! V0(D,D0, k) and Bk be the self-adjoint operators associated with A

and Bk, respectively, by using the Riesz representation theorem (note that Ak depends
on k since the space of definition depends on k). In the proof of Theorem 3.9 it is
shown that the operator Ak : V0(D,D0, k) ! V0(D,D0, k) is positive definite, i.e.,
A�1

k
: V0(D,D0, k) ! V0(D,D0, k) exists, and the operator Bk : V0(D,D0, k) !

V0(D,D0, k) is compact. Hence we can define the operator A�1/2
k

[151], in particular
A�1/2

k
is also bounded, self-adjoint, and positive definite. Thus we have that (4.24) is

equivalent to finding u 2 V0(D,D0, k) such that

u+A�1/2
k

BkA
�1/2
k

u = 0. (4.25)
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In particular, if k2 is not both a Dirichlet and a Neumann eigenvalue for �� in D0, k is a
transmission eigenvalue if and only if the operator

Ik +A�1/2
k

BkA
�1/2
k

: V0(D,D0, k) ! V0(D,D0, k) (4.26)

has a nontrivial kernel, where Ik is the identity operator on V0(D,D0, k). To avoid dealing
with function spaces depending on k, we introduce the orthogonal projection operator Pk

from H2
0 (D) onto V0(D,D0, k) and the corresponding injection Rk : V0(D,D0, k) !

H2
0 (D). Then one easily sees that A�1/2

k
BkA

�1/2
k

is injective on V0(D,D0, k) if and only
if

I+ Tk : H2
0 (D) ! H2

0 (D) (4.27)

is injective, where

Tk := RkA
�1/2
k

BkA
�1/2
k

Pk : H2
0 (D) ! H2

0 (D)

and I is the identity operator on H0(D). Indeed, if u + RkA
�1/2
k

BkA
�1/2
k

Pku = 0,
then by taking the inner product of the latter with the component w = u � Pku which is
orthogonal to Pku, we have that

0 = (u, w)H2 +
⇣
RkA

�1/2
k

BkA
�1/2
k

Pku, w
⌘

H2
(4.28)

= (w, w)H2 +
⇣
A�1/2

k
BkA

�1/2
k

Pku, Pkw
⌘

H2
= kwk2

H2 ,

and hence w = 0. The injectivity of A�1/2
k

BkA
�1/2
k

now implies the injectivity of (4.27)
since the component Pku is in V0(D,D0, k). The converse is obvious. Furthermore,
compactness of Bk implies that Tk := RkA

�1/2
k

BkA
�1/2
k

Pk : H2
0 (D) ! H2

0 (D) is
also compact. Therefore we have that k > 0 is a transmission eigenvalue, provided that
the kernel of I+ Tk is nontrivial.

Lemma 4.13. The mapping k ! Tk := RkA
�1/2
k

BkA
�1/2
k

Pk is continuous from ]0, +1[
to the space of bounded linear compact self-adjoint operators in H2

0 (D)

Proof. The proof is straightforward but technical, and we refer the reader to Theorem 4.5
and Corollary 4.6 of [33].

Now we can apply Theorem 4.6 to Tk to prove the existence of real transmission eigen-
values. To this end we recall the notation

n⇤ := inf
D\D0

(n) and n⇤ := sup
D\D0

(n).

Theorem 4.14. Let n 2 L1(D), n = 1 in D0, satisfy either one of the following assump-
tions: for x 2 D \D0,

1. 1 < n⇤  n(x)  n⇤ < 1,

2. 0 < n⇤  n(x)  n⇤ < 1.

Then there exists an infinite countable set of transmission eigenvalues with +1 as the only
accumulation point.
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Proof. First we assume that assumption 1 holds, in which case we have

0 <
1

n⇤ � 1


1

n(x)� 1


1

n⇤ � 1
< 1 in D \D0.

First we note that I+Tk, where Tk := RkA
�1/2
k

BkA
�1/2
k

Pk, is positive on H2
0 (D) if and

only if Ak +Bk is positive on V0(D,D0, k).
Next, combining the terms in (4.23) in a different way, we have that for u2 V0(D,D0, k)

(Aku+Bku, u)H2
0 (D) =

Z

D\D0

1

n� 1
|�u+ k2nu|2 dx� k4

Z

D\D0

n|u|2 dx

+ k2
Z

D\D0

|ru|2 dx� k4
Z

D0

|u|2 dx+ k2
Z

D0

|ru|2 dx. (4.29)

For n⇤ = sup
D\D0

n > 1, if the sum of the last four terms in (4.29) is nonnegative, then
we have that Ak +Bk is positive. Hence we have

�k2
Z

D\D0

n|u|2 dx+

Z

D\D0

|ru|2 dx� k2
Z

D0

|u|2 dx+

Z

D0

|ru|2 dx (4.30)

�

Z

D

|ru|2 dx� k2n⇤

Z

D

|u|2 dx � (�1(D)� k2n⇤)kuk2
L2(D).

Therefore for all 0 > 0 such that 20 
�1(D)
n⇤ we have that Ak + Bk is positive in

V0(D,D0, k) and hence I+ Tk satisfies assumption 1 of Theorem 4.6.
Next we proceed in the same way as in the proof of Theorem 4.12. To this end, take ✏ >

0 small enough such that D \D0 contains m := m(✏) � 1 disjoint balls B1
✏
, B2

✏
, . . . , Bm

✏

of radius ✏. With k1,n⇤ being the first transmission eigenvalue for the ball B of radius
R = 1 and n := n⇤, we take k✏,n⇤ := k1,n⇤/✏ as the first transmission eigenvalue for
each of these balls with index of refraction n⇤, and uB

j
✏ ,n⇤ 2 H2

0 (B
j

✏
), j = 1, . . . ,m,

the corresponding eigenfunction. The extension by zero ũj of uB
j
✏ ,n⇤ to the whole of D

is obviously in V0(D,D0, k), and the vectors {ũ1, ũ2, . . . , ũm
} are linearly independent

and orthogonal since they have disjoint supports in D \D0. Let us denote by U the m-
dimensional subspace of V0(D,D0, k) spanned by {ũ1, ũ2, . . . , ũm

}. Since each ũj , j =
1, . . . ,m, satisfies (4.20) and they have disjoint supports, we have that for 1 := k✏,n⇤ and
for every ũj

2 U (note that ũj = 0 in a neighborhood of D0)

(A1 ũ+B1 ũ, ũ)H2
0 (D) (4.31)

=

Z

D\D0

1

n� 1
|�ũ+ 1ũ|

2 dx+ 41

Z

D\D0

|ũ|2 dx� 21

Z

D\D0

|rũ|2 dx



Z

D\D0

1

n⇤ � 1
|�ũ+ 21ũ|

2 dx+ 41

Z

D\D0

|ũ|2 dx� 21

Z

D\D0

|rũ|2 dx = 0.

This means that I + Tk satisfies assumption 2 of Theorem 4.6, and therefore there are
m(✏) transmission eigenvalues (counting multiplicity) inside [0, k✏,n⇤ ]. Note that m(✏)
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and k✏,n⇤ both go to +1 as ✏ ! 0. Since the multiplicity of each eigenvalue is finite
we have shown that there exists an infinite countable set of transmission eigenvalues that
accumulate at +1.

Now consider the case 0 < n⇤  n(x)  n⇤ < 1. Similarly to the previous case, from
the definitions (3.38) and (3.39) of Ak and Bk, we have that

(Aku+Bku, u)H2
0 (D) =

Z

D\D0

1

1� n
|�u+ k2u|2 dx� k4

Z

D\D0

|u|2 dx

+ k2
Z

D\D0

|ru|2 dx� k4
Z

D0

|u|2 dx+ k2
Z

D0

|ru|2 dx. (4.32)

Hence we have that Ak +Bk is positive as long as

�k2
Z

D\D0

n|u|2 dx+

Z

D\D0

|ru|2 dx� k2
Z

D0

|u|2 dx+

Z

D0

|ru|2 dx (4.33)

�

Z

D

|ru|2 dx� k2
Z

D

|u|2 dx � (�1(D)� k2)kuk2
L2(D) � 0.

Therefore, for all 0 > 0 such that 20  �1(D), I+Tk satisfies assumption 1 of Theorem
4.6. The rest of the proof can be done in exactly the same way as for the first part, where
n⇤ is replaced by n⇤.

4.2.2 Inequalities for Transmission Eigenvalues

The proofs of Theorems 4.12 and 4.14 provide as byproduct inequalities on real transmis-
sion eigenvalues that can be used in the inverse medium problem to obtain information
about the material properties of the scatterer. We start by stating Faber–Krahn-type in-
equalities which are merely a consequence of Lemma 4.10 for media without voids, and
(4.29)–(4.30) and (4.32)–(4.33) for media with voids.

Theorem 4.15. Let n 2 L1(D) and n = 1 in D0 (D0 is possibly empty) and denote 0 <
n⇤ := inf

D\D0
(n) and n⇤ := sup

D\D0
(n)  1. Then all real transmission eigenvalues

k > 0 satisfy

1. k2 �
�1(D)
n⇤ if 1 < n⇤ or

2. k2 � �1(D) if n⇤ < 1,

where �1(D) is the first Dirichlet eigenvalue for �� in D.

The above inequalities are not isoperimetric. The proof of Theorem 4.12 implies the
following monotonicity results for a sequence of eigenvalues which can be seen as a type
of “isoperimetric" inequality for transmission eigenvalues in terms of the refractive index
for fixed D. Let kj := kj(n(x), D) > 0 for j 2 N be the increasing sequence of the
transmission eigenvalues for the media with support D and refractive index n(x) such that
tj = k2

j
is the smallest zero of �j(⌧, D, n(x)) = ⌧ , where �j(⌧, D, n(x)), j � 1, are the
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eigenvalues of the auxiliary problem (see the proof of Theorem 4.12) given by

�j(⌧, D, n(x)) = min
W2Uj

max
u 2 W

krukL2 = 1

Z

D

1

n(x)� 1
|�u+ ⌧u|2 dx+⌧2kuk2

L2(D), (4.34)

where Uj denotes the set of all j-dimensional subspaces W of H2
0 (D). Then the following

monotonicity property for transmission eigenvalues is true.

Theorem 4.16. Let n 2 L1(D) and 0 < n⇤ = infD(n), n⇤ := sup
D
(n)  +1. Assume

that B1 and B2 are two balls of radius r1 and r2, respectively, such that B1 ⇢ D ⇢ B2.
Then

1. if 1 < n⇤, then

kj(n
⇤, B2)  kj(n

⇤, D)  kj(n(x), D)  kj(n⇤, D)  kj(n⇤, B1);

2. if n⇤ < 1, then

kj(n⇤, B2)  kj(n⇤, D)  kj(n(x), D)  kj(n
⇤, D)  kj(n

⇤, B1).

In particular, these inequalities hold true for the smallest transmission eigenvalue
k1(n(x), D).

Proof. For simplicity of presentation we prove the theorem for the smallest transmission
eigenvalue. Take 1 < n⇤. Then for any u 2 H2

0 (D) such that krukL2(D) = 1 we have

1

n⇤ � 1
k�u+ ⌧uk2

L2(D) + ⌧2kuk2
L2(D) 

Z

D

1

n(x)� 1
|�u+ ⌧u|2 dx+ ⌧2kuk2

L2(D)


1

n⇤ � 1
k�u+ ⌧uk2

L2(D) + ⌧2kuk2
L2(D). (4.35)

Therefore from (4.34) we have that for an arbitrary ⌧ > 0

�1(⌧, B2, n
⇤)  �1(⌧, D, n⇤)  �1(⌧, D, n(x))

 �1(⌧, D, n⇤)  �1(⌧, B1, n⇤).

Now for ⌧1 := k1,n⇤/r1, B1 ⇢ D, from the proof of Theorem 4.12 we have that
�1(⌧1, D, n(x)) � ⌧1  0. On the other hand, for ⌧0 := k1,n⇤/r2, D ⇢ B2, we have
�1(⌧0, B2, n⇤) � ⌧0 = 0 and hence �1(⌧0, D, n(x)) � ⌧0 � 0. Therefore the first eigen-
value k1,D,n(x) corresponding to D and n(x) is between k1,n⇤/r2 and k1,n⇤/r1. Note that
there is no transmission eigenvalue for D and n(x) that is less than k1,n⇤/r2. Indeed, if
there is a transmission eigenvalue strictly less than k1,n⇤/r2, then by the monotonicity of
the eigenvalues of the auxiliary problem with respect to the domain and the fact that for ⌧
small enough there are no transmission eigenvalues, we would have found an eigenvalue
of the ball B2 and n⇤ that is strictly smaller than the first eigenvalue. The case of n⇤ < 1
can be proven in the same way if n⇤ is replaced by n⇤.

Now it is clear how to modify the same argument for the smallest zero of �j(⌧, D, n(x))
= ⌧ .

Remark 4.17. We remark that obviously the balls B1 and B2 in Theorem 4.16 can be
replaced by any two domains such that D1 ⇢ D ⇢ D2. Also for fixed D and two media
with the same support D and refractive indices n1(x) and n2(x) both in L1(D) the proof
of Theorem 4.16 can be adapted in an obvious way to prove the following:
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1. If 1 < ↵  n1(x)  n2(x) for almost all x 2 D, then

kj(n2(x), D)  kj(n1(x), D).

2. If 0 < ↵  n1(x)  n2(x)  � < 1 for almost all x 2 D, then

kj(n1(x), D)  kj(n2(x), D).

Theorem 4.16 shows in particular that for a constant index of refraction the first trans-
mission eigenvalue k1(n,D) as a function of n for D fixed is monotonically increasing if
n > 1 and is monotonically decreasing if 0 < n < 1. In fact in [30] it is shown that this
monotonicity is strict which leads to the following uniqueness result for a constant index
of refraction in terms of the first transmission eigenvalue, which is the only known inverse
spectral result for general media (see Chapter 6 for results on inverse spectral problems for
spherically stratified media).

Theorem 4.18. The constant index of refraction n is uniquely determined from a knowl-
edge of the corresponding smallest transmission eigenvalue k1(n,D) > 0, provided that it
is known a priori that either n > 1 or 0 < n < 1.

Proof. Here we show the proof for the case of n > 1 (see [30] for the case of 0 < n < 1).
Consider two homogeneous media with constant indices of refraction n1 and n2 such that
1 < n1 < n2, and let u1 := w1 � v1, where w1, v1 is the nonzero solution of (3.2) with
n(x) := n1 corresponding to the first transmission eigenvalue k1(n1, D). Now, setting
⌧1 = k21(n1, D) and after normalizing u1 such that kru1kL2(D) = 1, we have

1

n1 � 1
k�u1 + ⌧1u1k

2
L2(D) + ⌧21 ku1k

2
L2(D) = ⌧1 = �1(⌧1, D, n1). (4.36)

Furthermore, we have

1

n2 � 1
k�u+ ⌧uk2

L2(D) + ⌧2kuk2
L2(D) <

1

n1 � 1
k�u+ ⌧uk2

L2(D) + ⌧2kuk2
L2(D)

for all u 2 H2
0 (D) such that krukL2(D) = 1 and all ⌧ > 0. In particular for u = u1 and

⌧ = ⌧1

1

n2 � 1
k�u1+⌧1u1k

2
L2(D)+⌧

2
1 ku1k

2
L2(D) <

1

n1 � 1
k�u1+⌧1u1k

2
L2(D)+⌧

2
1 ku1k

2
L2(D).

But using (4.36) we have

�(⌧1, D, n2) 
1

n2 � 1
k�u1 + ⌧1u1k

2
L2(D) + ⌧21 ku1k

2
L2(D) < �1(⌧1, D, n1),

and hence for this ⌧1 we have a strict inequality, i.e.,

�1(⌧1, D, n2) < �1(⌧1, D, n1). (4.37)

Obviously (4.37) implies the first zero ⌧2 of �1(⌧, D, n2) � ⌧ = 0 is such that ⌧2 < ⌧1,
and therefore we have that k1(n2, D) < k1(n1, D) for the first transmission eigenvalues
k1(n1, D) and k1(n2, D) corresponding to n1 and n2, respectively. Hence we have shown
that if n1 > 1 and n2 > 1 are such that n1 6= n2, then k1(n1, D) 6= k1(n2, D), which
proves uniqueness.
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We finally present a monotonicity result for the first transmission eigenvalue corre-
sponding to media with voids. For a fixed D, denote by k1(D0, n) the first transmission
eigenvalue corresponding to the void D0 and the index of refraction n.

Theorem 4.19. If D0 ✓ D̃0 and n, ñ 2 L2(D) such that n(x)  ñ(x) for almost every
x 2 D, then

1. k1(D0, ñ)  k1(D̃0, n) if 1 < ↵  n(x)  ñ(x);

2. k1(D0, n)  k1(D̃0, ñ) if 0 < ↵  n(x)  ñ(x)  � < 1.

Proof. Consider the first case. Repeating the proof of Theorem 4.14 with 0 > 0 such
that 20 = �1(D)

supD(ñ) and 1 = k1(D0, n), one deduces that k1(D0, ñ)  k1(D0, n). It
remains to show that for fixed n, k1(D0, n)  k1(D̃0, n). To this end, again from the
proof of Theorem 4.14, A0 +B0 is positive for 0 > 0 such that 20 = �1(D)

supD(n) . Next let
1 = k1(D̃0, n) and let v 2 V0(D, D̃0,1) be its corresponding eigenvector. Then

(A1v +B1v, v)H2
0 (D) =

Z

D\D0

1

n� 1
|�v + 21nv|

2 dx� 41

Z

D

n|v|2 dx

+ 21

Z

D

|ru|2 dx

=

Z

D\D̃0

1

n� 1
|�v + 21nv|

2 dx� 41

Z

D

n|v|2 dx

+ 21

Z

D

|ru|2 dx = 0,

which implies from Theorem 4.6 that there exists a transmission eigenvalue in [0, 1] for
media with void D0 and refractive index n. The same type of argument shows that this
indeed is the first eigenvalue. Hence we have that k1(D0, n)  k1(D̃0, n), which proves
the estimates in the first case. The second case can be handled similarly, and we leave it to
the reader as an exercise.

Note that although the transmission eigenvalue problem (3.2) has the structure of a
quadratic pencil of operators (4.10), it appears that available results on quadratic pencils
[132] are not applicable to the transmission eigenvalue problem due to the incorrect signs
of the involved operators. The crucial assumption in our analysis in this chapter is that the
contrast does not change sign inside D, i.e., n�1 is either positive or negative and bounded
away from zero in D, except that we allow that n = 1 in a subregion of D. By using
weighted Sobolev spaces it is also possible in a similar way to this chapter to consider
the case when n � 1 goes smoothly to zero at the boundary @D [67], [74], [96], [156].
However, the real interest is in investigating the case when n� 1 is allowed to change sign
in D. The question of discreteness of transmission eigenvalues in the latter case has been
related to the uniqueness of the sound speed for the wave equation with an arbitrary source,
which is a question that arises in thermoacoustic imagining [86]. In the general case n �

c > 0 with no assumptions on the sign of n � 1, the study of the transmission eigenvalue
problem is completely open. As the reader has seen in Chapter 3, the discreteness of
transmission eigenvalues is obtained under the assumption that n � 1 has a fixed sign
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in a neighborhood of the boundary. In the case when both the domain D and refractive
index n(x) are C1-smooth, with the additional assumption that n 6= 1 on the boundary
@D, a complete characterization of the spectrum of the transmission eigenvalue problem
is presented in [152]. This study is done in the framework of semiclassical analysis [59],
relating the transmission eigenvalue problem to the spectrum of a Hilbert–Schmidt operator
whose resolvent exhibits the desired growth properties following the approach of Agmon
in [1]. For the sake of completeness, we sketch here the main points of this approach.

Let n 2 C1(D), where D ⇢ R3 such that @D is of class C1. Furthermore, we
assume that n(x) � n0 > 0 for x 2 D and n 6= 1 on @D (note that by continuity the
latter means that n 6= 1 in a neighborhood of @D). As the reader has already seen, the
transmission eigenvalue problem can be written in terms of u := 1

k2 (w� v) 2 H2
0 (D) and

v 2 L2(D) as

1

n
�u+

n� 1

n
v + k2u = 0 in D,

�v + k2v = 0 in D. (4.38)

For z 2 C define the operator Bz : H2
0 (D)⇥{L2(D), �u 2 L2(D)} ! L2(D)⇥L2(D)

by
(u, v) 7! (f, g),

where

1

n
�u+

n� 1

n
v � zu = f in D, (4.39)

�v � zv = g in D. (4.40)

We already know from Section 3.1.3 that there is a fixed z 2 C such that Rz := B�1
z

is
bounded. The spectral properties of the transmission eigenvalue problem can be deduced
from the spectral analysis of Bz or, more precisely, its inverse Rz . Indeed if ⌘ is an
eigenvalue of Bz , then k 2 C such that k2 = �z � ⌘ is a transmission eigenvalue with
the same eigenfunction. To this end, a key tool is the following lemma, which is a direct
consequence of Proposition 4.2 and the proof of Theorem 5 in [152]. Indeed the statement
of the lemma is a slight modification of the celebrated result of Agmon stated in Theorem
16.4 in [1].

Theorem 4.20. Let H be a Hilbert space, and let S : H ! H be a bounded linear
operator. If ��1 is in the resolvent of S, define

S� = S(I � �S)�1. (4.41)

Assume Sp : H ! H is a Hilbert–Schmidt operator for some integer p � 2. For the
operator S, assume there exist 0  ✓1 < ✓2 < · · · < ✓N < 2⇡ such that ✓k � ✓k�1 < ⇡

2p
for k = 2, . . . , N and 2⇡� ✓N + ✓1 < ⇡

2p satisfying the condition that there exists r0 > 0,
c > 0, such that sup

r�r0
k(S)

re
i✓k kH!H  c for k = 1, . . . , N . Then eigenvalues of

S exist and the space spanned by the nonzero generalized eigenfunctions is dense in the
closure of the range of Sp.

One can now apply Theorem 4.20 to the operator S := Rz for fixed z and H :=
L2(D)⇥L2(D) to derive the desired spectral decomposition for Rz , noting that (Rz)� =
Rz+�, where (Rz)� is defined by (4.41) with S replaced by Rz . To this end one needs to
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prove the following:

1. A regularity result for the solution of (4.38). This part is quite technical, and the ap-
proach involves results from pseudodifferential calculus. For the details we refer the
reader to [152]. In particular, it is possible to prove that Rz is two orders smoothing,
i.e., the mapping Rz : H2(D)⇥L2(D) ! H4(D)⇥H2(D) is bounded, which first
proves that Rz on H2(D)⇥ L2(D) is compact, and then applying Theorem 13.5 in
[1] proves that R2

z
on H2(D)⇥ L2(D) is Hilbert–Schmidt.

2. Then using the theory of pseudodifferential operators for symbols with a parameter,
it is possible to prove a growth condition for Rz along the rays such as stated in
Theorem 4.20 for p = 2. This step is also technical, and more details can be found
in Section 3.1 in [152].

The final result of the above effort is stated in the following theorem.

Theorem 4.21. Assume that n 2 C1(D), where D ⇢ R3 is such that @D is of class C1

and n(x) � n0 > 0 for x 2 D and n 6= 1 on @D. Then there exist an infinite number of
transmission eigenvalues k 2 C and the space spanned by the generalized eigenfunctions
is dense in H2

0 (D)⇥
�
L2(D), �u 2 L2(D)

 
.

We note that although in [152] the refractive index is allowed to be complex valued, the
analysis there does not imply any result on transmission eigenvalues for absorbing media,
i.e., when the refractive index depends on the wave number.

Another important question is the location of the transmission eigenvalues in the com-
plex plane C. A first attempt to localize transmission eigenvalues in the complex plane is
done in [30], followed by [97], where it is shown that almost all transmission eigenvalues
k2 are confined to a parabolic neighborhood of the positive real axis. However, it is desir-
able to know if there exists a half-plane in C free of transmission eigenvalues. This is an
important question for analyzing the time-domain interior transmission problem, which is
the main building block for the time-domain linear sampling method for inhomogeneous
media [52]. This question was first answered in [164]. The apparatus of this paper relies
heavily on microlocal analysis to construct a parametrix for the involved operators, and it
is impossible to develop in this monograph the needed rigorous mathematical framework.
We only state the main results here for the reader’s convenience and refer to [164], [165],
[166] for the proofs and a more complete picture. To this end, we first remark that the
transmission eigenvalue problem can be recast in terms of the difference of two Dirichlet-
to-Neumann operators. More precisely, let us define ⇤q(k) : ' 7!

@u

@⌫
, where u solves

⇢
�u+ k2qu = 0 in D,

u = ' on @D

(provided k2 is not a Dirichlet eigenvalue). Then the transmission eigenvalue problem can
be viewed as finding k 2 C for which there exists a nontrivial u such that

T (k)u := ⇤n(k)u� ⇤1(k)u = 0.

The operator T (k) : H�1/2+s(@D) ! H1/2+s(@D), 0  s  1, is one order smoothing
and is Fredholm with index zero. The eigenvalue free zone in C corresponds to k 2 C
for which T (k)�1 exists. In [164] it is proven that all transmission eigenvalues k lie in a
horizontal strip about the real axis. In addition this paper provides k-explicit bounds for
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the norm of the inverse of T (k) as well as Weyl’s asymptotic estimates for the transmis-
sion eigenvalues. The main tool in obtaining these results is the derivation of refined high
frequency estimates for the Dirichlet-to-Neumann operator in the framework of semiclas-
sical analysis. Therefore these results require C1 regularity for both D and n and are
summarized in the following theorem.

Theorem 4.22. Assume that n 2 C1(D), @D is of class C1, n(x) � n0 > 0 for x 2 D,
and n 6= 1 on @D. The following hold:

(i) There are no transmission eigenvalues in the region {k 2 C : |=(k)| > �} for some
constant � > 0. In this region, T (k)�1 : H1(@D) ! L2(@D) is bounded, and if in
addition <(k) > 1,

kT (k)�1
k  c|k|�1 for some c > 0.

(ii) Let N(r) := # {k transmission eigenvalues |k|  r}; then

N(r) =
r3

6⇡2

Z

D

⇣
1 + n(x)3/2

⌘
dx+O✏

�
r2+✏

�

for all 0 < ✏⌧ 1, where the order term depends on ✏.

The completeness results in [152] and Weyl’s estimates in [164] are recovered in [87] for
less regular @D and n, including the case when the Laplace operator � in both equations
in the transmission eigenvalue problem is replaced by r ·Ar with the same matrix valued
coefficient A of class C2(D) (i.e., the contrast is only due to the lower order term). More
specifically, these results are obtained for @D of class C3 and n 2 C1(D), n 6= 1, on
@D. The analysis is based on the theory of Hilbert–Schmidt operators, but well-posedness
estimates are obtained in the Lp-framework, avoiding the use of microlocal analysis and
allowing for less regularity. For the detailed proofs we refer the reader to [87]

More results on transmission eigenvalues for isotropic media, including Weyl-type
asymptotic estimates for the counting function for transmission eigenvalues, can be found
in [124], [126], [140], [145], [146], [147]. We conclude this section by listing a few impor-
tant open questions. Although for spherically symmetric media it is proven that complex
transmission eigenvalues exist, for general media (D,n) it is not known if this is the case.
Also in the case when the contrast n � 1 is of one sign in a neighborhood of @D but oth-
erwise it changes sign inside D, it is not known if real transmission eigenvalues exist, a
question which is important in the use of transmission eigenvalues to obtain information on
the refractive index n. Nothing is known about the spectral properties of the transmission
eigenvalue problem in the case when there is a point P on the boundary @D for which
n� 1 changes sign in every neighborhood of P inside D.

4.2.3 Remarks on Absorbing Media
The refractive index n(x) for an absorbing media depends on the wave number k; more
precisely, for a large range of frequencies it assumes the form

n(x) = ✏(x) + i
�(x)

k

for real valued functions ✏ and �. The reader can view the complex part in the refrac-
tive index as arising from the Fourier transform of the damping which involves the time
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derivative of the field. In our analysis in the previous chapters we have considered the
complex valued refractive index where we have ignored the dependence on k of the imag-
inary part. This is fine as long as we are considering a fixed frequency, and this is the case
in our discussion of the direct scattering problem, the reconstruction techniques, and the
solvability of the interior transmission problem. However, in order to correctly investigate
the spectral properties of the transmission eigenvalue problem for absorbing media, it is
necessary to take into consideration the k-dependence of the refractive index since k is the
eigenvalue parameter. At this time, very little is known about the spectral properties of the
transmission eigenvalue problem in this case, and in many recent studies (e.g., [152]) the
k-dependence on the refractive index is dropped.

The study of the transmission eigenvalue problem in the general case of absorbing
media and background has been initiated in [35] (see also [80]), and we now present these
results. In particular we prove that the set of transmission eigenvalues in the open right
complex half-plane is at most discrete, provided that the contrast in the real part of the index
of refraction does not change sign in D. Furthermore, using perturbation theory, we show
that if the absorption in the inhomogeneous media and (possibly) in the background is small
enough, then there exist (at least) a finite number of complex transmission eigenvalues each
near a real transmission eigenvalue associated with the corresponding nonabsorbing media
and background.

Before we start with our presentation, we alert the reader that up to now we have
considered for simplicity a homogeneous nonabsorbing background with refractive index
scaled to one. On the other hand, as the reader has by now seen, the interior transmission
problem depends on the refractive index of the scattering inhomogeneity and the refrac-
tive index of the background in the region D occupied by this inhomogeneity. The dif-
ference of the refractive index of the inhomogeneity and background, referred to as the
contrast in the media, fundamentally characterize the properties of the interior transmis-
sion problem. In order to introduce the reader to the interior transmission problem aris-
ing from scattering due to an inhomogeneity embedded in a complex background, in this
section we consider an inhomogeneous (possibly absorbing) background to the scattering
inhomogeneity.

The interior transmission eigenvalue problem for an inhomogeneous absorbing media
of support D occupying a part of an inhomogeneous absorbing background is formulated
as

�w + k2
✓
✏1(x) + i

�1(x)

k

◆
w = 0 in D, (4.42)

�v + k2
✓
✏0(x) + i

�0(x)

k

◆
v = 0 in D, (4.43)

v = w on @D, (4.44)
@v

@⌫
=
@w

@⌫
on @D, (4.45)

where w 2 L2(D) and v 2 L2(D) such that w � v 2 H2
0 (D). Here we assume that

✏1 2 L1(D) and �1 2 L1(D) such that ✏1(x) � ⌘1 > 0, �1(x) � 0 almost everywhere
in D, and similarly ✏0 2 L1(D) and �0 2 L1(D) such that ✏0(x) � ⌘0 > 0, �0(x) � 0.
Similarly to Section 3.1.1, it is possible to write (4.42)–(4.45) as an eigenvalue problem
for the fourth order differential equation

�
�+ k2✏1(x) + ik�1(x)

� 1

k✏c(x) + i�c(x)

�
�+ k2✏0(x) + ik�0(x)

�
u = 0 (4.46)
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for u 2 H2
0 (D), where we denote by ✏c := (✏1 � ✏0) and �c := (�1 � �0) the respective

contrasts. Obviously if u 2 H2
0 (D) satisfies (4.46), then

w :=
�1

k2✏c + ik�c
(�+ k2✏0 + ik�0)u 2 L2(D)

and v = w � u 2 L2(D) satisfies (4.42)–(4.45).
In variational form (4.46) is formulated as the problem of finding u 2 H2

0 (D) such that

Z

D

1

k✏c + i�c

⇥
�u+ (k2✏0 + ik�0)u

⇤ ⇥
�v + (k2✏1 + ik�1)v

⇤
dx = 0 (4.47)

for all v 2 H2
0 (D). It is easy to see that the interior transmission problem (4.42)–(4.45)

does not have purely imaginary eigenvalues k = i⌧ as long as ⌧ > 0 is such that ⌧✏c+�c >
0. Indeed, after integrating by parts and using the zero boundary conditions, we have that

0 =

Z

D

1

⌧✏c + �c

⇥
�u� (⌧2✏0 + ⌧�0)u

⇤ ⇥
�u� (⌧2✏1 + ⌧�1)u

⇤
dx

=

Z

D

1

⌧✏c + �c

���u� (⌧2✏0 + ⌧�0)u
��2 dx� ⌧

Z

D

⇥
�u� (⌧2✏0 + ⌧�0)u

⇤
u dx

=

Z

D

1

⌧✏c + �c

���u� (⌧2✏0 + ⌧�0)u
��2 dx+ ⌧

Z

D

|ru|2 dx+ ⌧2
Z

D

(⌧✏0 + �0)|u|
2 dx,

which implies that u = 0 in D. In a similar way, by exchanging subindices 1 and 0 one
can show the same result for ⌧✏c + �c < 0. The situation is not clear for k = i⌧ for
which ⌧✏c + �c changes sign. For example, if ✏0 > 0, ✏1 > 0, �0 > 0, and �1 > 0
are all positive constants, then k = i⌧0, where ⌧0 = �1��0

✏1�✏0
is an eigenvalue and the

corresponding eigenspace is infinite-dimensional since for any solution v to the Helmholtz
equation�v � ⌧0(⌧0✏0 + i�0)v = 0, v and w = v are eigenfunctions.

Remark 4.23.

1. If ✏c(x) � ✓ > 0 and �c(x) � 0 almost everywhere in D, then k = i⌧ , where ⌧ is
such that ⌧ � �

supD �c

infD ✏c
or ⌧  �

infD �c

supD ✏c
is not a transmission eigenvalue.

2. If ✏c(x) � ✓ > 0 and |�c(x)| < M almost everywhere in D, then k = i⌧ , where
⌧ > 0 is large enough such that ⌧ �

M

infD ✏c
is not a transmission eigenvalue.

In the following we assume that the real part of k 2 C is positive. Furthermore, we
assume that the contrast ✏c is bounded and does not change sign; more specifically, due to
the symmetric role of ✏1 and ✏0, we require that 0 < ✓  ✏c(x) < N almost everywhere in
D, whereas the contrast �c is only bounded, i.e., |�c(x)| < M almost everywhere in D.

Lemma 4.24. Assume that 0 < ✓  ✏c(x) < N and |�c(x)| < M almost everywhere in
D. Then the set of transmission eigenvalues in the region G� := {k = + i⌧ :  � � > 0
and ⌧  2M/✓} [ {k = + i⌧ :  2 R and ⌧ � 2M/✓} is discrete.
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Proof. Let us define the following sesquilinear forms on H2
0 (D):

Ak(u, v) =

Z

D

1

k✏c + i�c
�u�v dx,

Bk(u, v) =

Z

D


k
k✏1 + i�1
k✏c + i�c

�u v + k
k✏0 + i�0
k✏c + i�c

u�v + k2
(k✏0 + i�0)(k✏1 + i�1)

k✏c + i�c
u v

�
dx.

From our assumption we have that |k✏c + i�c| � � > 0 almost everywhere in D, and
therefore the above bilinear forms define bounded linear operators Ak : H2

0 (D) ! H2
0 (D)

and Bk : H2
0 (D) ! H2

0 (D) by means of the Riesz representation theorem. In terms of
these operators the transmission eigenvalue problem takes the form

(Ak +Bk)u = 0, u 2 H2
0 (D). (4.48)

In particular, k is a transmission eigenvalue if and only if the kernel of the operator Ak+Bk

is nontrivial. In the same way as is Section 3.1.1 one can prove that Ak is invertible for
fixed k 2 G� ⇢ C and Bk is compact. Since (4.48) becomes

�
I+A�1

k
Bk

�
u = 0,

if k is a transmission eigenvalue �1 is an eigenvalue of the compact (non-self-adjoint)
operator A�1

k
Bk and hence transmission eigenvalues have finite multiplicity. Note that the

eigenfunctions of A�1
k

Bk are elements of the kernel of Ak +Bk, and vice versa.
Next we show that the set of transmission eigenvalues is discrete, and to this end we

apply the Analytic Fredholm Theorem. Obviously the bilinear forms Ak(·, ·) and Bk(·, ·)
depend analytically on k 2 G� ⇢ C, and thus the mappings k 7! Ak and k 7! Bk are
weakly analytic in this region and hence strongly analytic [69]. Therefore, k 7! A�1

k
is

also strongly analytic and so is k 7! A�1
k

Bk. Furthermore, from Remark 4.23, k0 = i⌧
for some ⌧ > 2M/✓ is not a transmission eigenvalue, i.e., the kernel of Ak0 + Bk0 , and
hence of I+A�1

k0
Bk0 , is nontrivial. Hence from the Analytic Fredholm Theorem 1.12 we

can conclude that the set of transmission eigenvalues in the region G� ⇢ C of the complex
plane is discrete (possibly empty) with 1 as the only possible accumulation point.

Now since the region k 2 C such that <(k) > 0 is included in
S

1

n=1 G1/n we have
proven the following theorem.

Theorem 4.25. Assume that 0 < ✓  ✏c(x) < N and |�c(x)| < M almost everywhere in
D. Then the set of transmission eigenvalues k 2 C, <(k) > 0, is discrete (possibly empty).

The existence of transmission eigenvalues for absorbing media is in general an open
problem. However, for small enough conductivities �0 and �1, using perturbation theory
[106] it is possible to show the existence of transmission eigenvalues near the real axis.
The following theorem is just a reformulation of Theorem 4.12.

Theorem 4.26. Assume that both �0 = 0 and �1 = 0 almost everywhere in D and ✏0 2

L1(D) and ✏1 2 L1(D) are such that ✏0(x) � ✓0 > 0, ✏1(x) � ✓1 > 0, and ✏c :=
✏1 � ✏ � ✓ > 0 almost everywhere in D. Then there exists an infinite set of positive
real transmission eigenvalues that accumulate only at +1. Furthermore, the smallest
real transmission eigenvalue k1 > 0 satisfies k1 > �1(D)

supD ✏c
, where �1(D) > 0 is the first

Dirichlet eigenvalue for �� in D.

Our aim is to now use the upper semicontinuity of the spectrum of linear operators. To
this end we rewrite the eigenvalue problem (4.42)–(4.45) in a different equivalent form.
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Note that we already know by Theorem 4.25 that in the right half-plane (4.42)–(4.45) has
a discrete point spectrum. Obviously in terms of v and u := w � v, (4.42)–(4.45) can be
written as

�u+
�
k2✏1 + ik�1

�
u+

�
k2✏c + ik�c

�
v = 0 in D, (4.49)

�v +
�
k2✏0 + ik�0

�
v = 0 in D, (4.50)

together with the boundary conditions

u = 0,
@u

@⌫
= 0 on @D. (4.51)

These equations make sense for u = H2
0 (D) and v 2 L2(D) such that �v 2 L2(D). Set-

ting X(D) := H2
0 (D)⇥

�
v 2 L2(D) : �v 2 L2(D)

 
, we can define the linear operators

A,B� ,D✏ : L2(D)⇥ L2(D) ! L2(D)⇥ L2(D) by

A =

✓
�00 0
0 �

◆
, B� =

✓
i�1 i�c
0 i�0

◆
, D✏ =

✓
✏1 ✏c
0 ✏0

◆
,

where �00 indicates that the Laplacian acts on a function in H2
0 (D), i.e., one with zero

Cauchy data on @D. Let p :=
�
u

v

�
and note that the domain of definition of A is X(D)

and A is an unbounded densely defined operator in L2(D) ⇥ L2(D). Furthermore, A is a
closed operator, i.e., for any sequence {pn} 2 X(D) such that pn ! p in L2(D)⇥L2(D)
and Apn ! q, we have that p 2 X(D) and Ap = q. Indeed, since k�00ukL2(D) defines
an equivalent norm in H2

0 (D), if un ! u in L2(D) and �00un ! q1 in L2(D), then
u 2 H2

0 (D) and q1 = �00u. Similarly, if vn ! v in L2(D) and �vn ! q2 in L2(D),
then �v = q2. The operators B� and D✏ are bounded in L2(D) ⇥ L2(D) and D�1

✏
exists

in L2(D)⇥ L2(D) and is given by

D�1
✏

=
1

✏0✏1

✓
✏0 �✏c
0 ✏1

◆
.

Thus the transmission eigenvalue problem is equivalent to the following quadratic eigen-
value problem:

Ap+ kB�p+ k2D✏p = 0, p 2 L2(D)⇥ L2(D). (4.52)

Introducing U =
� p
kD✏ p

�
, the eigenvalue problem (4.52) becomes

(KU� kI✏,�)U = 0, U 2 (L2(D)⇥ L2(D))2, (4.53)

where the 4⇥ 4 matrix operators K and I�,✏ are given by

K :=

✓
A 0
0 I

◆
, I✏,� :=

✓
�B� �I
D✏ 0

◆
,

where I is the identity operator in L2(D) ⇥ L2(D). By straightforward calculation we
obtain I�1

✏,�
:= D�1

✏

� 0 I
�D✏ �B�

�
, which is a bounded operator in L2(D) ⇥ L2(D). Thus

we have that the original transmission eigenvalue problem (4.42)–(4.45) is equivalent to an
eigenvalue problem for the closed (unbounded) operator T✏,� := I�1

✏,�
K (note that T✏,� is

closed because it is the product of a closed operator with a bounded operator in (L2(D)⇥
L2(D))2). Let us denote by T✏,�=0 the operator defined as above corresponding to the
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nonabsorbing case, i.e., �0 = 0 and �1 = 0 almost everywhere in D (B�=0 becomes the
zero operator). Let ⌃(T✏,�) be the spectrum of T✏,� and R(k;T✏,�) the resolvent of T✏,� .
We have proven in Theorem 4.25 that R(k;T✏,�) = (T✏,� � kI)�1 is well defined for all
k 2 C such that <(k) > 0 except for a discrete set of k without any finite accumulation
point (possibly empty). Furthermore, from Theorem 4.26 we already know that ⌃(T✏,�=0)
contains infinitely many isolated points lying on the positive real axis, which indeed are
real transmission eigenvalues. Our aim is to use the stability of eigenvalues for closed
operators under small perturbations as described in [106, Chapter 4, Section 3]. To this
end we need to define what a small perturbation means and prove that T✏,� is a small
perturbation of T✏,�=0 assuming that the absorptions �0 and �1 are small enough.

To do this we set P := T✏,� � T✏,�=0 and by straightforward calculation we see that
the perturbation P is a bounded operator in (L2(D)⇥ L2(D))2 given by

P =

✓
0 0
0 �D�1

✏
B�

◆
.

According to [106], the perturbation P is considered small if the so-called gap between the
two closed operators T✏,� ,T✏,�=0, denoted by �̂(T✏,� ,T✏,�=0) is small. For the sake of the
reader’s convenience we include here the definition of the gap �̂(T, S) between two closed
operators T and S on a Banach space X . In particular

�̂(T, S) = max(�(T, S), �(S, T )), where �(T, S) = sup
u2G(T ),kuk=1

dist(u,G(S)),

where G(T ) and G(S) are the graphs of T and S, respectively, which are closed subsets
of X ⇥X . In particular, if S = T + A with A a bounded operator in X , then (see [106,
Chapter 4, Theorem 2.14])

�̂(T +A, T )  kAk.

In our case it is now easy to show that

�̂(T✏,� ,T✏,�=0)  kPk  kD�1
✏

B�k (4.54)

 4
sup

D
(✏0) + sup

D
(✏1)

infD(✏0) infD(✏1)

✓
sup
D

(�0) + sup
D

(�1)

◆
. (4.55)

Now let k⇤ be a real transmission eigenvalue corresponding to the operator T✏,�=0, and
consider a neighborhood N�(k⇤) ⇢ C of k⇤ of radius � > 0. Then there is an ⌘k⇤ > 0 (of
course depending on �) such that this neighborhood contains at least one point in ⌃(T✏,�)
as long as �̂(T✏,� ,T✏,�=0) < ⌘k⇤ since otherwise from [106, Theorem 3.1, Chapter 4]
N�(k⇤) must be included in both resolvents, R(k;T✏,�) and R(k;T✏,�=0). Thus we have
shown that for small absorption there is at least one transmission eigenvalue near k⇤.

Theorem 4.27. Let ✏0 2 L1(D) and ✏1 2 L1(D) satisfy ✏0(x) � ✓0 > 0, ✏1(x) � ✓1 >
0, and ✏c := ✏1 � ✏ � ✓ > 0, and let kj > 0, j = 1, . . . , `, be the first ` real transmission
eigenvalues (multiple eigenvalues are counted once) corresponding to (4.42)–(4.45) for
nonabsorbing media, i.e., for �0 = �1 = 0. Then for every � > 0 there is an ⌘̃ > 0
(depending on �) such that if the absorption in the media is such that sup

D
�0+sup

D
�1 <

⌘̃, there exist at least ` transmission eigenvalues corresponding to (4.42)–(4.45) in a �-
neighborhood of kj , j = 1, . . . , `.

Proof. To prove this theorem, it suffices to choose ⌘̃ = max(⌘̃k1 , ⌘̃k2 , . . . , ⌘̃k`) thanks to
(4.54), where

⌘̃kj < ⌘ki

infD(✏0) infD(✏1)

4 sup
D
(✏0) + 4 sup

D
(✏1)
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and ⌘kj is the size of the perturbation corresponding to kj , j = 1, . . . , `, as discussed
above.

Remark 4.28. The approach developed in this section can be seen as a development of the
continuity property for the resolvent of the transmission eigenvalue problem. In particular,
for a real valued refractive index the same analysis can be done to show that if the real
valued refractive index in the media is slightly perturbed, then so are the transmission
eigenvalues.

We finish by noticing that the discussion in this section is the only result known up to
date on the existence of transmission eigenvalues for absorbing and dispersive media, i.e.,
media with k-dependent complex valued refractive indices. The difficulty in analyzing the
spectrum of the transmission eigenvalue problem in this case lies in the fact that the prob-
lem can no longer be viewed as an eigenvalue problem with k2 as the eigenvalue parameter.
It would also be interesting for the applications to know if real transmission eigenvalues
exist if both the inhomogeneity and the part of the background occupied by the inhomo-
geneity are absorbing. Note that, as already seen here, real transmission eigenvalues do not
exist if only the inhomogeneity is absorbing.

4.3 Existence of Transmission Eigenvalues for
Anisotropic Media

We now return our attention to the transmission eigenvalue problem for anisotropic media
(3.99) and prove the existence of real transmission eigenvalues under a sign restriction
on the contrast. As the reader has already learned from Section 3.2, the transmission
eigenvalue problem for anisotropic media assumes a different structure, provided whether
n ⌘ 1 or n 6⌘ 1.

Let us recall the transmission eigenvalue problem for anisotropic media:

8
>>>>><

>>>>>:

r ·Arw + k2nw = 0 in D,

�v + k2v = 0 in D,

w = v on @D,

@w

@⌫A
=
@v

@⌫
on @D

(4.56)

with w 2 H1(D) and v 2 H1(D), where in view of Theorem 3.35 we assume that
=(A) = 0 and =(n) = 0 and remind the reader of the notation

a⇤ := inf
D

inf
|⇠|=1

⇠ ·A⇠ > 0 and a⇤ := sup
D

sup
|⇠|=1

⇠ ·A⇠ < 1,

n⇤ := inf
D

n > 0 and n⇤ := sup
D

n < 1.
(4.57)

4.3.1 The Case n ⌘ 1

We start by assuming that n(x) ⌘ 1 for almost all x 2 D and in addition =(A) = 0
and either a⇤ > 1 or 0 < a⇤ < 1. Under these assumptions, in Section 3.2 (right below
Remark 3.36), it is shown that real transmission eigenvalues, i.e., the values of k > 0 for
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which there exist nonzero solutions v 2 H1(D) and w 2 H1(D) of

r ·Arw + k2w = 0 and �v + k2v = 0 in D,

w = v and
@w

@⌫A
=
@v

@⌫
on @D,

are the values of ⌧ := k2 for which the kernel of the operators

A⌧ � ⌧B or Ã⌧ � ⌧B, defined in H0(D), (4.58)

is nontrivial. Here we recall

H0(div, D) :=
�
u 2 L2(D)2, r · u 2 L2(D), ⌫ · u = 0 on @D

 
,

H0(D) :=
�
u 2 H0(div, D) : r · u 2 H1

0 (D)
 
,

and the bounded linear operators A⌧ : H0(D) ! H0(D), Ã⌧ : H0(D) ! H0(D), and
B : H0(D) ! H0(D) are defined via the Riesz representation theorem, respectively,
applied to the forms

A⌧ (u,u
0) :=

�
(N � I)�1 (rr · u+ ⌧u) , (rr · u0 + ⌧u0)

�
D
+ ⌧2 (u,u0)

D
,

Ã⌧ (u,v) :=
�
N(I �N)�1 (rr · u+ ⌧u) , (rr · u0 + ⌧u0)

�
D

+(rr · u,rr · v)
D
,

and
B(u,v) := (r · u,r · v)

D

with N = A�1 and (·, ·)D denoting the L2(D)-inner product (see (3.121) and the equa-
tions following). Exactly in the same way as in Lemma 4.9 we can prove the following
result.

Lemma 4.29. The bounded self-adjoint operator A⌧ : H0(D) ! H0(D) is positive
definite if 0 < a⇤ < 1, whereas Ã⌧ : H0(D) ! H0(D) is positive definite if a⇤ > 1.

Lemma 4.30. The self-adjoint nonnegative linear operator B : H0(D) ! H0(D) is
compact.

Proof. Let un be a bounded sequence in H0(D). Hence there exists a subsequence,
denoted again by un, which converges weakly to u0 in H0(D). Since r · un is also
bounded in H1(D), from Rellich’s compactness theorem we have that r · un converges
strongly to r · u0 in L2(D). But

kB(un � u0)kH0(D)  kr · (un � u0)kL2(D),

which proves that Bun converges strongly to Bu0.

The kernel of the operator B : H0(D) ! H0(D) is given by

Kernel(B) = {u 2 H0(D); r · u = 0} ,

which is obvious from the representation

(Bu,v)
H0(D) = (r · u,r · v)

D
.
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To carry over the approach of Section 4.2 to the eigenvalue problem for anisotropic media,
we also need to consider the corresponding transmission eigenvalue problem for a ball BR

of radius R centered at the origin with a constant index of refraction 0 < n 6= 1, which is
formulated as

�w + k2nw = 0 and �v + k2v = 0 for |x| < R, (4.59)

w = v and
1

n

@w

@⌫
=
@v

@⌫
for |x| = R. (4.60)

By separation of variables we can prove the following lemma.

Lemma 4.31. Let D := BR, and let n > 0 be a positive constant such that n 6= 1. The
infinitely many real zeros of

dn(k) = det

✓
jn(kR) jn(k

p
nR)

j0
n
(kR) 1

p
n
j0
n
(k
p
nR)

◆
= 0

are transmission eigenvalues for the anisotropic media with support BR and refractive
index A := 1

n
I .

We denote by kR,n the smallest real eigenvalue. An eigenfunction corresponding to
kR,n is uBR,n = nrwBR,n

� rvBR,n
2 H0(BR), where wBR,n, vBR,n is a nonzero

solution to (4.59)–(4.60). Furthermore, uBR,n satisfies
Z

BR

1

n� 1
(rr · uBR,n + k2

R,n
uBR,n) · (rr · uBR,n + k2

R,n
nuBR,n) dx = 0. (4.61)

By definition uBR,n is not in the kernel of B : H0(D) ! H0(D). Finally, if BR ⇢ D,
then the extension by zero ũ of uBR,n to the whole D is in H0(D), respectively.

Now we have all the pieces to repeat word for word the proof of Theorem 4.12 to obtain
the following theorem on the existence of real transmission eigenvalues for anisotropic
media.

Theorem 4.32. Assume =(A) = 0, n ⌘ 1, and the matrix valued function A satisfies
either

1. 1 < a⇤  ⇠ ·A(x)⇠  a⇤ < 1 or

2. 0 < a⇤  ⇠ ·A(x)⇠  a⇤ < 1

for almost all x 2 D and all ⇠ 2 R3 with k⇠k = 1. Then there exists an infinite set of real
transmission eigenvalues for the anisotropic media problem (4.56) with +1 as the only
accumulation point.

4.3.2 The Case n 6⌘ 1

We here discuss the existence of positive transmission eigenvalues in the general case of
anisotropic media with n 6= 1. Unfortunately the existence of transmission eigenvalues for
this case can only be shown under restrictive assumptions on A�I and n�1. The approach
presented here follows along the lines of [49] where, motivated by the case of n ⌘ 1,
the transmission eigenvalue problem is formulated in terms of the difference u := v � w.
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However, due to the lack of symmetry, the problem for u is no longer a quadratic eigenvalue
problem but takes the form of a more complicated nonlinear eigenvalue problem, as will
become clear in the following.

Example 4.33. The spherically symmetric case: In the case when D := BR is a ball of
radius R centered at the origin and both constitutive material properties A = a(r)I and
n = n(r) depend only on the radial variable, similarly to the isotropic media in Theorem
4.7 we can directly show that there exists an infinite set of transmission eigenvalues. We
assume that both a 2 C2[0, R] and n 2 C2[0, R]. Obviously if both a ⌘ 1 and n ⌘ 1,
every k > 0 is a transmission eigenvalue (i.e., this corresponds to the case when there is no
inhomogeneity and therefore no waves are scattered). To avoid such a situation we assume
that either a(R) 6= 1 and n(R) 6= 1 or otherwise

� :=
1

R

RZ

0

✓
n(r)

a(r)

◆ 1
2

dr 6= 1. (4.62)

We restrict our attention to solutions of (4.56) that depend only on r = |x|, that is,

v(x) = a0j0(kr),

where j0 is the spherical Bessel function of order zero and a0 is a constant. Next, making
the substitution w(x) = [a(r)]�1/2W (x) we see that the first equation in (4.56) takes the
form

�W +

✓
k2

n(r)

a(r)
�m(r)

◆
W = 0,

where
m(r) =

1p
a(r)

�
p
a(r).

Hence, setting

w(x) =
b0

[a(r)]
1
2

y(r)

r
,

where b0 is a constant, straightforward calculations show that if y is a solution of

y00 +

✓
k2

n(r)

a(r)
�m(r)

◆
y = 0, y(0) = 0, y0(0) = 1,

then w satisfies the first equation in (4.56). Define c(r) by

c(r) :=
n(r)

a(r)
.

Again following [69], [75], in order to solve the above initial value problem for y we use
the Liouville transformation

z(⇠) := [c(r)]
1
4 y(r), where ⇠(r) :=

rZ

0

[c(⇢)]
1
2 d⇢,

which yields the following initial value problem for z(⇠):

z00 + [k2 � p(⇠)]z = 0 , z(0) = 0 , z0(0) =
⇥
c(0)

⇤� 1
4 , (4.63)
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where

p(⇠) :=
c00(r)

4[c(r)]2
�

5

16

[c0(r)]2

[c(r)]3
+

m(r)

c(r)
.

Now exactly in the same way as in Theorem 4.7, (4.63) can then be rewritten as a Volterra
integral equation and, for k > 0, using the method of successive approximations, we
can obtain the asymptotic behavior for y which is the same as (4.5) and (4.6) where n(r)
is replaced by c(r). Applying the boundary conditions on |x| = R, the transmission
eigenvalues are the zeros of

d0(k) = det

0

BBB@

1

[a(R)]1/2
y(R)

R
j0(kR)

a(R)
d

dr

✓
1

[a(r)]1/2
y(r)

r

◆

r=R

k j00(kR)

1

CCCA
= 0,

which has the same asymptotic expression as in (4.7), where

� :=
1

R

RZ

0

n(r)

a(r)
, A =

1

[a(R)]1/2
1

[c(0)c(R)]1/4
, B =

⇥
a(R)

⇤1/2

c(R)

c(0)

�1/4
.

Then, as in the proof of Theorem 4.7, we can conclude the existence of infinitely many
eigenvalues, provided the above assumptions are met.

In the following we need to consider a particular case of the above spherically stratified
media where A = aI and a 6= 1 and n 6= 1 are both positive constants. Separation of
variables leads to solutions of (4.56) of the form

v(r, x̂) = a`j`(kr)Y
m

`
(x̂) , w(r, x̂) = b`j`

✓
k

r
n

a
r

◆
Y m

`
(x̂),

where jn are spherical Bessel functions of order n, Y m

n
are the spherical harmonics, and

x̂ = x/r. Then the corresponding transmission eigenvalues are zeros of the determinants

d`(k) = det

0

BB@
j`(kR) j`

✓
k

r
n

a
R

◆

k j0
`
(kR) k

p
na j0

`

✓
k

r
n

a
R

◆

1

CCA = 0 (4.64)

for ` � 0. For later use we denote by ka,n,R the smallest transmission eigenvalue, which
may not necessarily be the first zero of d0(k).

We now turn our attention to the general case (4.56). To simplify the expressions we
set ⌧ := k2 and observe that if (v, w) satisfies (4.56), then, subtracting the equation for v
from the equation for w, we arrive at the equivalent formulation for u := v �w 2 H1

0 (D)
and v 2 H1(D):

r ·Aru+ ⌧nu = r · (A� I)rv + ⌧(n� 1) v in D ,

⌫ ·Aru = ⌫ · (A� I)rv on @D,
(4.65)

along with
�v + ⌧v = 0 in D. (4.66)
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The main idea of the proof of the existence of transmission eigenvalues consists in express-
ing v in terms of u, using (4.65), and substituting the resulting expression into (4.66) in
order to formulate the eigenvalue problem only in terms of u. In the case when A = I this
substitution is simple and leads to an explicit expression as a fourth order equation satisfied
by u as discussed in Section 3.1.1 (see also [110]). In the current case the substitution re-
quires the inversion of the operator r ·

⇥
(A� I)r·

⇤
+ ⌧(n� 1) with a Neumann boundary

condition. It is then obvious that the case where (A � I) and (n � 1) have the same sign
is more problematic since in that case the operator may not be invertible for special values
of ⌧ . This is why we only consider in detail the simpler case when (A � I) and (n � 1)
have the opposite sign almost everywhere in D. Thus we now assume that either a⇤ < 1
and n⇤ > 1, or a⇤ > 1 and n⇤ < 1.

Note that for given u 2 H1
0 (D), the problem (4.65) for v 2 H1(D) is equivalent to the

variational formulation
Z

D

⇥
(A� I)rv ·r � ⌧ (n� 1) v  

⇤
dx =

Z

D

⇥
Aru ·r � ⌧nu 

⇤
dx (4.67)

for all  2 H1(D). The following result concerning the invertibility of the operator
associated with (4.67) can be proven in a standard way using the Lax–Milgram lemma.
We skip the proof here and refer the reader to [49].

Lemma 4.34. Assume that either a⇤ > 1 and 0 < n⇤ < 1, or 0 < a⇤ < 1 and n⇤ > 1.
Then for every u 2 H1

0 (D) and ⌧ � 0 there exists a unique solution v := vu 2 H1(D) of
(4.67). The operator A⌧ : H1

0 (D) ! H1(D), defined by u 7! vu, is bounded and depends
continuously on ⌧ � 0.

For fixed u 2 H1
0 (D), we now set vu := A⌧u and denote by L⌧u 2 H1

0 (D) the unique
Riesz representation of the bounded antilinear functional

 7!

Z

D

⇥
rvu ·r � ⌧ vu  

⇤
dx for  2 H1

0 (D) ,

i.e.,

(L⌧u, )H1(D) =

Z

D

⇥
rvu ·r � ⌧ vu  

⇤
dx for  2 H1

0 (D) . (4.68)

Obviously L⌧ also depends continuously on ⌧ . Now we are able to connect a transmission
eigenfunction, i.e., a nontrivial solution (v, w) of (4.56), to the kernel of the operator L⌧ .

Theorem 4.35. The following statements are true:

1. Let (w, v) 2 H1(D) ⇥ H1(D) be a transmission eigenfunction corresponding to
some eigenvalue ⌧ > 0. Then u = v � w 2 H1

0 (D) satisfies L⌧u = 0.

2. Let u 2 H1
0 (D) satisfy L⌧u = 0 for some ⌧ > 0. Furthermore, let v := vu =

A⌧u 2 H1(D) be as in Lemma 4.34, i.e., the solution of (4.67). Then ⌧ is a trans-
mission eigenvalue with (w, v) 2 H1(D)⇥H1(D) the corresponding transmission
eigenfunction, where w = v � u.

Proof. Formula (4.68) implies that (L⌧u, )H1(D) = 0 for all  2 H1
0 (D), which means

that L⌧u = 0.
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The proof of the second part of the theorem is a simple consequence of the observation
that (4.66) is equivalent to

Z

D

⇥
rv ·r � ⌧ v  

⇤
dx = 0 for all  2 H1

0 (D). (4.69)

Hence L⌧u = 0 implies that vu solves the Helmholtz equation in D. Since w := v � u
we have that the Cauchy data of w and v coincide. The equation for w follows from
(4.67).

The operator L⌧ plays a role similar to that of the operator Ak � k2B for the case of
n ⌘ 1 discussed in the first part of this section.

Theorem 4.36. The bounded linear operator L⌧ : H1
0 (D) ! H1

0 (D) satisfies

1. L⌧ is self-adjoint for all ⌧ > 0;

2. (�L0u, u)H1(D) � c kuk2
H1(D) for all u 2 H1

0 (D) and c > 0 independent of u,
where � = 1 if a⇤ > 1 and 0 < n⇤ < 1, and � = �1 if 0 < a⇤ < 1 and n⇤ > 1;

3. L⌧ � L0 is compact.

Proof. 1. Let u1, u2 2 H1
0 (D), and let v1 := vu1 and v2 := vu2 be the corresponding

solution of (4.67). Then we have that

(L⌧u1, u2)H1(D) =

Z

D

⇥
rv1 ·ru2 � ⌧ v1u2

⇤
dx

=

Z

D

⇥
Arv1 ·ru2 � ⌧n v1 u2

⇤
dx

�

Z

D

⇥
(A� I)rv1 ·ru2 � ⌧ (n� 1) v1 u2

⇤
dx .

Using (4.67) twice, first for u = u2 and the corresponding v = v2 and  = v1 and then
for u = u1 and the corresponding v = v1 and  = v2, yields

(L⌧u1, u2)H1(D) =

Z

D

⇥
(A� I)rv1 ·rv2 � ⌧ (n� 1) v1 v2

⇤
dx

�

Z

D

⇥
Aru1 ·ru2 � ⌧nu1 u2

⇤
dx, (4.70)

which shows that L⌧ is self-adjoint.
2. In order to show that �L0 : H1

0 (D) ! H1
0 (D) is a coercive operator, we recall the

definition (4.68) of L0 and use the fact that v = vu = u+ w to obtain

(L0u, u)H1(D) =

Z

D

rv ·ru dx =

Z

D

|ru|2 dx+

Z

D

rw ·ru dx . (4.71)

From (4.67) for ⌧ = 0 and  = w we now have that
Z

D

rw ·ru dx =

Z

D

(A� I)rw ·rw dx . (4.72)
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If a⇤ > 0, we have
R
D
(A� I)rw ·rw dx � (a⇤ � 1)krwk2

L2(D) � 0 and hence

(L0u, u)H1(D) �

Z

D

|ru|2 dx .

Since from Poincaré’s inequality krukL2(D) is an equivalent norm on H1
0 (D), this proves

the strict coercivity of L0.
Now if 0 < a⇤ < 1, from (4.70) with u1 = u2 = u and ⌧ = 0 we have

�(L0u, u)H1(D) = �

Z

D

(A� I)rw ·rw dx +

Z

D

Aru ·ru dx

� a⇤

Z

D

|ru|2 dx

which proves the strict coercivity of �L0 since a⇤ > 0.
3. This follows from the compact embedding of H1

0 (D) into L2(D).

We are now in the position to establish the existence of infinitely many positive trans-
mission eigenvalues, i.e., the existence of a sequence of ⌧j > 0, and corresponding uj 2

H1
0 (D), such that uj 6= 0 and L⌧juj = 0. Obviously these ⌧ > 0 are such that the ker-

nel of I + T⌧ is not trivial, which corresponds to one being an eigenvalue of the compact
self-adjoint operator T⌧ , where T⌧ : H1

0 (D) ! H1
0 (D) is defined by

T⌧ := (�L0)
�

1
2 (�(L⌧ � L0)) (�L0)

�
1
2 .

Thus we can conclude that real transmission eigenvalues have finite multiplicity. We can
now use Theorem 4.6 to prove the main result of this section.

Theorem 4.37. Assume that either a⇤ > 1 and 0 < n⇤ < 1, or 0 < a⇤ < 1 and
n⇤ > 1. Then there exists an infinite sequence of positive transmission eigenvalues kj > 0
(⌧j := k2

j
) with +1 as the only accumulation point.

Proof. We sketch the proof only for the case of a⇤ > 1 and 0 < n⇤ < 1 (i.e., take � = 1 in
Theorem 4.36). First, we recall that assumption 1 of Theorem 4.6 is satisfied with ⌧0 = 0
from Theorem 4.36, part 2. Next, from the definition of L⌧ and the fact that v = w + u,
we have

(L⌧u, u)H1(D) (4.73)

=

Z

D

⇥
rv ·ru� ⌧ v u

⇤
dx =

Z

D

⇥
rw ·ru� ⌧ w u+ |ru|2 � ⌧ |u|2

⇤
dx.

We also have that w satisfiesZ

D

⇥
(A� I)rw ·r � ⌧(n� 1)w 

⇤
dx =

Z

D

⇥
ru ·r � ⌧ u 

⇤
dx (4.74)

for all  2 H1(D). Now taking  = w in (4.74) and substituting the result into (4.73)
yields

(L⌧u, u)H1(D) (4.75)

=

Z

D

⇥
(A� I)rw ·rw � ⌧ (n� 1) |w|2 + |ru|2 � ⌧ |u|2

⇤
dx .
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Now let ⌧̂ be such that ⌧̂ := k2
n⇤,a⇤,R

(the first transmission eigenvalue corresponding to
(4.59)–(4.60) for the disk BR with a := a⇤ and n := n⇤). We denote by v̂, ŵ the corre-
sponding nonzero solutions and set û := v̂ � ŵ 2 H1

0 (BR). We denote the corresponding
operator by L̂⌧ . Of course, by construction, we have that (4.75) still holds, i.e., since
L̂⌧̂ û = 0,

0 =
�
L̂⌧̂ û, û

�
H1(BR)

(4.76)

=

Z

BR

⇥
(a⇤ � 1)|rv̂|2 � ⌧̂ (n⇤

� 1)|v̂|2 + |rû|2 � ⌧̂ |û|2
⇤
dx .

Next we denote by ũ 2 H1
0 (D) the extension of û 2 H1

0 (BR) by zero to the whole of
D, let ṽ := vũ be the corresponding solution to (4.67), and set w̃ := ṽ � ũ. In particular
w̃ 2 H1(D) satisfies

Z

D

⇥
(A� I)rw̃ ·r � ⌧̂ (n� 1) w̃ 

⇤
dx =

Z

D

⇥
rũ ·r � ⌧̂ ũ 

⇤
dx

=

Z

BR

⇥
rû ·r � ⌧̂ û 

⇤
dx =

Z

BR

⇥
(a⇤ � 1)rŵ ·r � ⌧̂ (n⇤

� 1) ŵ 
⇤
dx

for all  2 H1(D). Therefore, for  = w̃ we have
Z

D

[(A� I)rw̃ ·rw̃ � ⌧̂ (n� 1) |w̃|2] dx

=

Z

BR

[(a⇤ � 1)rŵ ·rw̃ + ⌧̂ |n⇤
� 1| ŵ w̃] dx.

Using the Cauchy–Schwarz inequality we obtain
Z

D

((A� I)rw̃ ·rw̃ � ⌧̂ (n� 1) |w̃|2) dx



2

4
Z

BR

((a⇤ � 1) |rŵ|2 + ⌧̂ |n⇤
� 1| |ŵ|2) dx

3

5

1
2
2

4
Z

BR

((a⇤ � 1) |rw̃|2 + ⌧̂ |n⇤
� 1| |w̃|2) dx

3

5

1
2



2

4
Z

BR

((a⇤ � 1) |rŵ|2 � ⌧̂ (n⇤
� 1) |ŵ|2) dx

3

5

1
2
2

4
Z

D

((A� I)rw̃ ·rw̃ � ⌧̂ (n� 1) |w̃|2) dx

3

5

1
2

since |n� 1| = 1� n � 1� n⇤ = |n⇤
� 1|. Hence we have

Z

D

⇥
(A� I)rw̃ ·rw̃ � ⌧̂ (n� 1) |w̃|2

⇤
dx



Z

BR

⇥
(a⇤ � 1) |rŵ|2 � ⌧̂ (n⇤

� 1) |ŵ|2
⇤
dx .
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Substituting this into (4.75) for ⌧ = ⌧̂ and u = ũ yields

�
L⌧̂ ũ, ũ

�
H1(D)

=

Z

D

⇥
(A� I)rw̃ ·rw̃ � ⌧̂ (n� 1) |ṽ|2 + |rw̃|2 � ⌧̂ |w̃|2

⇤
dx



Z

BR

⇥
(a⇤ � 1)|rŵ|2 � ⌧̂ (n⇤

� 1) |ŵ|2 + |rŵ|2 � ⌧̂ |ŵ|2
⇤
dx = 0

by (4.76). Hence from Theorem 4.6 we have that there is a transmission eigenvalue k > 0,
such that k2 2 (0, ⌧̂ ]. Finally, repeating this argument for disks of arbitrary small radius,
we can show the existence of infinitely many transmission eigenvalues exactly in the same
way as in the proof Theorem 4.12. In a similar way we can prove the same result for the
case when 0 < a⇤ < 1 and n⇤ > 1 where in the proof we consider the operator �L⌧ and
the ball BR with a := a⇤ and n := n⇤.

We end our discussion in this section by making a few comments on the case when (A�

I) and (n � 1) have the same sign. As indicated above, if we follow a similar procedure,
then we are faced with the problem that (4.67) is not solvable for all ⌧ . For this reason it is
only possible to prove the existence of a finite number of transmission eigenvalues under
the restrictive assumption that n⇤

� 1 is small enough. To avoid repetition, we refer the
reader to [49] for more details. We also mention that the approach of this section can be
modified to include anisotropic media with small voids [95].

4.3.3 Inequalities for Transmission Eigenvalues
Similarly to the case of isotropic media, our proof of the existence of real transmission
eigenvalues provides a framework for deriving inequalities between transmission eigen-
values and the matrix valued refractive index. In view of the fact that the matrix valued
refractive index cannot be uniquely determined from scattering data, such inequalities be-
come particularly important in the context of the inverse problem for anisotropic media
since real transmission eigenvalues can be determined from far field data (see Section 5.1).
In Section 5.1.1 we show that the inequalities and monotonicity properties of transmission
eigenvalues can be used to obtain information about anisotropic media from scattering
data.

Let us start with the case when n ⌘ 1. Rephrasing Theorem 3.37 we have the following
lower bounds for transmission eigenvalues.

Theorem 4.38. Let A 2 (L1(D))3⇥3, =(A) = 0, n ⌘ 1 in D, and let 0 < a⇤ and
a⇤  1 be defined as in (4.57). Then all real transmission eigenvalues k > 0 satisfy

1. k2 � a⇤�1(D) if 0 < a⇤ < 1 or

2. k2 � �1(D) if 1 < a⇤,

where �1(D) is the first Dirichlet eigenvalue for �� in D.

As the reader has already seen, the analytical structure of the transmission eigenvalue
problem for anisotropic media with contrast only in A resembles the one corresponding to
isotropic media with N := A�1. Hence, as in the proof of Theorem 4.16, we can prove a
monotonicity property for transmission eigenvalues for anisotropic media. To this end let
kj := kj(A(x), D) > 0 for j 2 N be the increasing sequence of transmission eigenvalues
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for the media with support D and refractive index A, such that tj = k2
j

is the smallest zero
of �j(⌧, D,A(x)) = ⌧ , where �j(⌧, D,A(x)), j � 1, are the eigenvalues of the auxiliary
problem (see Theorem 4.32) given by

�j(⌧, D,A) = min
W2Uj

max
u 2 W

kr · ukL2(D) = 1

Z

D

(A�1
� I)�1

|rr ·u+ k2u|2 dx+ k4
Z

D

|u|2 dx,

(4.77)
where Uj denotes the set of all j-dimensional subspaces W of H0(D). Then for this
sequence of kj(A(x), D) > 0 we have the following monotonicity property.

Theorem 4.39. Let A 2 (L1(D))3⇥3, =(A) = 0, n ⌘ 1 in D, and let 0 < a⇤ and a⇤  1

be defined as in (4.57). Assume that B1 and B2 are two balls such that B1 ⇢ D ⇢ B2.
Then

1. if a⇤ < 1, then

kj(a⇤, B2)  kj(a⇤, D)  kj(A(x), D)  kj(a
⇤, D)  kj(a

⇤, B1);

2. if 1 < a⇤, then

kj(a
⇤, B2)  kj(a

⇤, D)  kj(A(x), D)  kj(a⇤, D)  kj(amin, B1).

In particular, these inequalities hold true for the smallest transmission eigenvalue
k1(A(x), D).

As a consequence of this theorem we have the following more general formulation of
the monotonicity property for the sequence of transmission eigenvalues kj(A(x), D) > 0
described above.

Corollary 4.40. Let D1 ⇢ D ⇢ D2 and A1 < A < A2, where A1, A,A2 all satisfy the
assumptions of Theorem 4.39.

1. If A1 < A < A2 < I , then

kj(A1, D2)  kj(A1, D)  kj(A,D)  kj(A2, D)  kj(A2, D1).

2. If I < A1 < A < A2, then

kj(A2, D2)  kj(A2, D)  kj(A,D)  kj(A1, D)  kj(A1, D1).

Here I is a 3 ⇥ 3 identity matrix and for any two matrices B < A means that the matrix
A�B is positive definite uniformly in D.

Theorem 4.39 shows in particular that for A = aI , where a 6= 1 is a positive constant,
the first transmission eigenvalue k1(a,D) as a function of a for D fixed is monotonically
increasing if a < 1 and is monotonically decreasing if a > 1. As in Theorem 4.18, this
leads to the following uniqueness result for the constant index of refraction in terms of the
first transmission eigenvalue.

Theorem 4.41. The constant index of refraction A = aI is uniquely determined from
knowledge of the corresponding smallest transmission eigenvalue k1(a,D) > 0, provided
that it is known a priori that either a > 1 or 0 < a < 1.
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Next we consider the case when n 6= 1. Unfortunately, the proof of the existence of
transmission eigenvalues in this case has a more complicated structure. Hence we can
derive only an inequality for the first transmission eigenvalue.

Theorem 4.42. Let BR ⇢ D be the largest disk contained in D and �1(D) the first
Dirichlet eigenvalue of �� in D. Furthermore, let k1(A, n,D) be the first transmission
eigenvalue corresponding to D, A, and n, and 0 < a⇤  a⇤ < 1, 0 < n⇤  n⇤ < 1

defined as in (4.57).

1. If a⇤ > 1 and 0 < n⇤ < 1, then

�1(D)  k21(A, n,D)  k21(a⇤, n
⇤, BR).

2. If 0 < a⇤ < 1 and n⇤ > 1, then

a⇤
n⇤

�1(D)  k21(A, n,D)  k21(a
⇤, n⇤, BR).

Proof. The upper bounds in both cases are consequence of the proof of Theorem 4.37. We
now prove a lower bound for the first transmission eigenvalue. To this end, let us assume
that a⇤ > 1 and 0 < n⇤ < 1 and consider (4.75), i.e.,

(L⌧u, u)H1(D) =

ZZ

D

⇥
(A� I)rw ·rw � ⌧ (n� 1) |u|2 + |ru|2 � ⌧ |u|2

⇤
dx .

The first term is estimated by
ZZ

D

⇥
(A� I)rw ·rw � ⌧ (n� 1) |w|2

⇤
dx � min(a⇤ � 1), ⌧(1� n⇤)) kwk2

H1(D) � 0

and, since u 2 H1
0 (D), we have that kruk2

L2(D) � �1(D) kuk2
L2(D), where �1(D) is

the first Dirichlet eigenvalue of �� in D. Therefore, (L⌧u, u)H1(D) > 0 as long as
⌧ < �1(D). Thus, we can conclude that all transmission eigenvalues k are such that
k2 � �1(D).

Next we consider 0 < a⇤ < 1 and n⇤ > 1 and from (4.70) since v = w + u we have
that

�(L⌧u, u)H1(D) =

ZZ

D

⇥
(I �A)(rw +ru) · (rw +ru) + ⌧(n� 1) |w + u|2

⇤
dx

+

ZZ

D

⇥
Aru ·ru� ⌧ n |u|2

⇤
dx .

In this case
ZZ

D

⇥
(I �A)|rw +ru|2 + ⌧(n� 1) |w + u|2

⇤
dx � C ku+ vk2

H1(D) � 0,

where C = min((1� a⇤), ⌧(n⇤ � 1)), whereas
ZZ

D

⇥
Aru ·ru� ⌧ n |u|2

⇤
dx �

⇥
a⇤�1(D)� ⌧n⇤

⇤
kvk2

L2(D) .
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Hence if 0 < ⌧ < a⇤
n⇤�1(D), there are no transmission eigenvalues, which proves the lower

bound in the second case.

We end this section by stating an estimate on transmission eigenvalues which is a con-
sequence of the proof of Theorem 3.39.

Theorem 4.43. Assume that either 0 < a⇤ < 1 or a⇤ > 1, and
R
D
(n � 1)dx 6= 0. Then

the nonzero eigenvalue k1 2 C of the smallest modulus satisfies

|k|2 �
a⇤(1�

p
a⇤)

CP max(n⇤, 1) (1 +
p
n⇤)

with CP > 0 defined by

1

CP

:= min
(w, v) 2 Y(D)
(w, v) 6= (0, 0)

krwk2
D
+ krvk2

D

kwk2
D
+ kvk2

D

,

where

Y(D) :=

8
<

:(w, v) 2 H(D)⇥H(D), w = v on @D,

Z

D

(nw � v)dx = 0

9
=

; .

Note that under the weaker assumption on n in Theorem 4.43 it is not known whether
real transmission eigenvalues exist. In particular, the eigenvalue of the smallest modulus
may not necessarily be real.

We end this section with the comment that, similarly to the case of isotropic media,
alternative approaches have been introduced to investigate the spectral properties of the
anisotropic transmission eigenvalue problem under the assumption of sign control in a
neighborhood of the boundary. Under this assumption, in a series of papers [122], [123],
[124], [125], [140], [141], [164] the existence of transmission eigenvalues is proven and
a study of the counting function for transmission eigenvalues is initiated. In this regard,
we explicitly state the results in [164] on the location of transmission eigenvalues in the
complex plane and in [141] on the state-of-the-art assumptions on the coefficients that are
needed to analyze the spectrum of the transmission eigenvalue problem. We state these
result for a more general formulation of the transmission eigenvalue problem:

8
>>>>>><

>>>>>>:

r ·A1rw + k2n1w = 0 in D,

r ·A2rv + k2n2v = 0 in D,

w = v on @D,

@w

@⌫A1

=
@v

@⌫A2

on @D,

(4.78)

where in general A1 and A2 are real symmetric matrix valued functions, positive definite,
and bounded uniformly in D, and n1 and n2 are real scalar strictly positive functions
bounded uniformly in D.

The following theorem is proven in [164].

Theorem 4.44. Consider the transmission eigenvalue problem (4.78) and assume that @D
is C1, A1,2(x) := a1,2(x) are scalar functions in C1(D) and n 2 C1(D).
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(1) Assume that

(a1(x)� a2(x))(a1(x)n1(x)� a2(x)n2(x)) < 0 for all x 2 @D. (4.79)

Then there exists a constant C > 0 such that there are no transmission eigenvalues
in the region

{k 2 C : <(k) > 1, |=(k)| � C} .

(2) Assume that

(a1(x)� a2(x))(a1(x)n1(x)� a2(x)n2(x)) > 0 for all x 2 @D. (4.80)

Then there exists a constant C > 0 such that there are no transmission eigenvalues
in the region

n
k 2 C : <(k) > 1, |=(k)| � C✏(<(k))

1/2+✏
o
.

If in addition
n1(x)

a1(x)
6=

n2(x)

c2(x)
for all x 2 @D,

then there exists a constant C > 0 such that there are no transmission eigenvalues
in the region

{k 2 C : <(k) > 1, |=(k)| � C ln(<(k) + 1)} .

(3) Under the assumption of part (1) or part (2), letting

N(r) := # {k transmission eigenvalues |k|  r} ,

it holds that

N(r) =
r3

6⇡2

Z

D

"✓
n1(x)

a1(x)

◆3/2

+

✓
n2(x)

a2(x)

◆3/2
#
dx+O✏

�
r2+✏

�

for all 0 < ✏⌧ 1, where the order term depends on ✏.

Note that Theorem 4.44(2) states that the imaginary part of transmission eigenvalues
may blow up under assumption (4.80), although it is not known if these estimates are
optimal. In this case, however, there are no transmission eigenvalues in a neighborhood
of the imaginary axis (see [163]). On the other hand, under the assumption (4.79) in
part (1) of the above theorem, transmission eigenvalues with real part greater than one
lie in a strip around the real axis. Interestingly, it is clarified in Remark 4 in [163] that
there exist infinitely many transmission eigenvalues near the imaginary axis in this case.
Therefore the imaginary part of all transmission eigenvalues is not uniformly bounded
(note that transmission eigenvalues form a discrete set in the complex plane with infinity
as the only accumulation point). Moreover, there also exist infinitely many transmission
eigenvalues around the real axis (see Remark 5 in [163]). Thus in this case it is not possible
to find a half-space free of transmission eigenvalues. Summarizing, in the case of the
transmission eigenvalue problem with contrast in the main operator, there is no known
case of the existence of a half-plane free of transmission eigenvalues, which is important
for sampling methods in inverse scattering with time domain data.
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The proof of the next theorem can be found in [141].

Theorem 4.45. Assume that @D is in C2, A1, A2 are matrix valued functions in C(D),
and n1, n2 are scalar functions in C(D). Furthermore, assume that

(A2(x)⌫ ·⌫)(A2(x)⇠ ·⇠)�(A2(x)⌫ ·⇠)
2
6= (A1(x)⌫ ·⌫)(A1(x)⇠ ·⇠)�(A1(x)⌫ ·⇠)

2 (4.81)

for all x 2 @D, with ⌫ := ⌫(x) the outward unit normal vector on @D, and for all unit
vectors ⇠ 2 R3

\ {0} with ⇠ · ⌫ = 0, and

(A2(x)⌫ · ⌫)n2(x) 6= (A1(x)⌫ · ⌫)n1(x) for all x 2 @D. (4.82)

Then the generalized eigenfunctions of (4.78) are complete in L2(D)⇥ L2(D).

Under the assumptions of Theorem 4.45 in [141] Weyl’s estimate for the eigenvalue
counting function of the same order as in part (3) of Theorem 4.44 is proven. The assump-
tion (4.81) is equivalent to the Agmon–Douglis–Nirenberg complementing condition [2]
and, together with the assumption (4.82), provides the most general up-to-date assumptions
on the coefficients for which the transmission eigenvalue problem for anisotropic media is
studied. These two assumptions can be viewed as a generalization of the sign conditions on
the contrasts near the boundary that are needed in our discussion throughout this section.

We also mention that there is a considerable body of work connected with numerical
computations of transmission eigenvalues [103], [104], [116]. We refer the reader to [54]
and [51] for similar results on the transmission eigenvalue problem for Maxwell’s equa-
tions.





Chapter 5

Determination of
Transmission
Eigenvalues from Far
Field Data and
Applications to Inverse
Scattering

The goal of this chapter is to provide a glimpse of possible applications of transmission
eigenvalues for providing solutions to some inverse problems. We first show how measure-
ments of far field data for different frequencies lead to the identification of real transmission
eigenvalues. We present three methods for showing this. The first and second methods are
based on the LSM and GLSM formalisms and require that the shape of the scattering object
be known. The third one is based on so-called inside-outside duality and the behavior of
the phase of some eigenvalues of the far field operator. It does not need a priori knowledge
of the domain D but works only under very restrictive assumptions on the refractive index.
The inside-outside duality also allows the construction of an approximation of the incident
field associated with the transmission eigenfunction. In connection with this method, we
explain how an appropriate change of the background allows for the construction of a dif-
ferent set of transmission eigenvalues under weaker assumptions on the refractive index.
The use of an artificial background may have its own interest for solutions to the inverse
problem. We outline some of the possible applications in the last section of this chapter.

5.1 The Determination of Transmission Eigenvalues
from Far Field Data

We discuss in this section the determination of teal transmission eigenvalues from a knowl-
edge of the far field data. This is important for applications as it shows that these quantities
can be determined from measurements and therefore can be exploited in the solution of in-
verse problems. We restrict ourselves to the scattering problem for isotropic media defined
by (1.27)–(1.29). We make the assumption that =(n) = 0, for which real transmission
eigenvalues are proven to exist. The case of anisotropic media can be treated in a very
similar way and is skipped here.

We present three approaches to determine transmission eigenvalues from the far field
operator (2.1) as introduced in Chapter 2, namely, F : L2(S2) ! L2(S2) defined by

(Fg)(x̂) :=

Z

S2

u1(x̂, d)g(d) ds(d), (5.1)

where u1(x̂, d) denote the far field pattern.

163
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The first and second approaches use the LSM and GLSM algorithms and require a priori
knowledge of a nonempty open subset of D (which is the support of n� 1, where n is the
refractive index) [34]. For z in this subregion we exploit the fact that an appropriate in-
dicator function blows up if k is a transmission eigenvalue, while it remains bounded if
k is not a transmission eigenvalue. The third approach uses a different philosophy [115].
It is based on an analysis of accumulation points of the normalized eigenvalues of the far
field operator. Roughly speaking, transmission eigenvalues are detected when these nor-
malized eigenvalues accumulate at two different points as the wave number approaches a
transmission eigenvalue.

We remark that our presentation here is slightly different from the one in the indicated
literature.

5.1.1 An Approach Based on LSM

The main assumption here is that the operator F has dense range. This is indeed guaranteed
if k is not a nonscattering wave number, which is discussed in Chapter 7. Moreover we
assume that a nonempty open subset of D is known a priori and that D is simply connected
(see Remark 5.3 for a discussion of the case of a multiply connected domain D). We set
�z(x̂) := 1

4⇡ e
�ikx̂·z to be the far field pattern associated with the fundamental solution

�(·, z) of the Helmholtz equation. We let g↵
z
2 L2(S2) be the solution to

(↵+ F ⇤F )g↵
z
= F ⇤�z.

Recall that F = GH, where H : L2(S2) ! Hinc(D) is the Herglotz operator defined by
(2.3) and G : Hinc(D) ! L2(S2) is defined by (2.4). We prove the following result.

Theorem 5.1. Assume that n � 1 � ↵ > 0 (respectively, 1 � n � ↵ > 0) in D for
some constant ↵ and that k > 0 is not a nonscattering wave number. Then for any ball
B ⇢ D, kHg↵

z
kL2(D) is bounded as ↵ ! 0 for almost every z 2 B if and only if k is not

a transmission eigenvalue.

Proof. If k is not a transmission eigenvalue, then one can apply Theorems 2.26 and 2.33
to deduce that kHg↵

z
kL2(D) is bounded as ↵ ! 0 for all z in D. Now assume that k is

a transmission eigenvalue. Since F has dense range (by the assumption that k is not a
nonscattering wave number, Theorem 1.17), then

Fg↵
z
! �z as ↵! 0,

(cf. Theorem 1.31). Assume that there exists a ball B ⇢ D such that for almost every
z 2 B, kHg↵

z
kL2(D)  M for some constant M > 0 as ↵ ! 0 (the constant M may

depend on z). Then (for fixed z) there exists a subsequence vn = Hg↵n
z

that weakly
converges to vz in Hinc(D). Since G is a compact operator, we deduce that Gvz = �z .
Using Rellich’s Lemma, one deduces the existence of a solution (uz, vz) 2 L2(D)⇥L2(D)
of the interior transmission problem

8
>>>>><

>>>>>:

�uz + k2nuz = 0 in D,

�vz + k2vz = 0 in D,

uz � vz = �(·, z) on @D,

@(uz � vz)/@⌫ = @�(·, z)/@⌫ on @D

(5.2)
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such that the function wz = uz � vz 2 H2(D). As in Chapter 3, one verifies that wz

satisfies
Z

D

1

n� 1
(�wz + k2wz)(�'+ k2n')dx = 0 for all ' 2 H2

0 (D) (5.3)

and

wz = �(·, z) and
@wz

@⌫
=
@�(·, z)

@⌫
on @D.

Since k is a transmission eigenvalue, according to the results of Chapter 3 there exists a
nontrivial function w0 2 H2

0 (D) satisfying

(�+ k2)
1

n� 1
(�w0 + k2nw0) = 0 in D. (5.4)

Taking ' = w0 in (5.3) and applying Green’s theorem twice yields, after using (5.4),

Z

@D

✓
1

n� 1
(�w0 + k2nw0)

◆
@�(· , z)

@⌫
ds

�

Z

@D

@

@⌫

✓
1

n� 1
(�w0 + k2nw0)

◆
�(· , z) ds = 0, (5.5)

where these integrals have to be understood in the sense of H⌥1/2(@D) (respectively,
H⌥3/2(@D)) duality pairing. Defining  (x) := 1

n�1 (�+k2n(x))w0(x) in D, we observe
that

� + k2 = 0 in D.

Classical interior elliptic regularity results and the Green’s representation theorem imply
that

 (z) =

Z

@D

✓
 (x)

@�(x, z)

@⌫
�
@ (x)

@⌫
�(x, z)

◆
dsx for z 2 D. (5.6)

Equation (5.5) and the unique continuation principle now show that  = 0 in D. Therefore
(� + k2n(x))w0(x) = 0 in D. Since w0 2 H2

0 (D) one deduces again from the unique
continuation principle that w0 = 0 in D, which is a contradiction.

There are two weak points of the characterization provided by Theorem 5.1. The first
one is related to the assumption that k should not be a nonscattering wave number. Nec-
essary conditions for which a transmission eigenvalue can consist of nonscattering wave
numbers is discussed in Section 7.2. In particular it is shown that if D contains corners or
edge singularities, then the set of nonscattering wave numbers is empty. The only known
case for which the set of nonscattering wave numbers is not empty is the case of a spheri-
cally stratified index of refraction. We refer the reader to [34] for a way to get around this
problem by exploiting the fact that the noisy operator has in general dense range.

The second weak point is indeed the fact that the characterization of transmission
eigenvalues is given in terms of the behavior of kHg↵

z
kL2(D), which requires knowledge of
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D. In practice, numerical experiments show that replacing kHg↵
z
kL2(D) with kg↵

z
kL2(S2)

provides satisfactory results [40], [32], [89].

Numerical Examples

For the numerical experiments one needs to have access to points zi i = 1, . . . , N , inside
the domain D. We then evaluate

k 7!

NX

i=1

kg↵
zi
kL2(S2)

for some regularization parameter ↵ that can be chosen using the Morozov discrepancy
principle. This in turn assumes that one has access to the far field operator for a range
of wave numbers that contain the sought transmission eigenvalues. We now give some
numerical examples from [89] for a circular domain D of radius = 0.5 with index of
refraction n = ni in an inner circle and n = ne in the outer annulus (see Figure 5.1). More
examples can be found in [42] and [95].

Figure 5.1. Configuration of the refractive index in a circular domain D of radius 0.5.
Reproduced from [89] with permission.

In Figure 5.2 we indicate the behavior of k 7! kg↵
zi
kL2(S2) for several choices of the

refractive index ni and ne and for different choices of the points zi. The parameter ↵
is fixed using the Morozov discrepancy principle. Observe in particular that some peaks
disappear (or are less sharp) for some choices of the points zi. This confirms that several
points are needed in order to obtain stable determination of the peaks that correspond to
transmission eigenvalues.
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Figure 5.2. From left to right, plots of k 7! kg↵z kL2(S2) for several choices of points z,
respectively, for (ne, ni) = (11, 5), (22, 19), (67, 61). Reproduced from [89] with permission.
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5.1.2 An Approach Based on GLSM

The if and only if statement in Theorem 5.1 relies on the link between the LSM and the
factorization method (Theorem 2.33) and therefore requires a stronger assumption on the
refractive index. We can avoid relying on this link and on the hypothesis that k is not a non-
scattering wave number using the following formulation, based on GLSM and assuming
that D is known. To this end, define

J↵(�z; g) := ↵kHgk2
L2(D) + kFg � �zk

2
L2(S2)

and set
j↵(�z) = inf

g2L2(S2)
J↵(�z; g). (5.7)

We then consider g↵
z

to be the minimizing sequence satisfying

J↵(�; g
↵

z
)  j↵(�) + p(↵) (5.8)

with 0 < p(↵)
↵

! 0 as ↵! 0.

Theorem 5.2. Assume that Assumption 2.2 holds. Then for any ball B ⇢ D, kHg↵
z
kL2(D)

is bounded and kFg↵
z
� �zkL2(S2) ! 0 as ↵ ! 0 for almost every z 2 B if and only if k

is not a transmission eigenvalue.

Proof. The case when k is not a transmission eigenvalue is a consequence of Theorem 2.9
with B = H

⇤
H, the injectivity and dense range of F , and Theorem 2.3.

If k is a transmission eigenvalue, kHg↵
z
kL2(D) is bounded, and kFg↵

z
� �zkL2(S2) !

0 as ↵ ! 0, one can obtain a contradiction in the same way as in the second part of the
proof of Theorem 5.1.

Remark 5.3. For Theorems 5.1 and 5.2, the assumption that D is simply connected can
be removed by assuming that the intersection of the set of points z with each connected
component of D contains an open set with positive measure. Also in the case of a multiply
connected domain D, if we restrict the set of points z to a connected component of D, then
one recovers the transmission eigenvalues related to that connected component. This has
been observed and numerically tested in [89].

5.1.3 An Approach Based of the Eigenvalues of the Far Field
Operator

We present in this section a different approach to identify transmission eigenvalues based
on the behavior of the phase of the eigenvalues of the normal operator F . In many as-
pects, this approach can also be seen as the complement of the (F ⇤F )1/4 method (Section
2.4.1) in determining transmission eigenvalues. It is referred to in the literature as the
inside-outside duality method [115], [83]. We here adopt the notation of Section 2.4.2 and
explicitly indicate the dependence on k in our notation: For instance, the far field operator
is denoted by Fk. We recall that

Fk = H
⇤

k
TkHk

with Tk : L2(D) ! L2(D) defined as in (2.17). We recall (Lemma 2.25) that if n � 1 �

↵ > 0 (respectively, 1 � n � ↵ > 0) in D for some constant ↵ > 0 and if k > 0 is not
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a transmission eigenvalue, then the operator Tk : L2(D) ! L2(D) (respectively �Tk)
satisfies Assumption 2.3 with Y = Y ⇤ = L2(D). Moreover, the scattering operator

Sk = I +
ik

2⇡
Fk

is unitary, which is equivalent to Fk being normal. If k > 0 is not a transmission eigen-
value, then Fk is injective. We therefore can exhibit an orthonormal complete basis
(gj(k))j=1,+1 of L2(S2) such that

Fkgj(k) = �j(k)gj(k), (5.9)

where �j(k) 6= 0 form a sequence of complex numbers that go to 0 as j ! 1. Define

�̂j(k) := �j(k)/|�j(k)|.

Since �j(k) (for all j) lies on the circle of radius 2⇡/k and center i2⇡/k and �j ! 0

as j ! 1, the only possible accumulation points of the sequence (�̂j(k)) are �1 and
+1. From the proof of Theorem 2.24 we see that if k is not a transmission eigenvalue
and n � 1 � ↵ > 0, then +1 is the only accumulation point of �̂j(k). In the case when
1 � n � ↵ > 0, applying Theorem 2.24 to �Fk shows that �1 is the only accumulation
point of �̂j(k). More precisely, writing

�j(k) =
2⇡

ik
(ei�j(k) � 1), 0 < �j(k) < 2⇡,

with ei�j(k) being the eigenvalues of the scattering operator Sk, we can state the following
result.

Proposition 5.4. Assume that k is not a transmission eigenvalue. If n� 1 � ↵ > 0 in D,
then the sequence (�j(k)) accumulates only at 0 (see Figure 5.3, right). If 1� n � ↵ > 0
in D, then the sequence (�j(k)) accumulates only at 2⇡.

We deduce that if k is not a transmission eigenvalue, we can order the phases �j(k) so
that

2⇡ > �1(k) � �2(k) � · · · � �j(k) � · · · > 0 when n� 1 � ↵ > 0,

0 < �1(k)  �2(k)  · · ·  �j(k)  · · · < 2⇡ when 1� n � ↵ > 0.

The following theorem provides a sufficient condition for the existence of a transmis-
sion eigenvalue.

Theorem 5.5. Assume that n � 1 � ↵ > 0 (respectively, 1 � n � ↵ > 0) in D for some
constant ↵. Let k0 > 0, and let (k`) be a sequence of positive numbers converging to k0
as ` ! 1. Assume that the sequence �1(k`) ! 2⇡ or equivalently �̂` := �̂1(k`) ! �1
(respectively, �1(k`) ! 0 or equivalently �̂` ! +1) as `! 1. Then k0 is a transmission
eigenvalue.

Proof. The proof uses basically the same arguments as the proof of Theorem 2.24 and a
continuity property with respect to k of the operator Tk formulated in Lemma 5.9 below.
We shall consider only the case n� 1 � ↵ > 0 since the other case follows from the same
arguments (replacing Fk with �Fk). Define

 ` :=
1p
|�j` |

Hk`gj` .
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2⇡i/k

�2

�3

�1

0

ei�3

ei�2

ei�1

0 1

Figure 5.3. Left: eigenvalues of Fk. Right: eigenvalues of Sk. Here the representation
corresponds to a situation where n� 1 � ↵ > 0 in D.

From (2.43) we clearly have

(Tk` `, `)L2(D) = �̂`(gj` , gj`)L2(S2) = �̂` ! �1. (5.10)

Assume that k0 is not a transmission eigenvalue. Then from Lemma 2.25 we deduce that
Tk0 is coercive. Using the continuity of k 7! Tk we deduce that Tk` are uniformly coercive
for ` sufficiently large since

|(Tk` , )L2(D)| � |(Tk0 , )L2(D)|� kTk0 � Tk`kk k
2
L2(D).

Choosing ` sufficiently large so that kTk0 �Tk`k  �/2, where � is the coercivity constant
for Tk0 , we get

|(Tk` , )L2(D)| �
�

2
k k2

L2(D).

We then deduce from (5.10) that the sequence ( `) is bounded in L2(D). Therefore, up to
a subsequence, one can assume that ( `) weakly converges to some  0 in L2(D). Since

� ` + k2
`
 ` = 0 in D,

we deduce that
� 0 + k20 0 = 0 in D,

meaning that  0 2 R(Hk0). Let us denote by w` 2 H2
loc(R3) the solution of (2.2) with

u0 =  ` and w1

`
the corresponding far field pattern. We recall from (2.35) that

4⇡=(Tk` `, `) = k`

Z

S2

|w1

`
|
2ds. (5.11)

From Lemma 5.8, the Rellich compact embedding theorem, and the continuity of the map-
ping w ! w1 from L2(D) into L2(S2) we deduce that

=(Tk` `, `) ! =(Tk0 0, 0).

From (5.10) we then get =(Tk0 0, 0) = 0 and therefore  0 = 0 (since k0 is not a
transmission eigenvalue). We now note that

k2
`

4⇡
((n� 1) `, `)L2(D) = (Tk` `, `)L2(D) �

k2
`

4⇡
((n� 1) `, w`)L2(D),



170 Chapter 5. Applications of Transmission Eigenvalues

where ((n � 1) `, w`)L2(D) ! ((n � 1) 0, w0)L2(D) by Lemma 5.8 and the Rellich
compact embedding theorem. Consequently

0 
k2
`

4⇡
((n� 1) `, `)L2(D) ! �1

(see [138]), which is a contradiction.

We complement the result of Theorem 5.5 with the following convergence result that
shows that one can reconstruct an approximation of the solution v associated with a trans-
mission eigenvalue [10].

Theorem 5.6. Let n and k` ! k0 be as in Theorem 5.5. Then the sequence

v` :=
1

kHk`g1(k`)kL2(D)
Hk`g1(k`),

where g1 is defined in (5.9), has a strongly convergent subsequence to some v in L2(D)
satisfying�v+ k20v = 0 in D and such that v is associated with a transmission eigenpair.

Proof. Let v be the weak limit in L2(D) of a subsequence of v` (this limit exists since
kvkkL2(D) = 1). To simplify the notation this subsequence is denoted the same as v`.

We now have
(Tk`v`, v`)L2(D) = ✓` �̂

` (5.12)

with ✓` := |�`|/kHk`gj`k
2
L2(D). From Lemma 5.9 one infers that ✓` is bounded and

therefore, up to changing the subsequence, one can assume that ✓` ! ✓0 � 0. We then
observe that

=(Tk`v`, v`)L2(D) ! 0

and therefore =(Tk0v, v)L2(D) = 0. Denote by w 2 H2
loc(R3) the solution of (2.2) with

u0 = v. We then get, using Rellich’s Lemma as explained above, that w 2 H2
0 (D). We

now prove that v 6= 0 and is the strong limit of the sequence v`. We use the identity

((n� 1)v`, v`)L2(D) =
4⇡

k2
`

(Tk`v`, v`)L2(D) � ((n� 1)v`, w`)L2(D),

where w` 2 H2
loc(R3) is the solution of (2.2) with u0 = v`, to deduce that

lim sup
`!1

((n� 1)v`, v`)L2(D)  �((n� 1)v, w)L2(D),

where we used the strong convergence of w` to w (using Lemma 5.8). One easily observes,
using w 2 H2

0 (D), that
((n� 1)v + w, v)L2(D) = 0

and get for the case n� 1 � ↵ > 0,

lim sup
`!1

((n� 1)v`, v`)L2(D)  ((n� 1)v, v)L2(D).

We then obtain
lim sup
`!1

((n� 1)v` � v, v` � v)L2(D)  0
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and deduce the strong convergence of v` to v in L2(D). The case n�1  �↵ < 0 follows
in the same way by replacing (n � 1) with (1 � n). This also proves that v is not trivial
and therefore is associated with a transmission eigenpair.

Remark 5.7. We observe that the result of Theorem 5.6 also holds if we replace g1 with
gp, p > 1 (defined in (5.9)), as long as �p(k`) converges to the same value as �1(k`). This
may occur if the transmission eigenvalue has a multiplicity greater than one.

We now establish a continuity property with respect to k of the operator Tk. We first
show a uniform bound on the solution of (2.2) for wave numbers in a bounded interval.

Lemma 5.8. Let  2 L2(D) and wk 2 H1
loc(R3) be the solution of (2.2) for the wave

number k > 0 and u0 =  . Then, for all bounded intervals I ⇢ R+ and compact K 2 R3,
there exists a constant C independent of k and  such that

kwkkH1(K)  Ck kL2(D) for all k 2 I.

Proof. Using the Lippmann–Schwinger integral equation for wk (see Theorem (1.9)) we
have

wk +Akwk = �Ak in L2(D), (5.13)

where Ak : L2(D) ! L2(D) is the compact operator defined by

Ak' := k2
Z

D

�k(x, y)(1� n(y))'(y) dy.

From the expression �k(x, y) = exp(ik|x� y|)/(4⇡|x� y|) one can easily verify that

kAk'�Ak0'kL2(D)  C|k � k0|k'kL2(D) (5.14)

and
kAk'kL2(D)  Ck'kL2(D) (5.15)

with a constant C independent of k, k0 2 I , and '. Fix � sufficiently small such that
2C�  infk2I kI + Akk. Let k0 2 I . Writing I + Ak = (I + Ak0) + (Ak � Ak0), we
then deduce from (5.14) that for k 2 (k0 � �, k0 + �),

k(I +Ak)
�1

k  2k(I +Ak0)
�1

k.

Combined with (5.15) we observe that for k 2 (k0 � �, k0 + �)

kwkkL2(D)  C̃k kL2(D)

for some different constant C independent of k. Since

wk(x) = k2
Z

D

�k(x, y)(1� n(y))('(y) + wk(y))dy, x 2 R3,

we then also get, with a different constant C, that

kwkkH1(K)  Ck kL2(D) for all k 2 (k0 � �, k0 + �).

The result follows from considering a finite covering of I with intervals of size 2�.
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We now prove the following technical lemma needed in the proof of Theorem 5.5.

Lemma 5.9. The mapping k 7! Tk is continuous from R+ into the space of linear map-
pings from L2(D) into itself.

Proof. Consider two wave numbers k > 0 and k0 > 0 in some given bounded interval I .
Then

wk � wk0 +Ak(wk � wk0) = �(Ak �Ak0)( + wk0) in L2(D).

Therefore, using (5.13), (5.14), and Lemma 5.8 one deduces that

kwk'� wk0kL2(D)  C(k)|k � k0|k kL2(D)

for some constant C(k) independent of k0 2 I and  . The proof then directly follows from
the expression of Tk.

The criterion of Theorem 5.5 can be used as an indicator of transmission eigenvalues.
However, the hard part is to prove that it occurs for every transmission eigenvalue. We
refer the reader to [115] for a proof that this is the case for the first transmission eigenvalue
if the contrast is a sufficiently large constant (or small perturbation of a constant). We
show in the following how one can obtain the converse statement in the case of a specific
modified background. This converse statement has been shown for Dirichlet obstacles in
[83], where this method was first introduced. A discussion of numerical issues related to
the use of this criterion can be found in [105].

5.2 Transmission Eigenvalues for Modified
Background

Let nb 2 L1(R3) be an arbitrary given real valued function such that nb = 1 in R3
\Db,

where Db � D is a bounded regular domain with connected complement. This parameter
can be seen as the index of refraction of an artificial background. We denote by us

b
(·, d) 2

H1
loc

(R3) the solution of the scattering problem (1.27)–(1.29), where n is replaced by nb,
and by u1(·, d) the associated far field pattern. We recall that us

b
(·, d) coincides with

us

b
2 H1

loc
(R3) being the unique solution to

8
>><

>>:

�us

b
+ k2nbus

b
= k2(1� nb)ui in R3,

lim
R!1

Z

|x|=R

|@us

b
/@|x|� ik us

b
|
2 ds = 0 (5.16)

when ui = ui(·, d) := eikd·x. Similarly to (5.1) and (1.30), we introduce the far field
operator for the background media, F b : L2(S2) ! L2(S2), defined by

(F bg)(x̂) :=

Z

S2

g(d)ub

1
(x̂, d) ds(d),

and the corresponding scattering operator Sb : L2(S2) ! L2(S2),

Sb := I +
ik

2⇡
F b. (5.17)
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We then define the modified far field operator Fm : L2(S2) ! L2(S2) as

Fm := F � F b. (5.18)

In practice, F is obtained from the measurements while F b has to be computed by numer-
ically solving (5.16) for given nb and ui. We remark that when nb = 1, then F b = 0 and
we simply have Fm = F .

The transmission eigenvalues for the artificial background are defined as the values of
k > 0 for which there exists a nontrivial ui

2 L2(Db) satisfying �ui + k2ui = 0 in Db

and such that the corresponding scattered fields us and us

b
, respectively, defined by (1.27)–

(1.29) and (5.16) are such that u1 = ub

1
. By Rellich’s Lemma, this implies us = us

b
in

R3
\Db. Setting w := us + ui

|Db and wb := us

b
+ ui

|Db we obtain
8
>>>>><

>>>>>:

�w + k2nw = 0 in Db,

�wb + k2nbwb = 0 in Db,

w = wb on @Db,

@w

@⌫
=
@wb

@⌫
on @Db,

(5.19)

which can be viewed as a generalized form of (3.2). Modified transmission eigenvalues are
then defined as values of k for which (5.19) has nontrivial solutions (w,wb) 2 L2(Db) ⇥
L2(Db). In this section we always assume that n is real.

Note that the arguments and the results of Chapter 3 can be straightforwardly adapted
to (5.19) by replacing n� 1 with n� nb and D with Db. For instance, n� nb � ↵ > 0 or
nb�n � ↵ > 0 in a neighborhood of @Db for some constant ↵; then the set of transmission
eigenvalues of (5.19) is discrete.

The advantage of introducing the artificial background is to gain a degree of freedom in
(5.19), which is the value assigned to nb inside Db, which can be exploited in the solution
to the inverse problem. This has been done in number of ways in the literature [8] (see also
[39], [61], [62], [63], [69]).

For instance, if we choose nb = 0 in Db (and nb = 1 in R3
\Db) as suggested in [9],

the modified transmission eigenvalue problem is equivalent to solving for u := w � wb 2

H2
0 (Db) and k2 satisfying the linear eigenvalue problem

�(n�1�u) = �k2�u in Db. (5.20)

As opposed to the original transmission eigenvalue problem (3.2), one obtains a quite sim-
ple eigenvalue problem similar to the so-called plate buckling eigenvalue problem. Classi-
cal results concerning linear self-adjoint compact operators guarantee that the spectrum of
(5.20) is made of real positive isolated eigenvalues of finite multiplicity 0 < k21  k22 

· · ·  k2
p
 · · · (the numbering is chosen so that each eigenvalue is repeated according

to its multiplicity). Moreover, lim
p!+1

k2
p
= +1 and we have the Courant–Fisher min-max

formula

k2
p
= min

Ep2Ep

max
u2Ep\{0}

(n�1�u,�u)L2(Db)

kruk2
L2(Db)

. (5.21)

Here Ep denotes the sets of subspaces Ep of H2
0 (Db) of dimension p. Observe that the

characterization of the spectrum for problem (5.20) is much simpler than the one given in
Chapter 4 for problem (3.2). Moreover, it holds under very general assumptions for n: we
just need that n|Db 2 L1(Db) with infDb n > 0. In particular, n can be equal to one
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inside Db and n � 1 can change sign on the boundary. From (5.21), if we let k̃2
p

be the
eigenvalues of (5.20) for another real index ñ 2 L1(R3) such that supp (1 � ñ) ⇢ Dp,
then

k2
p
 k̃2

p
if n � ñ a.e. in Dp.

Another advantage of (5.20) is that its spectrum is entirely real. As a consequence, no
information on n is lost in complex eigenvalues which may exist for the original transmis-
sion eigenvalue problem (3.2) and which cannot be determined from the knowledge of F
for real frequencies. We refer the reader to Section 5.3 for other choices of the background
leading to a similar simplified spectral problem.

Our goal in the following is to show how to characterize the eigenvalues in (5.19) from
a knowledge of Fm.

5.2.1 Factorization of the Modified Far Field Operator

In order to develop the previously introduced method for identifying transmission eigen-
values we first establish some properties of the operator Fm. The main ingredient is the
factorization of the operator F = (Sb)⇤Fm that has a structure similar to that of the oper-
ator F (see [90], [91], [121], [138]). We follow the approach in [121]. We first introduce
the Herglotz operator Hb associated with the artificial background. For g 2 L2(S2) we
define the function vg by

vg(x) :=

Z

S2

g(d)wb(x, d) ds(d), (5.22)

where wb(·, d) := ui(·, d)+us

b
(·, d). Then we define the operator Hb : L2(S2) ! L2(Db)

by

Hbg := vg|Db . (5.23)

Lemma 5.10. The operator Hb is compact, injective, and the closure of its range is given
by

Hb

inc(Db) := {v 2 L2(Db); �v + k2nbv = 0 in Db}.

Moreover the adjoint operator (Hb)⇤ : L2(Db) ! L2(S2) satisfies

(Hb)⇤v = 4⇡(Sb)⇤ 1, (5.24)

where  1 is the far field pattern of  2 H2
loc

(R3) satisfying � + k2nb = �v in R3,
where v is extended by 0 outside Db, together with the Sommerfeld radiation condition.

Proof. We have Hbg = (ui

g
+ us

b,g
)|Db , where us

b,g
is the scattered field of the solution

of (5.16) with ui = ui

g
:=
R
S2 g(d)eikd·x ds(d). Since g 7! ui

g
is compact from L2(S2)

into L2(Db) and since ui
7! us

b
is continuous from L2(Db) ! H2(Db), we deduce that

Hb : L2(S2) ! L2(Db) is compact. Assume that Hb(g) = 0. Then us

b,g
satisfies (5.16)

with nb = 1 and ui = 0. Therefore us

b,g
= 0 and ui

g
= 0. The injectivity of the Herglotz

operator (Lemma 2.1) implies g = 0.
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We now prove (5.24). Using Green’s formula in BR for R > 0 large enough such that
supp(nb � 1) ⇢ BR, using that�vg + k2nbvg = 0 in R3, and using (5.22), gives

(f,Hbg)L2(Db) = �

Z

BR

(� + k2nb ) vg dx

=

Z

@BR

 @⌫

Z

S2

g(d)(e�ikd·x + us

b
(x, d)) ds(d) ds(x)

�

Z

@BR

@⌫ 

Z

S2

g(d)(e�ikd·x + us

b
(x, d)) ds(d) ds(x).

(5.25)

On the one hand, formula (1.15) gives, for x̂ 2 S2,

 1(x̂) =
1

4⇡

Z

@BR

�
 @⌫(e

�ikx̂·y)� @⌫ e�ikx̂·y
�
ds(y).

Using the Sommerfeld radiation condition and the asymptotic expansion (1.14), we have,
on the other hand, for d 2 S2,

lim
R!1

Z

@BR

⇣
 @⌫us

b
(·, d)� @⌫ us

b
(·, d)

⌘
ds = 2ik

Z

S2

 1ub
1
(·, d)ds.

Therefore, interchanging the order of integration in (5.25) and taking the limit as R ! +1

yields
(v,Hbg)L2(Db) = 4⇡( 1, g)L2(S2) + 2ik( 1, F bg)L2(S2)

= 4⇡((Sb)⇤ 1, g)L2(S2).
(5.26)

This proves (5.24).
We now prove the denseness of the range in Hb

inc(Db) which is a closed subspace
of L2(Db). It is sufficient to prove that (Hb)⇤ is injective on Hb

inc(Db). Assume that
(Hb)⇤v = 0 for some v 2 Hb

inc(Db). From (5.24), we deduce that (Sb)⇤ 1 = 0 and
therefore  1 = 0 (since (Sb)⇤ is invertible). From Rellich’s Lemma, we infer that  = 0
in R3

\Db. Then  2 H2
0 (Db) and, arguing as in Lemma 2.1,

�kvk2
L2(Db)

=

Z

Db

(� + k2nb )v dx = 0

because v 2 Hb

inc(Db). Thus v = 0, and this proves the desired result.

From the definitions of F and F b we observe that Fmg = um

1
, where um

1
is the far

field pattern associated with um
2 H2

loc
(R3) being the unique solution to

8
>><

>>:

�um + k2num = k2(nb � n)v in R3,

lim
R!1

Z

|x|=R

|@um/@|x|� ik um
|
2 ds = 0 (5.27)

with v = Hbg. Define the operator Gm : L2(Db) ! L2(S2) such that Gmv = um

1
, where

um

1
is the far field pattern um

2 H2
loc

(R3) satisfying (5.27). With such notation, we can
factorize Fm as

Fm = GmHb. (5.28)
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We note that, thanks to Sb(Sb)⇤ = I , the identity (5.24) can also be written as

 1 =
1

4⇡
Sb(Hb)⇤,

which clearly shows that Gmv = 1
4⇡S

b(Hb)⇤(k2(n � nb)(v + um)). Therefore, if we
define the operator Tm : L2(Db) ! L2(Db) by

Tmv :=
1

4⇡
k2(n� nb)(v + um), (5.29)

where um
2 H2

loc
(R3) is the unique solution of (5.27), then G = Sb(Hb)⇤Tm, which

implies the factorization
Fm = Sb(Hb)⇤TmHb.

Finally, defining the operators F : L2(S2) ! L2(S2) and S : L2(S2) ! L2(S2) such
that

F := (Sb)⇤Fm and S := I +
ik

2⇡
F , (5.30)

we have the following statement.

Proposition 5.11. The operator F : L2(S2) ! L2(S2) admits the factorization

F = (Hb)⇤TmHb, (5.31)

where Hb : L2(S2) ! L2(Db) and Tm : L2(Db) ! L2(Db) are, respectively, defined
as in (5.23) and (5.29). The operator F is normal and S is unitary. If k is not a modified
transmission eigenvalue, then F is injective and has dense range in L2(S2).

Proof. We have

F = (Sb)⇤(F � F b) = 2⇡(ik)�1(Sb)⇤(S � Sb) = 2⇡(ik)�1((Sb)⇤S � I)

and therefore
S = (Sb)⇤S.

Since S and Sb are unitary, we deduce that S is unitary. This is enough to guarantee that
F is normal. The injectivity and denseness of the range of F when k is not a modified
transmission eigenvalue follow from the same properties satisfied by Fm (the proof of
which is the same as for F ).

We also observe that, following along the same lines as the proof of Lemma 2.25,
one can show that if n � nb � ↵ > 0 (respectively, nb � n � ↵ > 0) in Db for some
constant ↵ > 0 and if k > 0 is not a modified transmission eigenvalue, then the operator
Tm : L2(Db) ! L2(Db) defined by (5.29) (respectively, �Tm) satisfies Assumption 2.3
with Y = Y ⇤ = L2(Db).

Remark 5.12. When we take nb = 1 in R3, we have F b = 0 and so Sb = I . In this case,
(5.31) is nothing but the factorization of the operator F (2.18).

For the identification of transmission eigenvalues, one already has sufficient ingredients
to prove the equivalent of Theorem 5.1 with F replaced by F . For later use, we formulate
the equivalent of Theorem 5.2 for GLSM that directly uses the operator Fm. The proof is
based on Lemma 5.10 and (5.28) and is left to the reader.
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Theorem 5.13. Define

J↵(�z; g) := ↵kHbgk2
L2(Db)

+ kFmg � �zk
2
L2(S2) ,

and let g↵
z

be defined as in (5.8). Assume that n � nb � ↵ > 0 or nb � n � ↵ > 0
in a neighborhood of @Db. Then for any ball B ⇢ D, kHbg↵

z
kL2(Db) is bounded and

kFg↵
z
� �zkL2(S2) ! 0 as ↵! 0 for almost every z 2 B if and only if k is not a modified

transmission eigenvalue of (5.19).

5.2.2 The Inside-Outside Criterion for Modified Background
Now we study the behavior of the eigenvalues of Fk := F as k approaches a modified
transmission eigenvalue k0 of (5.19). As previously, we shall explicitly indicate in the
notation the dependence on k by adding a subscript. Given the discussion above, it is clear
that the analysis of Section 5.1.3 straightforwardly generalizes to the operator Fk, and we
summarize the result in the following theorem. Moreover, in order to include the case
of nb depending on k as in (5.33), we make the additional assumption that the mapping
k 7! nb(k) is continuously differentiable from R⇤

+ to L1(Db), which does not affect the
arguments of the proofs. We similarly introduce the orthonormal basis (gj(k))j=1,+1 of
L2(S2) such that

Fkgj(k) = �j(k)gj(k), (5.32)

where �j(k) 6= 0 form a sequence of complex numbers that goes to 0 as j ! 1 and define
�̂j(k) := �j(k)/|�j(k)| and �j(k) such that

�j(k) =
2⇡

ik
(ei�j(k) � 1), 0 < �j(k) < 2⇡,

so that ei�j(k) are eigenvalues of the scattering operator Sk. These sequences are ordered
such that

2⇡ > �1(k) � �2(k) � · · · � �j(k) � · · · > 0 when n� nb(k) � ↵ > 0,

0 < �1(k)  �2(k)  · · ·  �j(k)  · · · < 2⇡ when nb(k)� n � ↵ > 0

for k not being a modified transmission eigenvalue.

Theorem 5.14. Let k0 > 0 and (k`) be a sequence of positive numbers converging to k0
as ` ! 1. Assume that n � nb(k`) � ↵ > 0 (respectively, nb(k`) � n � ↵ > 0) in Db

for some constant ↵. If the sequence �1(k`) ! 2⇡ or equivalently �̂` := �̂1(k`) ! �1
(respectively, �1(k`) ! 0 or equivalently �̂` ! +1) as ` ! 1, then k0 is a modified
transmission eigenvalue of (5.19). Moreover, the sequence (wj

b
), with

wj

b
:=

Hb

kj
g1(kj)

kHb

kj
g1(kj)kL2(Db)

,

where g1 is defined in (5.32), admits a subsequence which converges strongly to wb 2

L2(Db), where (w,wb) is an eigenpair of (5.19) associated with k0.

Artificial Backgrounds Leading to a Necessary Condition

As suggested in [10], in order to prove the converse of the previous theorem, we consider
a specific choice of nb(k) given by

nb = nb(k) = ⇢/k2 in Db, (5.33)
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where ⇢ 2 R is a constant independent of k (this includes in particular the case nb = 0
discussed earlier). The main point of this choice is that it leads to a space of incident fields

Hinc(Db) = {v 2 L2(Db); �v + ⇢v = 0 in Db}

which is independent of k. As a consequence, a min-max criterion for transmission eigen-
values is derived on a Hilbert space independent of k and a necessary and sufficient condi-
tion can be easily obtained. The first ingredient of the proof is the following expansion of
Tm

k
at modified transmission eigenvalues.

Proposition 5.15. Assume that nb satisfies (5.33), and let k0 > 0 be a modified transmis-
sion eigenvalue of (5.19). Denote by (w0, v0) 2 L2(Db)⇥L2(Db) an associated eigenpair
with v0 2 Hinc(Db). Then there is " > 0 such that we have the expansion

4⇡(Tm

k
v0, v0)L2(Db) = 2k0(k � k0)(nw0, w0)L2(Db) + (k � k0)

2⌘(k), (5.34)

where the remainder ⌘(k) satisfies |⌘(k)|  Ckv0k2L2(Db)
with C > 0 independent of

k 2 [k0 � "; k0 + "].

Proof. According to the definition of Tm

k
in (5.29), we have

4⇡(Tm

k
v0, v0)L2(Db) = k2((n� nb(k))(v0 + um

k
), v0)L2(Db), (5.35)

where um

k
is the solution of (5.27) with v = v0. We remark that, according to the definition

of modified transmission eigenvalues, the solution um

0 of (5.27) with v = v0 and k = k0
is such that um

0 = w0 � v0 in Db and um

0 = 0 outside Db. We first need to compute the
derivative (um

0 )0 of um

k
at k = k0. To proceed, we prove an expansion as k ! k0 of the

form
um

k
� um

0 = (k � k0)(u
m

0 )0 + (k � k0)
2ũm

k
, (5.36)

where (um

0 )0 is independent of k and where ũm

k
has a bounded norm as k ! k0. Writing

(5.27) in a variational form as in (1.55) we get, with BR a ball containing Db and ⇤k the
Dirichlet-to-Neumann map introduced in Definition 1.37,

(rum

k
,r')L2(BR) � k2(num

k
,')L2(BR) � h⇤kum

k
,'i = ((k2n� ⇢)v0,')L2(Db),

(rum

0 ,r')L2(BR) � k20(nu
m

0 ,')L2(BR) � h⇤kum

0 ,'i = ((k20n� ⇢)v0,')L2(Db)

for all ' 2 H1(BR). Note that we used that um

0 = 0 outside Db to replace ⇤k0 with ⇤k in
the second equation. Define (um

0 )0 2 H2
loc

(R3) to be the solution of

(r(um

0 )0,r')L2(BR) � k20(n(u
m

0 )0,')L2(BR) � h⇤k0(u
m

0 )0,'i = 2k0(nw0,')L2(Db)

for all ' 2 H1(BR). Then one obtains that ũm

k
2 H2

loc
(R3) defined by (5.36) satisfies

(rũm

k
,r')L2(BR)) � k2(nũm

k
,')L2(BR)) � h⇤kũm

k
,'i

= (nw0 + (k + k0)(um

0 )0,')L2(Db) �

*
⇤k � ⇤k0

k � k0
(um

0 )0,'

+

for all ' 2 H1(BR). Using that the mapping k 7! ⇤k is real analytic from R⇤

+ into
L(H1/2(@BR), H�1/2(@BR)), we obtain (using the uniform bounds for scattering prob-
lems as in Lemma 5.8) that kũm

k
kH2(Db)  CkvkL2(Db) for some constant C independent
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of k 2 I , I being a given compact set of R⇤

+. Now inserting the expansion (5.36) into
(5.35) and using that (Tm

k0
v0, v0)L2(Db) = 0, we get

4⇡

k � k0
(Tm

k
v0, v0)L2(Db) = 2k0(nw0, v0)L2(Db)

+((k20n� ⇢)(um

0 )0, v0)L2(Db) + (k � k0)⌘(k)

(5.37)

with
⌘(k) =

�
(k2n� ⇢)ũm

k
+ (k + k0)n(u

m

0 )0 + nw0, v0
�
L2(Db)

.

Obviously, ⌘(k) satisfies the uniform estimate indicated in the proposition. We recall that
um

0 2 H2
0 (Db) and satisfies

�um

0 + k20nu
m

0 = �(k20n� ⇢)v0. (5.38)

This allows us to write, since n and ⇢ are real,

((k20n� ⇢)(um

0 )0, v0)L2(Db) = ((um

0 )0, (k20n� ⇢)v0)L2(Db)

= �((um

0 )0,�um

0 + k20nu
m

0 )L2(Db) = �(�(um

0 )0 + k20n(u
m

0 )0, um

0 )L2(Db)

= 2k0(nw0, um

0 )L2(Db).

Substituting the latter identity into (5.37) gives the desired expansion (5.34).

We now can state and prove the converse of Theorem 5.14 (illustrated by Figure 5.4).

2⇡i/k
�1(k)

0

ei�1(k)

0 1

Figure 5.4. Illustration of the behaviors of k 7! �1(k) (left) and k 7! ei�1(k) (right) when
k ! k0 in the situation where n� nb(k0) � ↵ > 0 in Db with nb(k) = ⇢/k2.

Theorem 5.16. Assume that nb satisfies (5.33), and let k0 > 0 be a modified transmission
eigenvalue of (5.19). Assume that n�nb(k0) � ↵ > 0 (respectively, nb(k0)�n � ↵ > 0)
in Db for some constant ↵. Then �1(k) ! 2⇡ or equivalently �̂1(k) ! �1 as k ! k0 and
k < k0 (respectively, �1(k) ! 0 or equivalently �̂1(k) ! +1) as k ! k0 and k > k0.

Proof. The proof uses the abstract result of Lemma 5.17 below. Let us consider the case
n�nb(k0) � ↵ > 0 in Db. Let (w0, v0) 2 L2(Db)⇥L2(Db) be a corresponding eigenpair.
According to Lemma 5.17 and the discussion of Section 5.2.1, we have

cot
�1(k)

2
= inf
'2Hinc(Db)

< (Tm

k
',')L2(Db)

= (Tm

k
',')L2(Db)


< (Tm

k
v0, v0)L2(Db)

= (Tm

k
v0, v0)L2(Db)

.
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From (2.35) we have that = (Tm

k
v0, v0)L2(Db) > 0 when k is not a modified transmission

eigenvalue. Using the expansion (5.34), we deduce that = ⌘(k) > 0 for k approaching k0
and

< (Tm

k
v0, v0)L2(Db)

= (Tm

k
v0, v0)L2(Db)

=
2k0(nw0, w0)L2(Db) + (k � k0)<(⌘(k))

(k � k0)=(⌘(k))
!�1 (5.39)

as k ! k0 and k < k0. Note that we have w0 6⌘ 0 in Db; otherwise um

0 = w0 � v0 2

H2
0 (Db) would vanish and yield (w0, v0) = (0, 0). This proves that cot �1(k)2 ! �1 and

equivalently �1(k) = 2⇡ as k ! k0 and k < k0. The case nb(k0)� n � ↵ > 0 in Db can
be proved similarly by replacing Tm

k
by �Tm

k
.

For the proof of Theorem 5.16 we have used the following abstract result first shown
in [83]. We follow here the presentation in [115].

Lemma 5.17. Let X be an infinite separable Hilbert space and Y a reflexive Banach
space. Let F : X ! X be compact injective with dense range such that, F = H⇤TH
with H : X ! Y being injective and T : Y ! Y ⇤ satisfying Assumption 2.3. Assume
in addition that S = I + iF is unitary. Denote by ei�j , j 2 N, the eigenvalues of S with
0 < �j < 2⇡ and �? = sup

j
�j . Then

cot
�?
2
= inf
'2Hinc

< hT', 'i

= hT', 'i
(5.40)

with h·, ·i denoting the Y ⇤
� Y duality product and where Hinc is the closure of the range

of H .

Proof. We remark that since F is injective, 1 is not an eigenvalue of S, and by assumption
the range of F denoted R(F ) is dense in X . Denote by S the Cayley transform of S
defined by

S := i(I + S)(I � S)�1 : R(F ) ⇢ X ! X.

The operator S is self-adjoint and its spectrum is discrete. Moreover, ei�j is an eigenvalue
of S if and only if � cot(�j/2) 2 R is an eigenvalue of S. Since T satisfies Assumption
2.3, then � cot(�?/2) is the largest eigenvalue of S (see Proposition 5.4). We then can
apply the Courant–Fischer inf-sup principle to the self-adjoint operator S and get

� cot
�?
2
= sup

f2R(F )

(Sf, f)X
kfk2

X

= sup
f2R(F )

(i(I + S)(I � S)�1f, f)X
kfk2

X

= sup
g2X

(i(I + S)g, (I � S)g)X
k(I � S)gk2

X

= sup
g2X

i(kgk2
X
+ 2i= (Sg, g)X � kSgk2

X
)

kgk2
X
� 2< (Sg, g)X + kSgk2

X

= sup
g2X

= (Sg, g)X
< (Sg, g)X � kgk2

X

.

Using the facts that S = I + iF and that F = H⇤TH we obtain

� cot
�?
2
= sup

g2X

< (Fg, g)X
�= (Fg, g)X

= sup
g2X

< hTHg, Hgi

�= hTHg, Hgi
= sup
'2Hinc

< hT', 'i

�= hT', 'i
.

This proves (5.40).
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5.3 Other Modified Backgrounds and Some
Applications

The use of modified backgrounds has attracted great interest for application purposes since
it can simplify the analysis of the connection between transmission eigenvalues and the
probed medium properties. This has already been discussed above for the case of zero
index materials (see (5.20)–(5.21)). We hereafter give other possibilities that have been
suggested in [9] with an application for the construction of an indicator function for “crack
densities” [11]. We then present another point of view also relevant for applications, where
the frequency is fixed and a spectral parameter is encoded in the definitions of the modified
background [8], [39], [61], [62], [63]. Throughout this section we always assume that
n is real.

5.3.1 A Background with an Artificial Obstacle
Instead of zero index materials, one can use a background medium containing an artificial
obstacle. More specifically we shall consider a background where Db is an obstacle with
prescribed boundary conditions on @Db. The system (5.16) is then replaced by us

b
2

H1
loc

(R3
\Db), the unique solution to

8
>>>>><

>>>>>:

�us

b
+ k2us

b
= 0 in R3

\Db,

B(us

b
) = �B(ui) on @Db,

lim
R!1

Z

|x|=R

|@us

b
/@|x|� ik us

b
|
2 ds = 0.

(5.41)

The boundary operator B is designed such that problem (5.41) is well-posed, for in-
stance, B(u) = u or B(u) = @u/@⌫ + �u, which respectively correspond to Dirichlet
and Robin scattering problems, with � 2 R being a fixed impedance parameter. The
well-posedness can be easily shown following the variational procedure presented in Sec-
tion 1.4 for any incident field such that B(ui) 2 H1/2(@Db) for the Dirichlet case and
B(ui) 2 H�1/2(@Db) for the Robin problem.

The modified transmission eigenvalues are defined as the values of k > 0 for which
there exists a nontrivial ui

2 H1(Db) satisfying �ui + k2ui = 0 in Db and such that the
corresponding scattered fields us and us

b
respectively defined by (1.27)–(1.29) and (5.16),

are such that us = us

b
in R3

\Db. Setting w := us + ui
|Db we obtain

(
�w + k2nw = 0 in Db,

B(w) = 0 on @Db,
(5.42)

and modified transmission eigenvalues can be equivalently defined as k > 0 for which
(5.42) admits a nontrivial solution w 2 H1(Db). Similarly to (5.20), we obtain a simpler
spectral problem than (3.2), associated to a linear self-adjoint operator made of isolated
eigenvalues of finite multiplicity 0 < k21  k22  · · ·  k2

p
 · · · (the numbering is chosen

so that each eigenvalue is repeated according to its multiplicity). The min-max formula
also holds. For instance, in the case of Dirichlet boundary conditions (B(u) = u),

k2
p
= min

Ep2Ep

max
u2Ep\{0}

(ru,ru)L2(Db)3

(nu, u)L2(Db)
,

where Ep denotes the sets of subspaces Ep of H1
0 (Db) of dimension p. The transmission

eigenvalues can be identified from Fm using GLSM in the same way as in Theorem 5.18
below with P (g) = kHgk2

H1(Db)
.
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Application to Imaging of Cracks Network

The idea of introducing an artificial background with obstacles satisfying a Dirichlet bound-
ary condition has been used to design an indicator function for the density of cracks in a
highly fractured media [11]. Consider, for example, a network of cracks supported by sur-
faces � ⇢ @D such that R3

\ � is connected and @D is the boundary of a smooth domain
D. Assume for simplicity that the refractive index of the medium is n = 1. The scattering
problem for cracks supported by � can be modeled by us

2 H1(R \ �) such that
8
>>>>><

>>>>>:

�us + k2us = 0 in R3
\ �,

@us/@⌫ = �@ui/@⌫ on �,

lim
R!1

Z

|x|=R

|@us/@|x|� ik us
|
2 ds = 0

(5.43)

for some incident field ui, where ⌫ denotes an outward normal field defined on @D. We
notice that we implicitly assume in (5.43) that the normal trace @us/@⌫ is the same on
both sides of �. Using the variational procedure presented in Section 1.4, one can show
by replacing the variational space H1(BR) with H1(BR \ �) that this problem is well-
posed for @ui/@⌫ 2 H�1/2(@D). Consider us(·, d) the scattered field associated with
the incident plane wave eikd·x with d 2 S2 and denote by u1(·, d) the associated far
field. The far field operator F associated with u1(·, d) is defined by (5.1). The LSM
and factorization methods have been studied for cracks in [25]. These methods provide
satisfactory reconstructions in the case of well-separated cracks. However, in the case
of multiple cracks that form a dense network, these methods only identify a domain that
contains all the cracks (see Figure 5.6, right). This fact is expected to be the case for any
inversion method that aims at reconstructing the exact shape of the cracks.

An alternative idea pursued in [11] is to exploit the monotonicity of some modified
transmission eigenvalues with respect to the crack size in order to build an indicator func-
tion of the crack density (without reconstructing the exact shape). Consider the far field
operator F b associated with the background media defined in equation (5.41) for some
domain Db that does not necessarily contain (all of) � in its interior. The modified trans-
mission eigenvalues are defined similarly as above, being the values of k > 0 for which
there exists a nontrivial ui

2 H1(Db) satisfying �ui + k2ui = 0 in Db and such that the
corresponding far fields coincide. Rellich’s Lemma and the unique continuation principle
imply that us and us

b
, respectively defined by (5.43) and (5.16), are such that us = us

b
in

R3
\{Db[�}. These modified transmission eigenvalues then correspond to the case when

for k > 0 there exists a nontrivial solution w 2 H1(Db \ �) of
8
><

>:

�w + k2w = 0 in Db,

@w/@⌫ = 0 on � \Db,

B(w) = 0 on @Db.

(5.44)

Again, the min-max formula holds and for the Dirichlet boundary condition (B(u) = u),
with �b := � \Db, we have

k2
p
(�b) = min

Ep2Ep(�b)
max

u2Ep\{0}

(ru,ru)L2(Db)3

(u, u)L2(Db)
, (5.45)

where Ep(�b) denotes the sets of subspaces Ep of H1
0 (Db \ �b) of dimension p. Since

H1
0 (Db \ �b) ⇢ H1

0 (Db \ �̃b) if �b ⇢ �̃b, we clearly obtain the monotonicity property

k2
p
(�b) � k2

p
(�̃b) if �b ⇢ �̃b, (5.46)
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i.e., the modified transmission eigenvalues decrease with respect to the size of the crack.
In order to determine these modified transmission eigenvalues, one can rely on the GLSM
method by considering

J↵(�z; g) := ↵P (g) + kFmg � �zk
2
L2(S2) (5.47)

with
P (g) := kHgk2

H1(Db)
+ (F]g, g)L2(S2)

and F] defined by (2.49). From our previous analysis, we arrive at the following result.

Theorem 5.18. Define g↵
z

as in (5.8) with J↵ given by (5.47). Assume that g 7! vg|�
is injective where vg is defined by (1.31). Then for any ball B ⇢ Db, P (g↵

z
) is bounded

and kFmg↵
z
� �zkL2(S2) ! 0 as ↵ ! 0 for almost every z 2 B if and only if k is not a

modified transmission eigenvalue associated with (5.44).

Indicator Function For Cracks Density

Theorem 5.18 and the monotonicity property (5.46) suggest the following procedure to
build an indicator function sensitive to the local density of cracks in a highly fractured
media. Let R0 > 0 be chosen and denote by k0

p
the Dirichlet eigenvalues defined by

(5.45) for �b = ; and Db = BR0 , the ball of radius R0 centered at the origin. These
eigenvalues coincide with the zeros of x 7! jn(xR0), where jn is a spherical Bessel
function. For z 2 R3 we let kp(z) be the modified transmission eigenvalue defined by
(5.45) with Db = Db(z) := z + BR0 . The indicator function is then defined as, for some
N > 0,

I(z) :=
NX

p=1

|kp(z)� k0
p
|. (5.48)

One therefore expects, according to (5.46), that I(z) is monotonically increasing with
respect to the size of cracks intersecting Db(z) as the sampling point z varies inside the
probed domain.

In practice, the values of kp(z) are evaluated from measurements based on Theorem
5.18. We refer the reader to [11] for a discussion of practical implementations in a 2-
dimensional setting. The parameters N and R0 are related to the available frequency range
in the measurements that should at least include k01 . Limiting the procedure to N = 1
turned out to be sufficient to obtain meaningful results as shown by Figures 5.5–5.6. In
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Figure 5.5. Behavior of the indicator function (5.48) with N = 1. Left: 11 vertical cracks
of length 0.25 arranged in 4 areas with different damage levels and reconstruction using R0 = 0.25.
Right: 40 cracks of different lengths arranged randomly and reconstruction using R0 = 0.1. The
data are corrupted with 1% noise. Reproduced from [11] with permission.
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this case, since k01 = ⇡/R0 (in 3 dimensions), we see that R0 � ⇡/kmax, where kmax

denotes the maximum of the frequencies available in the measurements. Figure 5.5 illus-
trates a typical behavior of the indicator function for different configurations of the cracks.
Figure 5.6 shows a comparison with the reconstruction provided by the F] method for Neu-
mann cracks as suggested in [25]. One clearly observes that the new indicator function is
more representative of the local crack density of the medium.
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Figure 5.6. Left: exact cracks configuration. Middle: indicator function (5.48) with N =
1 and R0 = 0.1. Right: reconstruction provided by the F] method. The data are corrupted with 1%
noise. Reproduced from [11] with permission.

5.3.2 Spectral Parameters Encoded into the Background
The main drawback of using the indicator function (5.48) is the need for multifrequency
measurements in an interval of frequencies that contains modified transmission eigenval-
ues. One can define a similar indicator function that can be used for a single frequency
measurement by using a different spectral parameter. The latter is chosen in the definition
of the background, for instance, the parameter � in the Robin boundary conditions of (5.42)
or the value of nb|Db in the definition of problem (5.19). These two choices are discussed
below.

Modified Transmission Eigenvalues of Steklov Type

We define the modified transmission eigenvalues of Steklov type as the values of � for
which problem (5.42), with B(u) = @u/@⌫ + �u, has a nontrivial solution w 2 H1(Db),
the wave number k being fixed. This eigenvalue problem can be written variationally as
Z

Db

rw ·rw0 dx�k2
Z

Db

nww0 dx = ��

Z

@Db

ww0 ds for all w0
2 H1(Db). (5.49)

If k2 is not a Robin eigenvalue, i.e., an eigenvalue of

�w + k2nw = 0 in Db,
@w

@⌫
+ ↵w = 0 on @Db, (5.50)

where 0  ↵ is fixed (↵ = 0 corresponds to a Neumann eigenvalue), we define the interior
self-adjoint Robin-to-Dirichlet operator R : L2(@Db) ! L2(@Db) by

R : ✓ 7! w✓|@Db ,

where w✓ 2 H1(D) is the unique solution to
Z

Db

rw✓ ·rw0 dx+↵

Z

@Db

w✓w
0
�k2

Z

Db

nw✓w
0 dx =

Z

@Db

✓w0 ds for all w0
2 H1(Db).
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The fact that w✓|@Db 2 H1/2(@Db) implies that R : L2(@Db) ! L2(@Db) is compact.
Then � is a Steklov eigenvalue if and only if

(��+ ↵)R✓ = ✓.

Note that from the analytic Fredholm theory (Theorem 1.12), a given k2 cannot be a Robin
eigenvalue for all ↵ � 0. Thus, choosing ↵ appropriately, we have proven that for any
fixed wave number k > 0 there exists an infinite set of Steklov eigenvalues and all the
eigenvalues �j are real without finite accumulation point. In the following lemma we
actually show that they accumulate only at �1. To this end, let (·, ·) denote the L2(Db)-
inner product and h·, ·i the L2(@Db)-inner product.

Assumption 5.1. The wave number k > 0 is such that ⌘ := k2 is not a Dirichlet eigenvalue
of the problem, w 2 H1(Db),

�w + ⌘nw = 0 in Db, w = 0 on @Db. (5.51)

Theorem 5.19. For real n and fixed k > 0 there exists at least one positive Steklov
eigenvalue. If in addition k > 0 satisfies Assumption 5.1, then there are at most finitely
many positive Steklov eigenvalues.

Proof. We assume to the contrary that all eigenvalues satisfy �j  0. This means that
Z

Db

rw ·rw dx� k2
Z

Db

n |w|2 ds � 0

for all w 2 H1(Db) since the Steklov eigenfunctions form a Riesz basis for H1(Db). Now
taking w = 1 yields a contradiction, which proves the first statement.

Next we assume by contradiction that there exists a sequence of positive Steklov eigen-
values �j > 0, j 2 N, converging to +1 with eigenfunction wj normalized such that

kwjkH1(Db) + kwjkL2(@Db) = 1. (5.52)

Then from
(rwj ,rwj)� k2 (nwj , wj) = ��j hwj , wji , (5.53)

since the left-hand side is bounded, we obtain that wj ! 0 in L2(@Db). Next, up to a
subsequence, wj converges weakly in H1(Db) to some w 2 H1(Db), and this weak limit
satisfies �w + k2nw = 0 in Db. Hence from the above w = 0 on @Db. Therefore, using
Assumption 5.1, w = 0 in Db. Hence, up to a subsequence, wj ! 0 in L2(Db) (strongly).
From (5.53)

(rwj ,rwj)� k2 (nwj , wj) < 0 for all j 2 N,

and since the left-hand side is a bounded real sequence, we can conclude that, up to a
subsequence,

(rwj ,rwj) ! 0 as j ! 1,

which implies that krwjkL2(Db) ! 0 in addition to kwjkL2(@Db) ! 0. This contradicts
(5.52).

For the existence of Steklov eigenvalues for complex valued C1 coefficient n(x),
see [39]. We now prove that we have a monotonicity property for the largest Steklov
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eigenvalue. We choose a positive constant ⌧ > 0 such that
Z

Db

rw ·rw dx� k2
Z

Db

n |w|2 dx+ ⌧

Z

@Db

|w|2 ds � ckwk2
H1(Db)

, c > 0. (5.54)

The existence of such a ⌧ is proved in the following theorem. Hence in this case our
eigenvalue problem, which can be written as
Z

Db

rw ·rw0 dx� k2
Z

Db

nww0 dx+ ⌧

Z

@Db

ww0 ds = �(�� ⌧)

Z

@Db

ww0 ds, (5.55)

becomes a generalized eigenvalue problem for a positive self-adjoint compact operator,
and hence the eigenvalues ⌧ � � > 0 satisfy the Courant–Fischer inf-sup principle. In
particular, the largest positive Steklov eigenvalue �1 = �1(n, k) satisfies

�1 = sup
w2H1(Db),w 6=0

k2
Z

Db

n |w|2 dx�

Z

Db

rw ·rw dx

Z

@Db

|w|2 ds
, (5.56)

whence it is monotonically increasing with respect to n and monotonically decreasing with
respect to A. The following theorem give the optimal conditions on n and k which ensure
the coercivity property (5.54), whence the sup-condition (5.56).

Theorem 5.20. Assume that k2 < ⌘0(n,Db), where ⌘0(n,Db) is the first Dirichlet eigen-
value of (5.51). Then there is a ⌧ > 0 such that (5.54) holds. In particular, the largest
positive Steklov eigenvalue satisfies (5.56).

Proof. Fix k2 < ⌘0(n,Db) and assume to the contrary that there exists a sequence of
positive constants ⌧j = j, j 2 N, and a sequence of functions wj 2 H1(Db) normalized
as kwjkH1(Db) = 1 such that

Z

Db

rwj ·rwj dx� k2
Z

Db

n |wj |
2 dx+ j

Z

@Db

|wj |
2 ds  0. (5.57)

From Z

Db

rwj ·rwj dx+ j

Z

@Db

|wj |
2 ds  k2

Z

Db

n |wj |
2 dx

we see that j
R
@Db

|wj |
2 ds is bounded, which implies that wj ! 0 strongly in L2(@Db) as

j ! +1. On the other hand the boundedness implies that wj * w in H1(Db) and from
the above w = 0 on @Db, whence w 2 H1

0 (Db). Next we have that, up to a subsequence,
wj ! w strongly in L2(Db). Since the norm of the weak limit is smaller than the lim-inf
of the norm,

(rw,rw)  lim inf
j!1

Z

Db

rwj ·rwj dx  lim
j!1

k2
Z

Db

n |wj |
2 dx = k2(nw,w),

which contradicts the fact that

k2 < inf
w2H

1
0 (Db),w 6=0

(rw,w)

(nw,w)
= ⌘0(n,Db).

This ends the proof.
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In [8] it is shown that the largest Steklov eigenvalue blows up as k approaches a Dirich-
let eigenvalue defined in Assumption 5.1. More precisely we have the following theorem.

Theorem 5.21. Assume that k2 < ⌘0(n,Db), where ⌘0(n,Db) is the first Dirichlet eigen-
value of (5.51). Then the largest positive Steklov eigenvalue �1 = �1(k) as a function of
k approaches +1 as k2 ! ⌘0(n,Db).

Proof. Consider the first eigenvalue and eigenvector (⌘�, w�), kw�kH1(Db) = 1, of the
following Robin problem

�w� + ⌘�nw� = 0 in Db,
@w�
@⌫A

+
1

�
w� = 0 on @Db (5.58)

for � > 0. If ⌘0 := ⌘0(n,Db) and w0 denotes the first Dirichlet eigenvalue and eigenvector
of (5.51), we notice that

⌘� =
(rw�, w�) +

1
�
hw�, w�i

(nw�, w�)
= inf

w2H1(Db),w 6=0

(rw,w) + 1
�
hw,wi

(nw,w)

< inf
w2H

1
0 (Db),w 6=0

(rw,w)

(nw,w)
= ⌘0,

i.e., ⌘� < ⌘0. Using the inf-criterion, one also easily observes that � 7! ⌘� is decreasing,
whence lim

�!0
⌘� exits. On the other hand, (5.58) can be written as

Z

Db

rw� ·rw0 dx+
1

�

Z

@Db

w�w
0 ds = ⌘�

Z

Db

nw�w
0 dx, (5.59)

and by taking w0 = w� we see that w� ! 0 strongly in L2(@Db) as � ! 0. The H1(Db)-
weak limit of w� , denoted by w, satisfies �w + (lim

�!0
⌘�)nw = 0 in D� and w = 0 on

@Db, which means lim
�!0

⌘� = ⌘0 (since ⌘� < ⌘0 and ⌘0 is the first Dirichlet eigenvalue)

and w = w0 the corresponding eigenfunction. From the compact embedding of H1(Db)
into L2(Db) we have that (up to a subsequence) w� ! w0 strongly in L2(Db). Now we
consider the sequence k2

�
:= ⌘� + kw�k2L2(@Db)

! ⌘0 as � ! 0. Then from (5.56)

�1(k�) �

k2
�

Z

Db

n |w�|
2 dx�

Z

Db

rw� ·rw� dx

Z

@Db

|w�|
2 ds

=

(k2
�
� ⌘�)

Z

Db

n |w�|
2 dx

Z

@Db

|w�|
2 ds

+
1

�
=

Z

Db

n |w�|
2 dx+

1

�
.

Thus we have that

lim
�!0

�1(k�) �

Z

Db

n |w0|
2 dx+ lim

�!0

1

�
= +1,

which ends the proof.
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Indeed, the Steklov eigenvalues can be identified in the same way as modified trans-
mission eigenvalues using the GLSM method.

Theorem 5.22. Define

J↵(�z; g) := ↵kHgk2
H1(Db)

+ kFmg � �zk
2
L2(S2) ,

where Fm = F � F b and F b is the far field operator associated with the background
scattering problem (5.41), and let g↵

z
be defined as in (5.8). Then for any ball B ⇢ D,

kHg↵
z
kH1(Db) is bounded and kFg↵

z
� �zkL2(S2) ! 0 as ↵ ! 0 for almost every z 2 B

if and only if � is not a Steklov eigenvalue of (5.49).

The application of Steklov eigenvalues to identify changes in the material properties of
thin surfaces has been investigated in [53].

Metamaterial Modified Transmission Eigenvalues

Another possibility to define a spectrum associated with the refractive index n for a fixed
frequency is to use a background medium as in (5.16) and set nb = � in Db. The resulting
eigenvalue problem has a similar structure to (5.19) and therefore would inherit the same
theoretical difficulties relating eigenvalues to the material properties. As suggested in [8],
one can obtain an eigenvalue problem similar to the Steklov eigenvalue problem presented
above by using a background containing a metamaterial in Db. Given a > 0 as a fixed
parameter such that a 6= 1 and � 2 R, we replace (5.16) with the scattering problem for
us

b
2 H1

loc
(R3

\Db) and ub 2 H1(Db) defined by
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�us

b
+ k2us

b
= 0 in R3

\Db,

(�a)�ub + k2�ub = 0 in Db,

ub � us

b
= ui on @Db,

(�a)
@ub

@⌫
�
@us

b

@⌫
=
@ui

@⌫
on @Db,

lim
R!1

Z

|x|=R

|@us

b
/@|x|� ik us

b
|
2 ds = 0,

(5.60)

where ui
2 H1(Db) is some incident field satisfying�ui+k2ui = 0 in Db. The scattering

problem (5.60) is well-posed as long as =(�) � 0 [22], [60].
Arguing as in (5.19), the metamaterial transmission eigenvalues � correspond to the

existence of a nontrivial ui
2 H1(Db) satisfying �ui + k2ui = 0 in Db such that the

associated scattered fields us and us

b
, respectively defined by (1.27)–(1.29) and (5.60), are

such that u1 = ub

1
. By Rellich’s Lemma, this implies that us = us

b
in R3

\Db. Setting
w := us + ui

|Db and v := us

b
+ ui

|Db we obtain the eigenvalue problem

�w + k2nw = 0 in Db,

(�a)�v + k2�v = 0 in Db,

w = v on @Db, (5.61)
@w

@⌫A
= �a

@v

@⌫
on @Db

for v 2 H1(Db) and w 2 H1(Db).
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To study the eigenvalue problem (5.61), we first write it in the equivalent variational
form

Z

Db

rw ·rw0 dx+ a

Z

Db

rv ·rv0 dx� k2
Z

Db

nww0 dx = �k2�

Z

Db

vv0 dx (5.62)

for (w0, v0) 2 H(Db), where

H(Db) =
�
(w, v) 2 H1(Db)⇥H1(Db) such that w = v on @Db

 
.

Obviously, since =(n) = 0, this is an eigenvalue problem for a compact self-adjoint opera-
tor. To see this, one possibility is to fix a real � such that k is not a transmission eigenvalue
of

�w + k2nw = 0 in Db,

(�a)�v + k2�v = 0 in Db,

w = v on @Db, (5.63)
@w

@⌫A
= �a

@v

@⌫
on @Db.

This means that the self-adjoint operator A : H(Db) ! H(Db), defined by the Riesz
representation as

(A(w, v), (w0, v0))
H(Db)

=

Z

Db

(rw ·rw0 + arv ·rv0 dx� k2nww0 + k2�vv0) dx

for all (w0, v0) 2 H(Db), is invertible. We remark that the operator A is of Fredholm
type and depends analytically on �. Moreover, A is coercive for k > 0 and � = i⌧
with ⌧ > 0. This proves, by the Analytic Fredholm Theorem (Theorem 1.12), that for
any fixed k > 0 there exists � real such that A is invertible. Now consider the operator
T : L2(D) ! L2(D) defined by

T : f 2 L2(D) 7! vf 2 H1(Db), where (wf , vf ) = A�1(0, f),

which is compact and self-adjoint. Therefore our eigenvalue problem for � becomes

Tv = �k2(�� �)v,

which is an eigenvalue problem for a self-adjoint compact operator. This implies in par-
ticular the existence of an infinite set of real eigenvalues �, which, as we show in the next
theorem, accumulate only at �1.

Theorem 5.23. There exists at least one positive eigenvalue of (5.61). If in addition k > 0
satisfies Assumption 5.1, then there are at most finitely many positive eigenvalues.

Proof. Assume to the contrary that all eigenvalues are such that �j  0. This means that
Z

Db

rw ·rw dx+ a

Z

Db

rv ·rv dx� k2
Z

Db

n |w|2 ds � 0

for all (w, v) 2 H(Db) since due to self-adjointness all the eigenfunctions (w, v) form a
Riesz basis for H(Db). Now taking w = 1 and v = 1 yields a contradiction, which proves
the first statement.
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Next we assume by contradiction that there exists a sequence of positive eigenvalues
�j > 0, j 2 N, converging to +1 with eigenfunctions (wj , vj) 2 H(Db) normalized
such that

kwjkH1(Db) + kvjkH1(Db) = 1. (5.64)

Then from

(rwj ,rwj) + a (rvj ,rvj)� k2 (nwj , wj) = �k2�j (vj , vj) , (5.65)

and since the left-hand side is bounded, we obtain that vj ! 0 in L2(Db). Next, up to a
subsequence, wj * w in H1(Db); this weak limit satisfies �w + k2nw = 0 in Db and
w = 0 on @Db. Our assumption on k implies that w = 0, i.e., wj * 0 in H1(Db) and up
to a subsequence wj ! 0 strongly in L2(Db). From (5.65)

(rwj ,rwj) + a (rvj ,rvj)  k2 (nwj , wj) for all j 2 N.

Since (nwj , wj) ! 0, we conclude that

(rwj ,rwj) ! 0, and a (rvj ,rvj) ! 0 as j ! 1,

which implies that krwjkH1(Db) ! 0, krvjkH1(Db) ! 0. This contradicts (5.64), and
the proof of the theorem is completed.

For (w, v) 2 H(Db), since w � v 2 H1
0 (Db), the Poincaré inequality

kw � vk2  Cpkrw �rvk2

holds with the optimal constant Cp > 0 being the first Dirichlet eigenvalue for �� in Db.
Thus

(w,w)  Cp (rw,rw) + Cp (rv,rv) + (v, v) . (5.66)

As with the Steklov eigenvalue problem discussed above, we would like to find a ⌧ > 0
such that

Z

Db

rw ·rw dx+ a

Z

Db

rv ·rv dx� k2
Z

Db

n|w|2 dx+ ⌧

Z

Db

|v|2 dx

� C
⇣
kwk2

H1(Db)
+ kvk2

H1(Db)

⌘
. (5.67)

In this case, our eigenvalue problem
Z

Db

rw ·rw0 dx+ a

Z

Db

rv ·rv0 dx� k2
Z

Db

nww0 dx

+⌧

Z

Db

vv0 dx = �k2(�+ ⌧)

Z

Db

vv0 dx (5.68)

becomes a generalized eigenvalue problem for a positive compact self-adjoint operator and
the eigenvalues �(�j + ⌧) satisfy the Courant–Fischer min-max principle. Consequently
we obtain that our largest positive eigenvalue �1 := �1(n, k) satisfies

�1 = sup
(w,v)2H(Db),v 6=0

k2
Z

Db

n |w|2 dx�

Z

Db

rw ·rw dx� a

Z

Db

|rv|2 dx

Z

Db

|v|2 dx
. (5.69)
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Hence �1 is monotonically increasing with respect to n and monotonically decreasing with
respect to A. The following theorem indicates when (5.67) and (5.69) hold.

Theorem 5.24. Assume that k2 < ⌘0(n,Db), where ⌘0(n,Db) is the first Dirichlet eigen-
value of (5.51). Then there is a ⌧ > 0 such that (5.67) holds. In particular, in this case the
largest positive eigenvalue satisfies (5.69).

Proof. Fix k2 < ⌘0(n,Db) and assume to the contrary that there exists a sequence of pos-
itive constants ⌧j = j, j 2 N, and a sequence of functions (wj , vj) 2 H(Db) normalized
as kwjkH1(Db) + kvjkH1(Db) = 1 such that

Z

Db

rwj ·rwj dx+ a

Z

Db

|rvj |
2 dx� k2

Z

Db

n |wj |
2 dx+ j

Z

Db

|vj |
2 ds  0. (5.70)

From
Z

Db

rwj ·rwj dx+ a

Z

Db

|rvj |
2 d+ j

Z

Db

|vj |
2 ds  k2

Z

Db

n |wj |
2 dx (5.71)

we see that j
R
Db

|vj |2 ds is bounded, which implies that vj ! 0 strongly in L2(Db). On
the other hand, the boundedness implies that, up to a subsequence, wj * w and vj * 0
in H1(Db). Since (wj , vj) 2 H(Db) we get in particular that w 2 H1

0 (Db). By going to
a subsequence, one can also assume that wj ! w strongly in L2(Db). Since the norm of
the weak limit is smaller that the lim-inf of the norm

(rw,rw)  lim inf
j!1

Z

Db

rwj ·rwj dx  lim
j!1

k2
Z

Db

n |wj |
2 dx = k2(nw,w),

which contradicts the fact that

k2 < inf
w2H

1
0 (Db),w 6=0

(rw,w)

(nw,w)
= ⌘1(n,Db).

This ends the proof.

The metamaterial modified transmission eigenvalues can be identified from Fm using
GLSM in the same way as in Theorem 5.22 using

J↵(�z; g) := ↵kHgk2
L2(Db)

+ kFmg � �zk
2
L2(S2) ,

where Fm = F � F b and F b is the far field operator associated with the background
scattering problem (5.60).





Chapter 6

Inverse Spectral
Problems for
Transmission
Eigenvalues

6.1 Spherically Stratified Media with Spherically
Symmetric Eigenfunctions

The (normalized) transmission eigenvalue problem for an isotropic spherically stratified
medium in R3 is to find a nontrivial solution v, w 2 L2(B), v � w 2 H2

0 (B) to

�w + k2n(r)w = 0 in B, (6.1)

�v + k2v = 0 in B, (6.2)

v � w = 0 on @B, (6.3)

@v

@r
�
@w

@r
= 0 on @B (6.4)

for k 2 C, where B := {x : |x| < 1}. We assume that n 2 C3[0, 1], although this
condition can be weakened. If we look for spherically symmetric eigenfunctions

w(x) = a0
y(r)

r
,

v(x) = b0
sin kr

kr
,

where a0, b0 are constants, then

y00 + k2n(r)y = 0,

y(0) = 0, y0(0) = 1,

where the second initial condition is a normalization condition. From this we see, after
simplification, that k is a transmission eigenvalue if and only if

d(k) := det

�����
y(1)

sin k

k
y0(1) cos k

����� = 0.

Theorem 6.1. If d(k) is identically zero, then n(r) is identically equal to one.

193



194 Chapter 6. Inverse Spectral Problems for Transmission Eigenvalues

Proof. ([3]) If d(k) = 0, then

sin k

k
y0(1) = y(1) cos k. (6.5)

Each of the four functions in (6.5) is an entire function of k of order one. Furthermore,
y0(1) and y(1) cannot vanish simultaneously and 1

k
sin k and cos k cannot vanish simul-

taneously. Thus (6.5) implies that 1
k
sin k and y(1) = y(1; k) must have the same set of

zeros including multiplicities and that cos k and y0(1) = y0(1; k) must have the same zeros
including multiplicities. Hence, by the Hadamard factorization theorem [158] and the fact
that 1

k
sin k and y(1; k) are even entire functions of order one, we can conclude that

y(1; k) = c1
sin k

k
, y0(1; k) = c1 cos k

for some nonzero constant c1. But the zeros of y(1; k) and y0(1; k) correspond to two
sets of spectra for y00 + k2n(r)y = 0, and it is well known that this information uniquely
determines n(r) for r 2 [0, 1] [14]. Thus n(r) is uniquely determined by the combined
knowledge of the zeros of 1

k
sin k and cos k, and these zeros correspond to n(r) = 1 for

r 2 [0, 1].

If n(1) = 1 and n0(1) = 0, then an elementary asymptotic analysis shows that [69]

d(k) =
1

k[n(0)]1/4

8
<

:sin k

✓ 1Z

0

p
n(⇢) d⇢� 1

◆
+O

✓
1

k

◆9=

; (6.6)

as k ! 1, and hence if

� :=

1Z

0

p
n(⇢) d⇢ 6= 1,

there exist an infinite number of positive transmission eigenvalues. This can also be shown
to be true of n(1) 6= 1 and n0(1) 6= 0 (see Section 4.2). However, as the following examples
show, there can also exist complex eigenvalues.

Example 6.2. ([3]) When n(r) = 1/4 we have that

d(k) = �
2

k
sin3

✓
k

2

◆
,

and hence there exist an infinite number of real eigenvalues and no complex eigenvalues.
On the other hand, if n(r) = 4/9, we have that

d(k) = �
1

k
sin3

✓
k

3

◆
3 + 2 cos

✓
2k

3

◆�
,

i.e., in this case there exist an infinite number of both real and complex eigenvalues.

The above examples are special cases of the following theorem [29], [112], [130].

Theorem 6.3. Let n(r) = n2
0, where n0 is a positive constant not equal to one. Then if n0

is an integer or the reciprocal of an integer, all transmission eigenvalues with spherically
symmetric eigenfunction are real. If n0 is not an integer or the reciprocal of an integer,
then there are infinitely many real and complex transmission eigenvalues.
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We now note that

1. d(k) is an even entire function of order one, i.e., d(
p
k) is an entire function of order

1/2;

2. if 0 < n(r) < 1, then d(k) has a zero of order two at the origin.

Both of these facts can be seen by determining y(r) by successive approximations as a
perturbation from y0(r) = r and then substituting y(1) and y0(1) into the expression for
d(k) (cf. Section 7.6 in [112]). Hence, if � 6= 1 and the zeros {kj} of d(k) are known
(including multiplicity), then by Hadamard’s factorization theorem [158]

d(k) = ck2
1Y

j=1

 
1�

k2

k2
j

!
,

where, from the asymptotic expansion (6.6), we can determine cn(0)1/4. Thus, the trans-
mission eigenvalues (real and complex and including multiplicity) determine n(0)1/4d(k).

Further results on transmission eigenvalues for a constant index of refraction can be
found in [146], [147], and [160].

We now turn our attention to the inverse spectral problem of determining n(r) from
knowledge of the transmission eigenvalues. From the above discussion and assumptions
this is equivalent to determining n(r) from knowledge of the determinant d(k). We first
need an integral representation of the solution to

y00 + k2n(r)y = 0,

y(0) = 0, y0(0) = 1.

To this end, using the Liouville transformation

⇠ :=

rZ

0

p
n(⇢) d⇢,

z(⇠) := [n(r)]1/4 y(r),

we arrive at
z00 +

⇥
k2 � p(⇠)

⇤
z = 0, (6.7)

z(0) = 0, z0(0) = [n(0)]�1/4 , (6.8)

where

p(⇠) :=
n00(r)

4 [n(r)]2
�

5

16

[n0(r)]2

[n(r)]3
. (6.9)

The solution of (6.7), (6.8) can be represented in the form [112]

z(⇠) =
1

[n(0)]1/4

2

4 sin k⇠
k

+

⇠Z

0

K(⇠, t)
sin kt

k
dt

3

5
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for 0  ⇠  � and K(⇠, t) is the unique solution to the Goursat problem

K⇠⇠ �Ktt � p(⇠)K = 0, 0 < t < ⇠ < �,

K(⇠, 0) = 0, 0  ⇠  �,

K(⇠, ⇠) =
1

2

⇠Z

0

p(s) ds, 0  ⇠  �.

The solution to the Goursat problem can be determined by successive approximations
[112].

The following theorem, due to Rundell and Sacks [153], is fundamental to our investi-
gation (see also Theorem 5.18 of [112]).

Theorem 6.4. Let K(⇠, t) satisfy the above Goursat problem. Then p 2 C1[0, �] is
uniquely determined by the Cauchy data K(�, t) and K⇠(�, t).

We can now establish our desired inverse spectral theorem [70]. We note that the
condition on n(1) and n0(1) can be removed [69], [112].

Theorem 6.5. Assume that n 2 C3[0, 1], n(1) = 1, and n0(1) = 0. Then if 0 < n(r) < 1,
the transmission eigenvalues (including multiplicity) uniquely determine n(r).

Proof. Recall the determinant

d(k) = det

�����
y(1)

sin k

k
y0(1) cos k

����� = 0.

From the above discussion we have that

y(1) =
1

[n(0)]1/4

2

4 sin k�
k

+

�Z

0

K(�, t)
sin kt

k
dt

3

5 ,

y0(1) =
1

[n(0)]1/4

2

4cos k� + sin k�

2k

�Z

0

p(s) ds

+

�Z

0

K⇠(�, t)
sin kt

k
dt

3

5 ,

where again

� :=

1Z

0

p
n(⇢) d⇢.

Note that � can be determined from the asymptotic expansion (6.6). The above formulas
now give for ` an integer

`⇡d (`⇡) =
(�1)`

[n(0)]1/4

2

4sin `⇡� +
�Z

0

K(�, t) sin `⇡t dt

3

5 (6.10)



6.1. Spherically Stratified Media with Spherically Symmetric Eigenfunctions 197

and

`⇡d

✓
`⇡

�

◆
= y(1)

`⇡

�
cos

`⇡

�

�
sin `⇡

�

[n(0)]1/4

2

4(�1)` +
�

`⇡

�Z

0

K⇠(�, t) sin
`⇡t

�
dt

3

5 .

(6.11)

We now note the following:

1. Since {sin `⇡t} is complete in L2[0, 1], and hence in L2[0, �] if � < 1, we have from
(6.10) that K(�, t) is known.

2. Since
�
sin `⇡t

�

 
is complete in L2[0, �] we have from (6.11) that K⇠(�, t) is known.

Hence from Theorem 6.4 we can now conclude that p(⇠) is uniquely determined for 0 

⇠  �.
We now need to determine n(r) from p(⇠). Suppose n1(r) and n2(r) correspond to

the same set of eigenvalues. Then p(⇠i) is uniquely determined where

⇠i :=

rZ

0

p
ni(⇢) d⇢, i = 1, 2.

Since ni(1) = 1 and n0

i
(1) = 0 we have from (6.9) that ni(r(⇠i)) satisfies
⇣
n1/4
i

⌘00
� p(⇠i)n

1/4
i

= 0, 0 < ⇠i < �,

n1/4
i

(r(�)) = 1,
⇣
n1/4
i

⌘0
(r(�)) = 0

for i = 1, 2. Hence by the uniqueness of the solution to the initial value problem for linear
ordinary differential equations we have that n1(r(·)) = n2(r(·)). But ri = r(⇠i) satisfies

dri
d⇠i

=
1p

ni(r(⇠i))
,

ri(0) = 0

for i = 1, 2 and hence r1(·) = r2(·). This implies that ⇠1 = ⇠2 and hence n1(r) = n2(r).

In view of Theorem 6.5, a natural question to ask is whether or not complex transmis-
sion eigenvalues exist. To this end, we define ⇠, z(⇠), and � as before and set

↵ := n(0)1/4.

Then, under the assumption that n 2 C2[0, 1], we have that

z(�) =
1

↵k

2

4sin(k�) +
�Z

0

K(�, t) sin(kt)dt

3

5 , (6.12)

z0(�) =
1

↵k

2

4k cos(k�) +K(�, �) sin(k�) +

�Z

0

K⇠(�, t) sin(kt) dt

3

5 (6.13)

and note the z(�) and z0(�) are both entire functions of type � as a function of k.



198 Chapter 6. Inverse Spectral Problems for Transmission Eigenvalues

Since z(⇠) = n(r)1/4y(r) we have that

y(1) =
z(�)

n(1)1/4
,

y0(1) = n(1)1/4z0(�)�
n0(1)

4n(1)
y(1),

and hence

d(k) =


cos(k)

n(1)1/4
+

n0(1)

4n(1)

sin(k)

k

�
z(�)� n(1)1/4

sin(k)

k
z0(�).

Integrating by parts in (6.12) we have that

z(�) =
1

↵k

2

4sin(k�)�K(�, �)
cos(k�)

k
+

�Z

0

Kt(�, t)
cos(kt)

k
dt

3

5 ,

and thus in terms of the kernel function K(⇠, t) we have from (6.13) that

d(k) =

✓
cos(k)

↵ k n(1)1/4
+

n0(1)

4↵n(1)

sin(k)

k2

◆

·

0

@sin(k�)�K(�, �)
cos(k�)

k
+

�Z

0

Kt(�, t)
cos(kt)

k
dt

1

A

�
n(1)1/4 sin(k)

↵k

2

4k cos(k�) +K(�, �) sin(k�) +

�Z

0

K⇠(�, t) sin(kt) dt

3

5 .

Setting
D(k) := ↵n(1)1/4 k d(k)

we can now arrive at the formula

D(k) = cos(k) sin(k�)�
p
n(1) sin(k) cos(k�) +H(k), (6.14)

where

H(k) :=

✓
n0(1)

4[n(1)]3/4
�

p
n(1)K(�, �)

◆
sin(k) sin(k�)

k
�K(�, �)

cos(k) cos(k�)

k

�
n0(1)

4[n(1)]3/4
K(�, �)

sin(k) cos(k�)

k2
+

cos(k)

k

�Z

0

Kt(�, t) cos(kt)dt

� [n(1)]1/2
sin(k)

k

�Z

0

K⇠(�, t) sin(kt)dt+
n0(1)

4[n(1)]3/4
sin(k)

k2

�Z

0

Kt(�, t) cos(kt)dt.

Using the representation (6.14) we intend to show that if n(1) = 1, n0(1) = 0, n00(1) 6=
0, and � 6= 1, then there exist an infinite number of complex transmission eigenvalues, i.e.,
an infinite number of complex zeros of d(k). However, in order to do this we must first
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collect a number of results from the theory of entire functions of exponential type. Our
first result is the celebrated Paley–Wiener Theorem [117], [173].

Theorem 6.6 (Paley–Wiener Theorem). The entire function f(z) is of exponential type
less than or equal to ⌧ and belongs to L2 on the real axis if and only if

f(z) =

⌧Z

�⌧

'(t)eizt dt

for some ' 2 L2(�⌧, ⌧). f(z) is of type ⌧ if '(t) does not vanish in a neighborhood of ⌧
or �⌧ .

We say that an entire function belongs to the Paley–Wiener class if it has the represen-
tation given in the Paley–Wiener Theorem.

For future reference we note that

⌧Z

0

 (t) sin(zt) dt

can be expressed as
⌧Z

�⌧

�(t)eizt dt

for some function �(t) defined for t 2 [�⌧, ⌧ ] if  (t) is extended onto the interval [�⌧, 0]
in an appropriate fashion.

Now let n+(r) denote the number of zeros of an entire function f(z) in the right half-
plane for |z|  r (one can also define a corresponding function n�(r) for zeros in the left
half-plane). We then have the following theorem [117].

Theorem 6.7 (Cartwright–Levinson Theorem). Let the entire function f(z) of expo-
nential type be such that

(a)

1Z

�1

log+ |f(x)|

1 + x2
dx < 1

and suppose that

(b) lim
y!±1

log |f(iy)|

|y|
= ⌧.

Then

lim
r!1

n+(r)

r
=
⌧

⇡
.

The limit ⌧/⇡ is called the density of the zeros of f(z) in the right half-plane.

Corollary 6.8. Let f(z) be an entire function that is in the Paley–Wiener class of type at
most ⌧ . Suppose xf(x) = sin(⌧x) + O

�
1
x

�
as x tends to infinity on the real axis. Then

f(z) is of type ⌧ .
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Proof. The density of the positive zeros of f(z) is ⌧/⇡. Therefore the type of f(z) must
be at least ⌧ and so it equals ⌧ .

Armed with the above tools from the theory of entire functions, we now return to (6.14)
and use this representation to prove the following theorem [71].

Theorem 6.9. Suppose the refractive index n 2 C3 [0, 1] is such that n000 is absolutely
continuous with n(1) = 1, n0(1) = 0, n00(1) 6= 0, and � 6= 1. Then the entire function
D(k) has infinitely many nonreal zeros and infinitely many real zeros.

Proof. From (6.14) and the fact that n(1) = 1 and n0(1) = 0 we have that

D(k) = sin ((� � 1)k)�K(�, �)
cos ((� � 1)k)

k

+
cos k

k

�Z

0

Kt(�, t) cos (kt) dt�
sin k

k

�Z

0

K⇠(�, t) sin (kt) dt.

An integration by parts on the last two integrals and using the fact that K⇠(�, 0) = 0 shows
that

D(k) = sin ((� � 1)k)�K(�, �)
cos ((� � 1)k)

k

+Kt(�, �)
cos k sin (k�)

k2
+K⇠(�, �)

sin k cos (k�)

k2

�
cos k

k2

�Z

0

Ktt(�, t) sin(kt) dt�
sin k

2k2

�Z

0

K⇠t(�, t) cos(kt) dt.

In the above expression the terms of order 1/k2 can be rewritten as

Kt(�, �)

2k2
[sin((� + 1)k) + sin((� � 1)k)]

+
K⇠(�, �)

2k2
[sin((� + 1)k)� sin((� � 1)k)] .

Hence, by Corollary 6.8, kD(k), and hence D(k), is an entire function of exponential type
� + 1 if the coefficient of sin ((� + 1)k) is nonzero. This coefficient is

Kt(�, �) +K⇠(�, �)

2k2
,

and since

K(⇠, ⇠) =
1

2

⇠Z

0

p(s) ds

for 0  ⇠  � we have that

Kt(�, �) +K⇠(�, �)

2
=

1

4
p(�).

From (6.9) we see that p(�) = 1
4n

00(1) since n(1) = 1 and n0(1) = 0. In summary, under
the assumptions of the theorem, the asymptotic expansion of D(k) has the form (for k on
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the real axis)

D(k) = sin ((� � 1)k)�
1

2k

�Z

0

p(s) ds cos ((� � 1)k)

+
Kt(�, �)�K⇠(�, �)

2k2
sin ((� � 1)k) +

n00(1)

16k2
sin ((� + 1)k) +O

✓
1

k3

◆
.

If n00(1) 6= 0, then D(k) is of exponential type �+1. Since the leading term sin ((� � 1)k)
generates an infinite set of positive real zeros with density equal to |1� �| /⇡ while the
density of all the zeros in the right half-plane equals (�+1)/⇡, we have by the Cartwright–
Levinson theorem that in addition to the infinite set of positive real zeros there exist an
infinite number of nonreal zeros in the right half-plane.

6.2 Spherically Stratified Media with All Eigenvalues
We return to the inverse problem for (6.1)–(6.4) but no longer assume that the transmission
eigenfunctions are spherically symmetric. In this case, we will show that the transmission
eigenvalues uniquely determine n(r), provided n(0) is known but without assuming that
0 < n(r)  1 as in Theorem 6.5. More specifically we consider the interior transmission
eigenvalue problem (6.1)–(6.4), where B := {x : |x| < 1}, and assume that either 0 <
n(r)  1 or n(r) � 1 for 0  r  1, and n 2 C2[0, 1).

Introducing spherical coordinates (r, ✓,'), we look for solutions of (6.1)–(6.4) in the
form

v(r, ✓) = a`j`(kr)P`(cos ✓),

w(r, ✓) = b`y`(r)P`(cos ✓),

where P` is Legendre’s polynomial, j` is a spherical Bessel function, a` and b` are con-
stants, and y` is a solution of

y00
`
+

2

r
y0
`
+

✓
k2n(r)�

`(`+ 1)

r2

◆
y` = 0

for r > 0 such that y`(r) behaves like j`(kr) as r ! 0, i.e.,

lim
r!0

r�`y`(r) =

p
⇡k`

2`+1�(`+ 3/2)
.

From [69, Section 9.4, in particular Theorem 9.9], we can deduce that k is a (possibly
complex) transmission eigenvalue if and only if

d`(k) = det

0

@
y`(1) �j`(k)

y0
`
(1) �kj0

`
(k)

1

A = 0 (6.15)

and that, for k > 0, d`(k) has the asymptotic behavior

d`(k) =
1

k [n(0)]`/2+1/4
sin k

0

@1�

1Z

0

[n(r)]1/2dr

1

A+O

✓
ln k

k2

◆
. (6.16)
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G(r, r, k) =
k2

2r

rZ

0

⇢m(⇢)d⇢

Domain where
L(G) = 0 (see (6.18))

r = s
r

s

G(0, s, k) = 0

Figure 6.1. Configuration of the Goursat problem.

From [77, pp. 45–50], we can represent y`(r) in the form

y`(r) = j`(kr) +

rZ

0

G(r, s, k)j`(ks)ds, (6.17)

where G(r, s, k) satisfies the Goursat problem

r2

@2G

@r2
+

2

r

@G

@r
+ k2n(r)G

�
= s2


@2G

@s2
+

2

s

@G

@s
+ k2G

�
, (6.18)

G(r, r, k) =
k2

2r

rZ

0

⇢m(⇢)d⇢, (6.19)

G(r, s, k) = O
⇣
(rs)1/2

⌘
, (6.20)

and m := 1 � n (see Figure 6.1). It is shown in [77] that G can be solved by iteration, is
an even function of k, and is an entire function of exponential type satisfying

G(r, s, k) =
k2

2
p
rs

p
rsZ

0

⇢m(⇢) d⇢
�
1 +O(k2)

�
. (6.21)

Note that, in contrast to the kernel K(s, t) of Section 6.1, G(r, s, k) depends on k.
We now return to the determinant (6.15) and compute the coefficient c2`+2 of the term

k2`+2. A short computation using (6.15), (6.17), (6.21), and the order estimate

j`(kr) =

p
⇡(kr)`

2`+1�(`+ 3/2)

�
1 +O(k2r2)

�
(6.22)

shows that

c2`+2


2`+1�(`+ 3/2)

p
⇡

�2
=

1Z

0

d

dr

0

B@
1

2
p
rs

p
rsZ

0

⇢m(⇢) d⇢

1

CA

r=1

s` ds (6.23)

� `

1Z

0

1

2
p
as

p
asZ

0

⇢m(⇢) d⇢ s` ds+
1

2

1Z

0

⇢m(⇢) d⇢.
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After a rather tedious calculation involving a change of variables and interchange of orders
of integration, the identity (6.23) remarkably simplifies to

c2`+2 =
⇡a2

2`+1�(`+ 3/2)

1Z

0

⇢2`+2 m(⇢) d⇢. (6.24)

We now note that j`(r) is odd if ` is odd and even if ` is even. Hence, since G is an even
function of k, we have that d`(k) is an even function of k. Furthermore, since both G
and j` are an entire function of k of exponential type, so is d`(k). From the asymptotic
behavior of d`(k) for k ! 1, i.e., (6.16), we see that the rank of d`(k) is one, and hence
by Hadamard’s factorization theorem

d`(k) = k2`+2ea`k+b`

1Y

n = �1
n 6= 0

✓
1�

k

kn`

◆
ek/kn` ,

where a`, b` are constants or, since d` is even,

d`(k) = k2`+2c2`+2

1Y

n=1

✓
1�

k2

k2
n`

◆
, (6.25)

where c2`+2 is a constant given by (6.24) and kn` are zeros in the right half-plane (possibly
complex). In particular, kn` are the (possibly complex) transmission eigenvalues in the
right half-plane. Thus if the transmission eigenvalues are known, so is

d`(k)

c2`+2
= k2`+2

1Y

n=1

✓
1�

k2

k2
n`

◆

as well as (from (6.16)) a nonzero constant �` independent of k such that

d`(k)

c2`+2
=
�`
k

sin k

0

@1�

1Z

0

[n(r)]1/2 dr

1

A+O

✓
ln k

k2

◆
,

i.e.,
1

c2`+2 [n(0)]
`/2+1/4

= �`.

From (6.24) we now have
1Z

0

⇢2`+2 m(⇢) d⇢ =

�
2`+1�(`+ 3/2)

�2

[n(0)]`/2+1/4 �`⇡
.

If n(0) is given, then m(⇢) is uniquely determined by Müntz’s theorem [173]. (Note that
by Müntz’s theorem the transmission eigenvalues are only needed for a subset {`j} such
that

P
1

j=1
1
`j

= 1.)

Theorem 6.10. Assume that n(r) 2 C2[0, 1), that 0 < n(r)  1 or n(r) � 1, and
that n(0) is given. Then n(r) is uniquely determined from a knowledge of the transmission
eigenvalues corresponding to (6.1)–(6.4) for B := {x : |x| < 1}.

Remark 6.11. In the case when 0 < n(r)  1 it can be shown that n(r) can be uniquely
determined from knowledge of the transmission eigenvalues for a single fixed ` without
knowing n(0) [172].





Chapter 7

Nonscattering Wave
Numbers

The transmission eigenvalue problem has played a central role in all of the previous chap-
ters. As the reader has seen by now, transmission eigenvalues are intrinsic to scattering
phenomena and play a fundamental role in the solution of inverse scattering problems.
The transmission eigenvalue problem first appeared in connection with the study of the
injectivity of the far field operator Fk : L2(S 2) ! L2(S 2) (see Section 1.2.1; note here we
indicate the dependence on k of the far field operator). The wave numbers k > 0 for which
the far field operator is not injective are referred to as nonscattering wave numbers (see
Theorem 1.16). In particular, at a nonscattering wave number k > 0 corresponding to an
inhomogeneity (n,D) there is a Herglotz wave function vg with some density g 2 L2(S2)
given by (1.31) which does not scatter by this medium. The nonscattering wave numbers
form a subset of transmission eigenvalues. A transmission eigenvalue k is a nonscattering
wave number if the v part of the corresponding eigenfunction (w, v) in (3.2) has the form
of a Herglotz wave function. Thus a real transmission eigenvalue is not necessarily a non-
scattering wave number, and it is desirable to understand which (if any) are. This chapter
explores precisely this question for the case of isotropic media. For the case of anisotropic
media we refer the reader to [56], [57], [171].

Conceptually, a nonscattering wave number is in relation to a probing experiment. For
instance, in the definition of nonscattering frequencies one could consider other types of
incident waves, such as plane waves, point sources, surface potentials, etc. For the given
inhomogeneity (n,D), one then specifies that k is a nonscattering wave number associ-
ated with the particular incident wave. By this definition a nonscattering wave number
for a given inhomogeneity (n,D) would correspond to a transmission eigenvalue k for
which there exists an incident wave ui with wave number k that renders the inhomogene-
ity invisible. We emphasize on the other hand that transmission eigenvalues are solely
the property of the inhomogeneity (n,D) (i.e., do not depend on any probing incident
wave). In addition, there exist infinitely many transmission eigenvalues, and the real ones
can be determined from appropriate scattering data. Thus, as has become clear throughout
this monograph, transmission eigenvalues and the spectral properties of the transmission
eigenvalue problem are of central importance in the solution of the inverse scattering prob-
lem. Nevertheless, to understand whether a given inhomogeneity (n,D) admits an incident
wave at a particular (nonscattering) wave number that is not scattered has its own mathe-
matical interest, and it connects to corner singularity analysis as well as the regularity of
free boundary problems. It will become clear in this chapter that a negative answer to the
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existence of nonscattering wave numbers can be given independently of the nature of the
incident wave and is only related to a lack of sufficient regularity of the support D and re-
fractive index n. A negative answer also provides a mathematical tool to prove uniqueness
theorems in inverse scattering.

7.1 The Case of Spherically Stratified Media
In this section we look at the particular case where the relation between transmission eigen-
values and nonscattering wave numbers becomes explicit. This is the case when the inho-
mogeneity D := B1(0) is the ball of radius 1 centered at the origin with radially symmet-
ric real valued refractive index n(r) > 0, r = |x|, and assume throughout this section that
n 2 C[0, 1] and

1Z

0

[n(r)]1/2dr 6= 1.

Let us consider the incident fields that are entire solutions of the Helmholtz equation given
by

ui = j`(k|x|)Y`(x̂), (7.1)

where j` is a spherical Bessel function and Y` is a spherical harmonic of order ` 2 N
(note that Y` denotes one of the (2`+1) linearly independent spherical harmonics Y m

`
for

m = �`, . . . , ` corresponding to some ` 2 N (see, e.g., Section 2.3 in [69]). Note that these
incident fields are examples of Herglotz wave functions given by (1.31). Straightforward
calculation by separation of variables leads to the following expression for the scattered
field outside B:

us(x) :=
C`(k;n)

W`(k;n)
h(1)
`

(k|x|)Y`(x̂), |x| > 1, (7.2)

where h(1)
`

(r) is a Hankel function of the first kind of order ` and

C`(k;n) = Det
✓

y`(1) �j`(k)
y0
`
(1) �kj0

`
(k)

◆
, (7.3)

W`(k;n) = Det

 
y`(1) �h(1)

`
(k)

y0
`
(1) �kh(1)0

`
(k)

!
(7.4)

with y` (depending on k and n) being the solution to

y00
`
+

2

r
y0
`
+

✓
k2n(r)�

`(`+ 1)

r2

◆
y` = 0

that behaves like j`(kr) as r ! 0 (see Section 6.2).
Obviously, nonscattering wave numbers associated with the incident wave (7.1) cor-

respond to those values of k 2 C for which C`(k;n) = 0. The asymptotic expression
(6.16) shows that there are infinitely many real zeros of C`(k;n) = 0 (note that C`(k;n) is
denoted by d`(k) in (6.16)). Hence for given inhomogeneity B1(0), n(r) associated with
each incident wave (7.1) there are infinitely many nonscattering wave numbers. In fact
each of these nonscattering wave numbers is associated with at least 2`+1 incident waves
(corresponding to 2`+ 1 different spherical harmonics Y`(x̂)).
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On the other hand, if k 2 C is such that C`(k;n) = 0, we observe that v(x) :=
j`(k|x|)Y`(x̂) and w`(x) = y`(|x|)Y`(x̂) for x 2 B1(0) solve the transmission eigenvalue
problem

�w + k2n(r)w = 0 and �v + k2v = 0 for r < 1,

w = v and
@w

@r
=
@v

@r
for r = 1,

where r = |x|, i.e., such a k is a transmission eigenvalue. Conversely, separating vari-
ables in the above transmission eigenvalue problem, we obtain that k is a transmission
eigenvalue if and only if C`(k;n) = 0 with the corresponding transmission eigenfunc-
tions being constant multiplications of v(x) := j`(k|x|)Y`(x̂) and w`(x) = y`(|x|)Y`(x̂).
Therefore we conclude that for spherically stratified media the set of nonscattering wave
numbers and transmission eigenvalues coincide. Furthermore, since the v part of the trans-
mission eigenfunction corresponding to a transmission eigenfunction can only be finite
linear combinations of v(x) := j`(k|x|)Y`(x̂) (because due to the Fredholm property the
transmission eigenspace is of finite dimension provided n(1) 6= 1; see Section 3.1), we
conclude that in this case the nonscattering incident waves are only Herglotz wave func-
tions (1.31). A nonscattering wave number is associated with only finitely many incident
waves.

The above discussion is a feature of spherical symmetry of the scattering media. In-
deed, in [168] it is shown that the existence of infinitely many nonscattering wave numbers
associated with Herglotz wave functions is unstable with respect to perturbations of spher-
ical symmetry. More specifically, it is proven that in R2 for any ellipse of sufficiently small
(but nonzero) eccentricity with constant refractive index 0 < n 6= 1, there exist at most
(possibly none) finitely many positive wave numbers k > 0 associated with incident Her-
glotz wave functions vg with smooth densities g that can be nonscattering. Note that from
Theorem 4.12 we know that for such elliptic inhomogeneities there exist infinitely many
transmission eigenvalues.

7.2 On the Nonexistence of Nonscattering Wave
Numbers

Throughout this section we assume that the boundary @D of the support of the inhomo-
geneity is Lipschitz and the refractive index n 2 L1(D) is a positive real valued function.
Let ⌦ be an open region in R3 such that ⌦ � D. To study the existence of nonscatter-
ing wave numbers in a framework independent of a particular probing wave it suffices to
consider the following problem: Find a compactly supported solution u to

�u+ k2nu = k2(1� n)v in ⌦, (7.5)
�v + k2v = 0 in ⌦, (7.6)

u ⌘ 0 in ⌦ \D. (7.7)

Note that in a scattering experiment v := ui
|⌦, where the ui is the incident wave and

v always satisfies the Helmholtz equation in a domain containing the inhomogeneity in
its interior. Here u ⌘ 0 in ⌦ \ D means that the scattered field is zero outside of the
inhomogeneity, and if the above problem has a solution, it means that ui is not scattered.
If (7.5)–(7.7) does not have a solution for nonzero v and any k, then this inhomogeneity
does not admit nonscattering wave numbers.
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Since @D is Lipschitz the above problem can be reformulated as follows: Find u 2

H2
0 (D) that satisfies

�u+ k2nu = k2(1� n)v in D, (7.8)

�v + k2v = 0 in ⌦, (7.9)

assuming v is nontrivial. Note the fundamental point here is that v satisfies the Helmholtz
equation in an open region containing D. For this reason (7.8)–(7.9) is overdetermined. We
remind the reader that if v 2 L2(D) satisfies (7.9) only in D, the above problem becomes
the transmission eigenvalue problem.

In the following we explore sufficient conditions on D and n for which (7.8)–(7.9)
does not have solutions. The approach we present next follows [55]. The analysis relies on
viewing the boundary with vanishing Cauchy data as a free boundary, and applying the free
boundary regularity results in [28], [107] for second order elliptic equations. Connecting
the nonscattering configuration of a given inhomogeneity to the regularity of free boundary
problems, we examine necessary conditions for an inhomogeneity to be nonscattering, or
equivalently, by negation, sufficient conditions for it to be scattering. These conditions are
formulated in terms of the regularity of the boundary and the refractive index of the inho-
mogeneity. There is a striking similarity in the mathematical structure of the problem of
nonscattering inhomogeneities and the problem of domains that do not possess the Pom-
peiu property [15, 167]. Regularity properties of the latter are established in [170], and the
analysis here follows part of this work.

7.2.1 A Free Boundary Regularity Result

We start by presenting two main classical results on the regularity of free boundary prob-
lems. With a(x) = k2n(x) and b(x) = k2(1�n(x))v(x), the problem (7.5)–(7.7) becomes

�u+ a(x)u = b(x) in D, (7.10)

u =
@u

@⌫
= 0 on @D. (7.11)

In the analysis below we make use of two classical free boundary regularity results. The
first one is due to Kinderlehrer and Nirenberg in [107]. In [107] the theorem is proven
for more general nonlinear second order elliptic partial differential operators, but in the
following we state it as it applies to our linear equation (7.10).

Theorem 7.1. Suppose that 0 2 @D, and @D \BR(0) is of class C1 for some ball BR(0)
of radius R centered at 0. Suppose a and b are real valued functions in C1(D \ BR(0))
with a(0) 6= 0 and b(0) 6= 0. Furthermore suppose there exists a real valued solution u to
(7.10)–(7.11), with u 2 C2(D \BR(0)). Then the following hold:

1. @D \BR0(0) is of class C1,↵ for every positive ↵ < 1 and some R0 < R.

2. If additionally a 2 Cm,µ(D \ BR(0)) and b 2 Cm,µ(D \ BR(0)) for m � 1,
0 < µ < 1, then @D \BR0(0) is of class Cm+1,µ for some R0 < R.

3. If a and b are real analytic in D \ BR(0), then @D \ BR0(0) is real analytic for
some R0 < R.
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Remark 7.2. The regularity of the free boundary is a local property. Correspondingly,
the result of Theorem 7.1 holds for u solving (7.10) in D \ BR(0) with zero Cauchy data
(7.11) only on @D \BR(0). However, in our particular applications the solution u will be
defined on all of D.

We initially assume that @D is only Lipschitz regular. In order to apply Theorem 7.1
we must first show that the free boundary @D\BR(0) is indeed C1 and then verify that the
solution u to (7.10)–(7.11) is in C2(D \ BR(0)). This intermediate regularity is achieved
with the help of a classical result on regularity of the free boundary due to Caffarelli [28],
which we state in the following theorem, modified to the framework of our problem. This
result refers to a function w that satisfies

�w = g in D \BR(0), such that w =
@w

@⌫
= 0 on @D \BR(0), (7.12)

where again 0 2 @D and BR(0) is some ball of radius R centered at 0.

Theorem 7.3. Suppose that @D \ BR(0) is Lipschitz and the function w satisfying (7.12)
is in C1,1(D \ BR(0)). Furthermore, assume that w  0 in D \ BR(0), and g has a
C1-extension g⇤ in a neighborhood of D \ BR(0) such that g⇤  �↵ < 0. Then there
exists R0 < R such that @D \ BR0(0) is of class C1 and all second derivatives of w are
continuous up to @D \BR0(0), i.e., w 2 C2(D \BR0(0)).

The first obstacle to the application of Theorem 7.3 is to verify that the H2
0 (D) solution

u to (7.5)–(7.7) has all second derivatives uniformly bounded in D \ BR(0). For this
purpose, we will make use of the following auxiliary result on the regularity of a volume
potential. Let us consider

�(x, y) :=
1

4⇡|x� y|

the free space fundamental solution to the Laplace operator. For later use we note the
following estimates:

����
@�

@xj

(x, y)

���� 
C

|x� y|2
, 1  j  3, and

����
@2�

@xi@xj

(x, y)

���� 
C

|x� y|3
, 1  i, j  3.

Regularity results for the volume potential

w (x) =

Z

D

 (y)�(x, y) dy

play an important role in our analysis. Lemma 3.7 in [114] proves that for  2 L1(D) we
have that w 2 C1(R3) and

@w 
@xj

(x) =

Z

D

 (y)
@�

@xj

(x, y) dy, x 2 R3, j = 1, . . . , 3.

Furthermore, all second derivatives of w exist for x 2 R3
\D and one can differentiate
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twice inside the integral to obtain

@2w

@xi@xj

(x) =

Z

D

 (y)
@2�

@xi@xj

(x, y) dy (7.13)

=

Z

D

[ (y)�  (x)]
@2�

@xi@xj

(x, y) dy +  (x)

Z

D

@2�

@xi@xj

(x, y) dy

=

Z

D

[ (y)�  (x)]
@2�

@xi@xj

(x, y) dy �  (x)

Z

@D

@�

@xj

(x, y)⌫i(y) ds(y) ,

provided  extends into R3
\ D. Here the last integral over @D is obtained by using the

divergence theorem (the minus sign arises when one replaces an xi derivative with a yi
derivative). Note that the unit outward normal vector ⌫ = (⌫i)i=1,3 is well defined for
almost all y 2 @D. We show next that if  , in addition to being bounded on D, is in
C↵(BR(0)), then (7.13) holds true for x 2 D \BR(0). To this end, we set

dij(x) :=

Z

D

[ (y)�  (x)]
@2�

@xi@xj

(x, y) dy �  (x)

Z

@D

@�

@xj

(x, y)⌫i(y) ds(y) .

Note that dij(x) is well defined for x 2 D \ BR(0), since for  2 C↵(BR(0)) the
integrand inside the volume integral behaves as

����[ (y)�  (x)]
@2�

@xi@xj

(x, y)

����  C|x� y|↵�3 for y near x (7.14)

and is bounded for y away from x; the surface integral exists since x is not on @D. Now
we choose 2✏ < dist(x, @D) and again consider a smooth cutoff function ⇠ such that
0  ⇠(t)  1, ⇠(t) = 1 for t � 2, and ⇠(t) = 0 for t  1. Set

dj,✏(x) :=

Z

D

 (y)⇠(|x� y|/✏)
@�

@xj

(x, y) dy .

We obtain

@dj,✏
@xi

(x) =

Z

D

[ (y)�  (x)]
@

@xi

✓
⇠(|x� y|/✏)

@�

@xj

(x, y)

◆
dy

�  (x)

Z

@D

@�

@xj

(x, y)⌫i(y) ds(y) ,

and therefore
����dij(x)�

@dj,✏
@xi

(x)

����  C

Z

|y�x|2✏

✓
1

|y � x|3
+

k⇠0k1
✏|y � x|2

◆
|y � x|↵dy

= C

2✏Z

0

✓
1

r1�↵
+

k⇠0k1
✏

r↵
◆

dr  C✏↵ .

Hence, as ✏ ! 0, dj,✏(x) converges to @w 

@xj
(x) and @dj,✏

@xi
(x) converges to dij(x), both

uniformly on compact subsets of D\BR(0). Thus dij(x) =
@
2
w 

@xi@xj
(x) for x 2 BR(0)\D.
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Let us note that even for smooth  , but with  6= 0 on @D, the second derivatives
of w may become unbounded as x approaches a boundary point from either inside or
outside D. Thus the volume potential is not necessarily in C2(D \ BR(0)). However,
one can show that symmetric jumps of the second derivative (to become precise later) are
uniformly bounded near 0 2 @D when  2 C↵(BR(0)) for 0 < ↵ < 1. A similar result
is proven in [170] for  ⌘ 1. The proof of Lemma 7.4 below is in many ways very similar
to that in [170].

First we introduce some notation. Denote x := (x̃, x3) 2 R3, where x̃ := (x1, x2) 2
R2, and consider a cylindrical neighborhood of 0 defined by N := N(⇢, h) = B̃⇢(0) ⇥
[�h, h], where B̃⇢(0) is the (m � 1)-dimensional ball of radius ⇢ centered at the origin.
We assume that B2r(0) ⇢ N ⇢ N ⇢ BR(0). Furthermore, we assume (by appropriate
rotation and selection of ⇢ and h) that N \ @D is the graph x3 = f(x̃) of a Lipschitz
continuous function f : B̃⇢(0) ! R with Lipschitz constant K. We also assume that
h > K⇢ and

N \D =
n
(x̃, x3) : x̃ 2 B̃⇢(0), f(x̃) < x3 < h

o
.

Finally we denote by e3 the unit vector in the direction of the third variable. We can now
prove the following lemma.

Lemma 7.4. Assume that  2 C↵(BR(0)) for 0 < ↵ < 1, in addition to being bounded
on D. Then there exists r > 0 so that the symmetric jumps

@2w 
@xi@xj

(x+ ⌘e3)�
@2w 
@xi@xj

(x� ⌘e3), 1  i, j  3,

across the boundary at x are uniformly bounded with respect to 0 < ⌘  r and x 2

@D \Br(0).

Proof. Using (7.13), outside and inside D, we write

@2w 
@xi@xj

(x+ ⌘e3)�
@2w 
@xi@xj

(x� ⌘e3)

=

Z

D

[ (y)�  (x+ ⌘e3)]
@2�

@xi@xj

(x+ ⌘e3, y) dy

�

Z

D

[ (y)�  (x� ⌘e3)]
@2�

@xi@xj

(x� ⌘e3, y) dy

�  (x+ ⌘e3)

Z

@D

@�

@xj

(x+ ⌘e3, y)⌫i(y) ds(y)

+  (x� ⌘e3)

Z

@D

@�

@xj

(x� ⌘e3, y)⌫i(y) ds(y)

for x 2 @D \ Br(0). In the above integral expressions the part of the integrals taken
over D \ BR(0) and @D \ BR(0) are uniformly bounded with respect to ⌘ in [0, r] and
for all x 2 @D \ Br(0). So it suffices to consider only the integrals over BR(0) \ D
and BR(0) \ @D. Next we have the following estimates for the integrands of the volume
integrals:
����[ (y)�  (x± ⌘e3)]

@2�

@xi@xj

(x± ⌘e3, y)

����  C|x± ⌘e3 � y|↵�3 , y 2 BR(0),
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for x 2 @D \ Br(0) and ⌘ < r (note that x ± ⌘e3 2 B2r(0) ⇢ BR(0)). Therefore the
integrals over D \ BR(0) are bounded uniformly in ⌘ 2 [0, r] and x 2 @D \ Br(0). Let
us consider the boundary integral term

 (x+ ⌘e3)

Z

@D\BR(0)

@�

@xj

(x+ ⌘e3, y)⌫i(y) ds(y)

� (x� ⌘e3)

Z

@D\BR(0)

@�

@xj

(x� ⌘e3, y)⌫i(y) ds(y) for 1  i, j  3.

The above expression can be written as

I1 + I2 + I3,

where
I1 :=

Z

@D\BR(0)

[ (x+ ⌘e3)�  (y)]
@�

@xj

(x+ ⌘e3, y)⌫i(y) ds(y),

I2 :=

Z

@D\BR(0)

[ (y)�  (x� ⌘e3)]
@�

@xj

(x� ⌘e3, y)⌫i(y) ds(y),

and

I3 :=

Z

@D\BR(0)


@�

@xj

(x+ ⌘e3, y)�
@�

@xj

(x� ⌘e3, y)

�
 (y)⌫i(y) ds(y).

Using the fact that  2 C↵(BR(0)), and that z := x ± ⌘e3 2 B2r(0) ⇢ N for x 2

@D \Br(0) and ⌘ < r, we obtain

|I1,2|  C1

Z

@D\BR(0)

1

|(x± ⌘e3)� y|2�↵
ds(y) = C + C1

Z

@D\N

1

|z � y|2�↵
ds(y)

 C + C2

Z

B̃⇢(0)

1

|z̃ � ỹ|2�↵
p

1 + |rf(ỹ)|2 dỹ

 C + C3

Z

B̃⇢(0)

1

|z̃ � ỹ|2�↵
dỹ.

Note that by Rademacher’s theorem rf(ỹ) is well defined and is bounded at all points in
ỹ 2 B̃⇢(0) except for a subset of Lebesgue measure zero. Hence I1,2 are also bounded
uniformly in ⌘ 2 [0, r] and x 2 @D \ Br(0). To prove our lemma it thus suffices to
estimate the term I3 with the symmetric jumps. We provide the details for x = 0. For x
near 0 (i.e., in @D \Br(0)) the same approach works with obvious modifications. Since

@�(x, y)

@xj

=
�(xj � yj)

2⇡|x� y|3
, j = 1, . . . , 3,

the integrals we need to study take the form
Z

B̃⇢(0)

"
yj

(|ỹ|2 + (f(ỹ)� ⌘)2)3/2
�

yj

(|ỹ|2 + (f(ỹ) + ⌘)2)3/2

#
F (ỹ)dỹ
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for j = 1, . . . , 2 and
Z

B̃⇢(0)

"
(f(ỹ)� ⌘)

(|ỹ|2 + (f(ỹ)� ⌘)2)3/2
�

(f(ỹ) + ⌘)

(|ỹ|2 + (f(ỹ) + ⌘)2)3/2

#
F (ỹ)dỹ

for j = m. Here

F (ỹ) :=
q
1 + |rf(y(m�1))|2  (ỹ, f(ỹ)) ⌫i(ỹ, f(ỹ)

is a function in L1(B̃⇢(0)), and hence there is a C > 0 such that |F (ỹ)|  C for almost
all ỹ 2 B̃⇢(0). In order to estimate the above integrals it therefore suffices to estimate

Z

B̃⇢(0)

�����
yj

(|ỹ|2 + (f(ỹ)� ⌘)2)3/2
�

yj

(|ỹ|2 + (f(ỹ) + ⌘)2)3/2

����� dỹ (7.15)

for j = 1, 2 and
Z

B̃⇢(0)

�����
(f(ỹ)� ⌘)

(|ỹ|2 + (f(ỹ)� ⌘)2)m/2
�

(f(ỹ) + ⌘)

(|ỹ|2 + (f(ỹ) + ⌘)2)m/2

����� dỹ. (7.16)

In fact these are exactly the integrands estimated in [170] using simple algebraic manipu-
lations (see also Appendix A.1 in [55]). Upon substitution of ỹ = ⌘ũ these calculations
imply that the integrals (7.15) and (7.16) are bounded by

Z

B̃⇢/⌘(0)

1

(|ũ|2 + 1)3/2
dũ < +1,

uniformly in 0 < ⌘  r, and x 2 @D \ Br(0). This completes the proof of Lemma 7.4.

7.2.2 Regularity Results for Nonscattering Inhomogeneities
In the proof of the main results concerning regularity properties of inhomogeneities that
may admit nonscattering wave numbers, we shall make use of a regularity result about
H2

0 (D) solutions to (7.5)–(7.7). A central ingredient in the proof of this regularity result is
the regularity analysis for the volume potential found in the previous section.

Proposition 7.5. Assume that @D is Lipschitz, 0 2 @D, and the refractive index is given
by n 2 L1(D). Furthermore, we assume that n 2 C↵(D \ BR(0)) for some ball BR(0)
of radius R centered at 0 and some 0 < ↵  1. Then u 2 H2

0 (D) that satisfies (7.5)–
(7.7) lies in C1(D) and has all its second derivatives

n
@
2
u

@xi@xj

o
, i, j = 1, 2, 3, uniformly

bounded in D \Br(0) for some r > 0.

Proof. First we remark that the incident field v is real analytic in D, as it is an L2-solution
of the Helmholtz equation in a region containing D. Introduce the function

U(x) =

(
u(x) for x 2 D ,

0 for x 2 R3
\D .
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This function is in H2(R3) (since u 2 H2
0 (D)). Hence it follows from the Sobolev em-

bedding theorem that U 2 C↵(R3) for some 0 < ↵ < 1. U is a solution of

�U =  in R3, where  (x) =

(
 (x) for x 2 D,

0 for x 2 R3
\D

with  (x) = k2(1 � n(x))v(x) � k2n(x)u(x), x 2 D. The function  is clearly in
L1(D) and, due to the assumptions about n and v and the C↵ extendability of u, it has an
extension that lies in C↵(Br(0)). The solution U is now given by the formula

U(x) = �

Z

D

 (y)�(x, y) dy = �w (x)

with  = k2(1 � n)v � k2nu 2 L1(D) \ C↵(Br(0)). Form the above we have that
U 2 C1(R3) and, since U = 0 outside D, Lemma 7.4 implies that all second derivatives
of u are uniformly bounded in D \Br(0) for some r > 0.

Remark 7.6. In the above proof of Proposition 7.5 it is shown that U is in C1(R3); as a
consequence u has an extension (by zero) which is in C1(R3). We also note that the fact
that all second derivatives of u are shown to be uniformly bounded in D \ Br(0) implies
that u is in C1,1(D \Br(0)).

The application of Theorem 7.1 requires real valued functions. With this in mind, we
note that the real valued function w = <(u) is an H2(D) solution to

�w + k2nw = �k2(n� 1)<(v) with w =
@w

@⌫
= 0 on @D . (7.17)

Since the incident wave is an L2 solution to �v + k2v = 0 in a neighborhood of D,
it follows that <(v) is a real analytic function in D. In particular, Proposition 7.5 also
applies to w. Of course one could consider the imaginary part of the scattered field u
which satisfies the same equation as above with <(v) replaced by =(v). Accordingly, in
what follows, everything holds true if we replace <(v) by =(v).

To apply Theorem 7.1 to (7.17) we must first appeal to Theorem 7.3 in order to establish
that w 2 C2(D \ Br(0)) and that @D \ Br(0) is of class C1. Proposition 7.5 (see also
Remark 7.6) guaranties that w 2 C1,1(D\Br(0)) and that g = �k2(nw+(n�1)<(v)) has
a C1 extension to all of R3. The essential missing step for the application of Theorem 7.3
is therefore to show that w is of one sign. This is established by the following proposition.

Proposition 7.7. Assume that @D is Lipschitz, 0 2 @D, and the refractive index is given
by n 2 L1(D). Furthermore, suppose n lies in C1,1(D \ Br(0)) for some ball Br(0) of
radius r centered at 0 and suppose (n(0)� 1)<(v(0)) 6= 0. Let w 2 H2

0 (D) be a solution
to (7.17). Then w < 0 in D \Br(0) for some r > 0 if (n(0)� 1)<(v(0)) > 0, and w > 0
in D \Br(0) for some r > 0 if (n(0)� 1)<(v(0)) < 0.

Due to its technical nature we do not present the proof of Proposition 7.7. Instead we
refer the reader to the proof of Proposition 5.3 in [55], which follows almost verbatim the
analysis in [170].

We are now ready to state and prove the main results of this section. These results
are stated in terms of sufficient conditions of nonsmoothness of @D for scattering to occur
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for a given incident wave. By negation they could as well have been stated as necessary
smoothness conditions that follow from nonscattering. In the formulation of the results we
refer to the region D� ⇢ D defined by

D� := {x 2 D, dist(x, @D) < �} for some fixed � > 0.

Theorem 7.8. Let k > 0 be a fixed wave number. Assume the positive refractive in-
dex n is in L1(D) and that the boundary @D is Lipschitz. Consider an incident field
v satisfying (7.9). Assume that n is real analytic in D� and there exists x0 2 @D such
that (n(x0) � 1)v(x0) 6= 0. Assume furthermore that @D \ Br(x0) is not real analytic
for any ball Br(x0) of radius r centered at x0. Then the incident field v is scattered by
the inhomogeneity (D,n). In other words there exists no function u 2 H2

0 (D) satisfying
(7.5)–(7.7).

Proof. The proof proceeds by contradiction. Suppose the incident field v is not scattered
by (D,n). Without loss of generality we assume that (n(x0) � 1)<(v(x0)) 6= 0 and
we choose x0 to be the origin of the coordinate system (the argument works similarly if
(n(x0) � 1)=(v(x0)) 6= 0). The function w = <(u) is a solution to (7.17). Since the
incident wave is an L2 solution to �v + k2v = 0 in a neighborhood of D, it follows
that <(v) is a real analytic function on D. By assumption the refractive index n is also
real analytic on D� and so the assumptions of Propositions 7.5 and 7.7 are satisfied. In
particular, Proposition 7.5 (and the remark following) implies that w 2 C1,1(D \ Br(0))
for some ball Br(0), and that it has a C1 extension to all of R3. Proposition 7.7 implies
that w � 0 or w  0 in D \ Br(0), depending on whether (n(0) � 1)<(v(0)) < 0 or
(n(0) � 1)<(v(0)) > 0, respectively. We now introduce g := �k2(nw + (n � 1)<(v)).
Thanks to the C1 extendability of w, and the analyticity of n and <(v), the function g has
a C1-extension g⇤ in a neighborhood of D \ BR(0). Since w vanishes at @D, g(0) =
�k2(n(0)� 1)<(v(0)), and so it follows that g⇤ � � > 0 in D \Br(0) or g⇤  �� < 0
in D \ Br(0) (with r sufficiently small), depending on whether (n(0) � 1)<(v(0)) < 0
or (n(0)� 1)<(v(0)) > 0, respectively. Since w satisfies �w = g in D, the assumptions
of Theorem 7.3 are now satisfied for w if (n(0) � 1)<(v(0)) > 0, and for �w if (n(0) �
1)<(v(0)) < 0. In both cases we may therefore conclude that w 2 C2(D \ Br(0)) and
@D \Br(0) is of class C1.

We now apply Theorem 7.1. We set a(x) = k2n(x) and b(x) = k2(1�n(x))<(v(x));
then a and b are both real analytic. By assumption a(0), b(0) 6= 0 and w 2 C2(D\Br(0))
satisfies

�w + aw = b in D with w =
@w

@⌫
= 0 on @D ,

where @D \ Br(0) is known to be of class C1. The third case in Theorem 7.1 yields that
@D\Br(0) is real analytic for r sufficiently small. However, this represents a contradiction
and so we conclude that the incident field v is scattered by (D,n), thus completing the
proof of Theorem 7.8.

For less regular refractive index n there is a similar result.

Theorem 7.9. Let k > 0 be a fixed wave number. Assume the positive refractive index n is
in L1(D) and that the boundary @D is Lipschitz. Consider an incident field v satisfying
(7.9). Assume that n 2 Cm,µ(D�) \ C1,1(D�) for m � 1, 0 < µ < 1, and there exists
x0 2 @D such that (n(x0) � 1)v(x0) 6= 0. Assume furthermore that @D \ Br(x0) is not
of class Cm+1,µ for any ball Br(x0) of radius r centered at x0. Then the incident field v
is scattered by the inhomogeneity (D,n).
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Proof. The proof of this result, which applies to less regular refractive index n, can be
done in the exact same manner. The regularity result of Propositions 7.5 and 7.7 are still
applicable since we have assumed that n 2 C1,1(D�). For the free boundary regularity we
rely on case 2 of Theorem 7.1.

Remark 7.10. The smoothness assumptions on the refractive index n in Theorems 7.8 and
7.9 are only needed locally in D \BR(x0) for some ball centered at x0 of radius R > 0.

Of course Theorems 7.8 and 7.9 only add insight if the wave number k is a real trans-
mission eigenvalue (which is a necessary condition for the incident field to produce a van-
ishing scattered field). At any k other than a transmission eigenvalue every incident field
is scattered by the given inhomogeneity. However, it is important to emphasize that we do
not need to know a priori that k > 0 is a transmission eigenvalue, and therefore the results
hold under weaker conditions on the contrast than those (currently) needed to prove the
existence of real transmission eigenvalues. If k > 0 is a transmission eigenvalue, the as-
sumptions in Theorems 7.8 and 7.9 imply that the part v of the transmission eigenfunction
cannot be extended into the exterior of D as a solution of the Helmholtz equation, provided
n 6= 1 on @D and that this eigenfunction does not vanish at the point x0 2 @D. We also
remark that a more relaxed starting regularity than Lipschitz in the study of nonscattering
inhomogeneity is used in [155] based on the techniques in [4].

Theorems 7.8 and 7.9 can also be interpreted as up-to-the-boundary regularity of the v-
part of the transmission eigenfunction. Without loss of generality, we may assume that the
eigenfunction (u, v) is real valued. In general, since v assumes no boundary condition, it
is not possible from the equations to conclude any regularity for v up to the boundary. Our
free boundary regularity results provide some insight into this issue. Recall that Theorems
7.8 and 7.9 state necessary regularity conditions on @D in order that (7.9) can have an
H2

0 (D) solution (v being defined and regular in an R3 neighborhood of @D). It is clear
from the analysis that the statements of Theorems 7.8 and 7.9 are valid if v is only defined
on one side of @D and the regularity of v up to the boundary matches that of n. Also notice
that the employed arguments rely only on the local regularity of the source term (1� n)v
in D \ BR(x0). We thus have the following consequence of the proofs of Theorems 7.8
and 7.9.

Corollary 7.11. Assume k > 0 is a real transmission eigenvalue with eigenfunction (u, v),
@D is Lipschitz, n 2 L1(D), and there exists x0 2 @D such that n(x0) � 1 6= 0. The
following assertions hold:

1. If n is real analytic in a neighborhood of x0 and @D\Br(x0) is not real analytic for
any ball Br(x0), then v cannot be real analytic in any neighborhood of x0, unless
v(x0) = 0.

2. If n 2 Cm,µ(D \ BR(x0)) \ C1,1(D \ BR(x0)) for m � 1, 0 < µ < 1, and some
ball BR(x0), and @D \ Br(x0) is not of class Cm+1,µ for any ball Br(x0), then v
cannot lie in Cm,µ(D \ Br(x0)) \ C1,1(D \ Br(x0)) for any ball Br(x0), unless
v(x0) = 0.

A direct consequence of Corollary 7.11 is that at a transmission eigenvalue the part v
of the transmission eigenfunction lacks sufficient regularity near a singular boundary point
x0 unless it vanishes at this point, thus recovering similar results for the case of corners in
[16, 17].
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Remark 7.12. The nondegeneracy condition, which for our nonscattering configuration
amounts to n(x0) 6= 1 and v(x0) 6= 0 at the boundary point of interest x0 2 @D, is inherent
in the free boundary methods for obstacle problems. Unfortunately, this nonvanishing
property of the incident field v is not in general guarantied for solutions �v + k2v = 0
in ⌦ ◆ D. Obviously, incident plane waves v = eikx·d with d a unit vector, or point
sources v = e

ik|x�z|

4⇡|x�z|
with z outside ⌦, are nonvanishing incident fields, and all the above

nonscattering results apply to them. However, the superposition of plane waves, a.k.a.
Herglotz wave functions (1.31) that are related to injectivity of the far field operator Fk,
may vanish at boundary points. In the case when k2 is not a Dirichlet eigenvalue for
�� in D, in [155], using a denseness property of Herglotz wave functions in Ck(D), it
is shown that there are plenty of Herglotz wave functions that are positive on @D. Since
nonscattering wave numbers are a subset of transmission eigenvalues, the latter assumption
excludes k2 that are simultaneously transmission and Dirichlet eigenvalues, and the size of
such a set is not yet understood.

Note that in the above analysis we start with a Lipschitz domain and conclude higher
regularity of the boundary @D for the inhomogeneity to possibly be nonscattering. In
[155], the authors relax the starting Lipschitz regularity of D to merely so-called solid
body, i.e., int(D) = D. Then they conclude that a nonscattering inhomogeneity has to be
sufficiently regular as stated in Theorems 7.8 and 7.9 or the complement of D is thin near a
boundary point x0 (see Theorem 1.4 in [155] for a precise definition) such as a reentering
cusp at x0. In a follow-up paper [118], regions containing reentering cusp points on the
boundary are examined in this context.

The above results do not make any statement on the existence of nonscattering wave
numbers for inhomogeneities with analytic boundary @D other than spheres. An attempt
to construct nonspherical analytic inhomogeneities that do not scatter is made in [155].
However, from their construction it is not clear how to obtain a positive refractive index
n > 0, which is a physical requirement. We conclude this section by remarking that in
[168] it is shown that, given any smooth, strictly convex domain in R2, there exist at most
finitely many positive wave numbers k for which an (arbitrary but fixed) incident plane
wave can be nonscattering. In [19] the authors prove that inhomogeneities containing a
boundary point of high curvature (near which the inhomogeneity could be analytic) scatter
any incident field whose modulus is bounded away from zero by a constant depending on
the curvature and the value of the contrast n� 1 at this point.

7.2.3 Corners Always Scatter. A Uniqueness Theorem in Inverse
Scattering

In the case when the support D of the inhomogeneity contains a circular conical point, a
vertex, or an edge, then the set of nonscattering wave numbers is empty, provided n�1 6= 0
on the singular portion of the boundary and some local regularity on n. In other words
such inhomogeneities scatter any incident wave without any nonvanishing property as op-
posed to the above results based on free boundary methods. This result was first proven
in [20] for a right vertex, followed by [143] for an arbitrary convex corner. The analysis
in these papers is specifically tailored to inhomogeneities exhibiting a corner singularity
and employs the so-called complex geometrical optics (CGO) solutions for the Helmholtz
equation. More precisely, in the aforementioned papers one starts with the transmission
eigenvalue problem corresponding to a real transmission eigenvalue and shows that the
part v of the eigenfunctions cannot be real analytic in a neighborhood of the vertex. In
particular, if x0 2 @D is a vertex and B✏(x0) the ball of radius ✏ centered at x0, it is easy
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to show that for the transmission eigenfunctions u, v, and any solution of

� + k2n = 0 in B✏(x0) \D,

we have that
Z

@B✏(x0)\D

@ 

@⌫
u�

@u

@⌫
 ds =

Z

B✏(x0)\D

k2(1� n)v dx,

where @B✏(x0) \ D is the part of the sphere inside D and we use that u = @⌫u = 0
on @D \ B✏(x0). Then using as test functions  from a family of CGO solutions which
decay quickly away from x0 combined with asymptotic analysis, it is possible to arrive at
a contradiction if one assumes that v is analytic in B✏(x0). This approach is generalized in
[57] to the scattering problem modeled by

r · a(x)ru+ k2n(x)u = 0

with C2(D)-smooth positive scalar function a and positive n with a � 1 6= 0 on the
boundary @D. This case brings up some anomalous configurations where domains with
corners can allow for nonscattering wave numbers (see [171]).

The most comprehensive analysis, implying that corner and edge singularities always
scatter in R3, is given in [84] based on a refined corner singularity analysis of the solution
to (7.5)–(7.7). In the following we state precisely this result and refer the reader to [84] for
the proof.

Theorem 7.13. Let D,n be an inhomogeneity with refractive index n 2 L1(D) and
D = Supp(n � 1) is bounded in R3. Assume that there exists a boundary point x0 2 @D
that is a vertex, an edge point, or a circular conic point (see Definitions 2 and 3 in [84] for
the precise definition of these boundary singularities). Furthermore assume that there exist
m 2 N0, µ 2 (0, 1), and an ✏ > 0 such that n 2 Cm,µ(D \ B✏(x0)) [Wm,1(B✏(x0)),
r

m(n�1)(x0) 6= 0, and n(x) > 0 for x 2 D\B✏(x0). Then this inhomogeneity scatters
every incident wave nontrivially.

Note that the result of the above theorem is a local property in a neighborhood of
the singular point x0. The proof shows that it is not possible to have nontrivial u and v
satisfying

�u+ k2n(x)u = 0 in D \B�(x0), (7.18)
�v + k2v = 0 in B�(x0), (7.19)

u = v and
@u

@⌫
=
@v

@⌫
on @D \B�(x0) (7.20)

for some ball B�(x0) centered at x0 with radius �.
We conclude this section with an application of Theorem 7.13 to the inverse scattering

problem. More specifically, we prove that the support of a convex polyhedral inhomoge-
neous medium is uniquely determined from scattering data corresponding to one single
incident wave. This proof was first given in [100].

Lemma 7.14. Let Dj 2 R3, j = 1, 2, be two inhomogeneities with respective re-
fractive indices nj 2 L1(Dj). Assume that at each vertex, edge point, or circular
conic point xj

0 2 @Dj , there exists m 2 N0, µ 2 (0, 1), and an ✏ > 0 such that
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nj 2 Cm,µ(Dj \ B✏(x
j

0)) [ Wm,1(B✏(x
j

0)), r
m(nj � 1)(xj

0) 6= 0, and nj(x) > 0
for x 2 Dj \ B✏(x0). If @D2 differs from @D1 in the presence of a vertex, edge point, or
circular conic point lying on the boundary of the unbounded component R3

\ (D1 [D2),
then the far field patterns corresponding to (D1, n1) and (D2, n2) due to any incoming
incident wave cannot coincide.

Proof. Let wj = us

j
+ ui, j = 1, 2, be the solutions of (1.20)–(1.22) corresponding to

(Dj , nj), respectively, due to an incident field ui (which can, for example, be a plane wave
or a point source). If the far field patterns satisfy u1

1 (x̂) = u1

2 (x̂), then by Rellich’s
Lemma (Lemma 1.6) the corresponding scattered fields satisfy us

1(x) = us

2(x) for x 2 G,
which is the unbounded component of R3

\ (D1 [D2). Assume that the singular point
x0 2 @D1 but x0 /2 @D2. Let B�(x0) be a ball centered at x0 with radius � sufficiently
small such that it lies entirely in the exterior of D2. Then the total fields satisfy w1 ⌘ w2 in
B�(x0)\ (R3

\D1), w2 satisfies the Helmholtz equation in B�(x0) as the total field in the
exterior of D2, and w1 satisfies�w1+k2n1w1 = 0 in D1\B�(x0) as the total field in the
interior of D1. This means that the nontrivial u := w1 and v := w2 satisfy (7.18)–(7.20)
with D := D1 and n := n1, which is not possible.

Clearly, the geometrical assumptions in Lemma 7.14 are fulfilled if D1 and D2 are
distinct convex polyhedra with piecewise flat boundaries. Hence, we obtain the following
global uniqueness results for the inverse scattering problem.

Theorem 7.15. Let (D,n) be an inhomogeneity with refractive index n 2 L1(D). Assume
that D ⇢ R3 is a convex polyhedron such that for any of the vertices x0 there exists
m 2 N0, µ 2 (0, 1), and an ✏ > 0 such that n 2 Cm,µ(D \ B✏(x0)) [Wm,1(B✏(x0))
and r

m(n � 1)(x0) 6= 0 and n(x) > 0 for x 2 D \ B✏(x0). Then D can be uniquely
determined from knowledge of the far field pattern due to a single incident wave.

Note that, based on Lemma 7.14, we can phrase the above theorem to state that the
polyhedron convex hull of a collection of inhomogeneities is uniquely determined from
the measurements due to one single incident wave, provided that at every vertex of this
convex hull the refractive index n satisfies the assumptions stated in Theorem 7.15. For a
discussion on stability we refer the reader to [18].





Chapter 8

Transmission
Eigenvalues versus
Scattering Poles

While the set of transmission eigenvalues and the set of nonscattering wave numbers k are
related to the kernel of the far field operator Fk defined in Section 1.2.1, the study of this
operator (which in the literature [134] is also referred to as the relative scattering opera-
tor, or incoming-outgoing operator) brings up another spectral set of values of k, namely,
the scattering poles or scattering resonances. The theory of scattering resonances is a rich
and beautiful part of scattering theory and, although the notion of resonances is intrinsi-
cally dynamical, an elegant mathematical formulation comes from considering them as the
poles of the meromorphic operator valued mapping k 2 C 7! Fk. We refer the reader
to the comprehensive monograph [82] for an account of the vast literature on the subject.
Scattering poles exist and are complex with negative imaginary part. They capture physical
information by identifying the rate of oscillations with the real part of a pole and the rate of
decay with its imaginary part. For a given inhomogeneity, at a nonscattering wave number
there is zero scattered field for a nonzero incident field, whereas at a scattering pole, there
is a nonzero scattered field in the absence of an incident field.

Recalling that �k(x, y) denotes the radiating fundamental solution of the Helmholtz
equation defined by (1.8), it is shown in Theorem 1.9 that solving the scattering problem
is equivalent to solving the Lippmann–Schwinger equation

(I � T (k))w = v, T (k)w := k2
Z

R3

�k(x, y)(n(y)� 1)w(y) dy, (8.1)

where the integral operator T (k) : L2(D) ! L2(D) is compact. Here w is the total field
which is decomposed as w = u+ ui, where the scattered field u 2 H2

loc
(R3) satisfies (see

Section 1.1)
�u+ k2nu = k2(1� n)v in R3, (8.2)

together with the Sommerfeld radiation condition (1.5), and v := ui
|D with ui being the

incident field. The Fredholm alternative ensures that injectivity of I � T (k) implies its
bounded invertibility. Since by Rellich’s Lemma (Lemma 1.6) if =(k) � 0, the kernel of
I � T (k) is trivial, and the fact that the mapping k 2 C 7! T (k) 2 L(L2(D)) is analytic,
we obtain by the Analytic Fredholm Theorem 1.12 that the kernel of I � T (k) is at most
discrete without finite accumulation points. Thus

w = (I � T (k))�1v 2 L2(D)

221
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is well defined for all k 2 C except for possibly a discrete set of k in the lower half-
plane =(k) < 0. These are the poles of the meromorphic operator valued function k 7!

(I � T (k))�1, and are precisely what is referred to as the scattering poles. This leads to
the following definition of the scattering poles.

Definition 8.1. A value of k 2 C with =(k) < 0 is a scattering pole if the kernel of
I � T (k) 2 L(L2(D)) is nontrivial.

Note that at a scattering pole there is a nonzero scattered field u corresponding to
a trivial incident field. If k is not a scattering pole, then the scattered field outside D
corresponding to v := ui

|D is defined by

u(x) = k2
Z

R3

�k(x, y)(n(y)� 1)
⇥
(I � T (k))�1v

⇤
(y) dy, x 2 R3.

The goal of this chapter is to establish a characterization of scattering poles in a dual
framework to the one for transmission eigenvalues.

8.1 Scattering Poles for Spherically Stratified Media
Similarly to Section 7.1 we consider the scattering problem by a ball B of radius one
centered at the origin with spherically stratified refractive index n(r) which we assume to
be in C[0, 1]. Taking v := j`(k|x|)Y`(x̂) for |x| < 1 (see below (7.1)) in (8.1) and using
the addition formula for �k(x, y) (see, e.g., [69]) it is easy to see that the corresponding
scattered field is given by

u :=
C`(k;n)

W`(k;n)
h(1)
`

(k|x|)Y`(x̂), |x| > 1,

for any k 2 C such that W`(k;n) 6= 0, where

W`(k;n) = Det

 
y`(1) �h(1)

`
(k)

y0
`
(1) �kh(1)0

`
(k)

!
(8.3)

(see (7.2) for the definition of all expressions). It is easily verifiable that C`(k;n) and
W`(k;n) do not vanish at the same k. Hence the values of k for which W`(k;n) = 0
correspond exactly to scattering poles. If k is such that W`(k;n) = 0, then

u = h(1)
`

(k|x|)Y`(x̂) for |x| > 1 and u = y`(|x|)Y`(x̂) for |x| < 1

satisfies (8.1) with v = 0; thus in this case there is a nonzero scattered field with zero
incident field.

The existence of scattering poles in the lower half-complex-plane for this spherically
stratified case can be obtained from more general results contained in Theorems 2.10 and
2.16 of [82] (see also [157] and references therein). We present here a simple argument that
shows the existence of an infinite set of scattering poles that are the zeros of W0(k;n) = 0,
which can be rewritten as the zeros of

fW0(k;n) := Det
✓

y(1) eik/k
y0(1) ieik

◆
= 0,
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where we denote y0(r) := y(r)/r, i.e., y(r) satisfies y00 + k2n(r)y = 0. Hence for our
purpose it suffices to analyze only fW0(k;n), which corresponds to the scattering poles
with spherically symmetric eigenfunctions. For this case, assuming that n(1) 6= 1, we will
show that there exist infinitely many scattering poles. From (6.17) and (6.21) one can see
that for k in a neighborhood of zero, y0(1) behaves like j0(k). Hence kfW0(k;n) is an
entire function. Furthermore kfW0(k;n)|k=0 = �1. Thus by Hadamard’s factorizations
theorem

kfW0(k;n) = �e↵k
1Y

j=1

✓
1�

k

kj

◆
ek/kj , (8.4)

where ↵ is a complex constant and kj are the zeros of kfW0(k;n), i.e., scattering poles,
which we know are complex with negative imaginary part. Taking large k > 0, from
Section 6.2 we have that y behaves as

y(r) =
1

k
⇥
n(0)n(r)

⇤1/4 sin

0

@k

rZ

0

⇥
n(⇢)

⇤1/2
d⇢

1

A+ O

✓
1

|k|2

◆
, (8.5)

y0(r) =


n(r)

n(0)

�1/4
cos

0

@k

rZ

0

[n(⇢)]1/2 d⇢

1

A + O

✓
1

|k|

◆
. (8.6)

In particular, we have that kfW0(k;n) remains bounded oscillating as k ! +1. Obviously,
if there were no zeros of kfW0(k;n), then from (8.4) kfW0(k;n) = �e↵k, which, since
n(1) 6= 1, does not match this asymptotic behavior. On the other hand, if the product in
(8.4) is finite, i.e., there are only finitely many zeros of kfW0(k;n), then kfW0(k;n) would
either go to zero or become unbounded as k ! +1. This proves the existence of an
infinite number of zeros of fW0(k;n), i.e., scattering poles.

8.2 Duality between Transmission Eigenvalues and
Scattering Poles

In this section our goal is to establish a duality between the set of scattering poles and
the set of transmission eigenvalues. In particular, these two sets are interchangeable if
instead of the scattering operator for the scattering problem (8.2) we consider the scattering
operator for an appropriate interior scattering problem. This concept of duality was first
introduced in [36] (see also [37]).

We assume that the refractive index n is a complex valued L1 function with <(n) > 0
and =(n) � 0, such that n� 1 is supported in D. Unless otherwise indicated, we assume
that the boundary @D is Lipschitz smooth. We start by providing an equivalent definition
of the scattering poles. Given v 2 L2(D) we define the scattering problem associated with
an incident field v as determining the scattered field u 2 H2

loc
(R3) such that

8
<

:

�u+ k2nu = k2(1� n)v in R3,

u = S
@D

k
(@u/@⌫)�D

@D

k
(u) in R3

\D,
(8.7)

where S@D
k

and S
@D

k
are the single and double layer potentials defined by (3.71) and (3.72),

respectively (to avoid any ambiguity going forward we indicate the surface where these
potentials are defined). For the reader’s convenience we recall the definition of the single
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layer potential S@D
k

: Hs�1/2(@D) ! Hs+1
loc

(R3
\ @D) (see also [133] for the mapping

properties),

S
@D

k
( )(x) :=

Z

@D

 (y)�k(x, y) ds(y), x 2 R3
\ @D, (8.8)

and double layer potential D@D

k
: Hs+1/2(@D) ! Hs+1

loc
(R3

\ @D),

D
@D

k
( )(x) :=

Z

@D

 (y)
@�k(x, y)

@⌫y
ds(y), x 2 R3

\ @D, (8.9)

where �1  s  1 for @D Lipschitz. In the above scattering problem w = u+ v denotes
the total field, and w = u if there is no incident field, which is the case in the context of
the scattering poles.

Proposition 8.2. k 2 C is a scattering pole of the medium scattering problem (8.7) if
and only if the homogeneous problem (8.7), i.e., with v = 0, has a nontrivial solution
w 2 H2

loc
(R3).

Proof. From Definition 8.1, there exists a w 6= 0 which satisfies

w = T (k)(w) in L2(D).

We extend w to all of R3 using the representation

w(p) =

Z

D

k2(n(y)� 1)w(y)�k(y, p)dy, p 2 R3.

Properties of volume potentials ensure that w 2 H2
loc

(R3) satisfies�w+ k2nw = 0 in R3

(see Theorem 1.8). We also have that for such p the mapping

y 7! �k(y, p) = �k(p, y), y 2 D,

satisfies the Helmholtz equation in D, where we use the symmetry of the fundamental
solution. Hence for fixed p 2 R3

\D, Green’s representation theorem implies that

�k(p, y) = �k(y, p) =

Z

@D

✓
�k(x, p)

@�k(x, y)

@⌫x
�
@�k(x, p)

@⌫x
�k(x, y)

◆
ds(x) (8.10)

for all y 2 D. The integral representation of w given in the second equation of (8.7) now
is obtained by multiplying (8.10) by k2(n(y)� 1)w(y) then integrating over D.

Conversely, consider w 2 H2
loc

(R3) satisfying (8.7) with v = 0. Let B be a bounded
domain with Lipschitz boundary containing D in its interior. Green’s representation theo-
rem in B implies that

w(p) =

Z

D

k2(n(y)� 1)w(y)�k(y, p)dy � (S@B
k

(@w/@⌫)�D
@B

k
(w))(p), p 2 B.

On the other hand, for p 2 R3
\B and using the fact that w and�(·, p) satisfy the Helmholtz

equation in the domain between B and D, Green’s formula yields

(S@B
k

(@w/@⌫)�D
@B

k
(w))(p) = (S@D

k
(@w/@⌫)�D

@D

k
(w))(p), p 2 R3

\B.
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Therefore,
w(p) = (S@B

k
(@w/@⌫)�D

@B

k
(w))(p), p 2 R3

\B.

We then infer from the continuity of w across @B and the jump relations for single and
double layer potentials across @B (3.79) and (3.80) that

w(p) =

Z

D

k2(n(y)� 1)w(y)�k(y, p)dy, p 2 @B. (8.11)

Since @B is an arbitrarily chosen boundary enclosing D, the latter identity holds for all
p 2 R3

\ D. Both sides of the equality (8.11) satisfy �u + k2u = �k2(n � 1)w in
R3. Hence unique continuation arguments imply that (8.11) holds for all p 2 R3 and in
particular w = T (k)(w) in D, which concludes the proof.

We now consider a smooth closed surface @C circumscribing a simply connected region
C ⇢ D.

Assumption 8.1. k2 is not a Dirichlet eigenvalue of the negative Laplacian in C, and k is
not a transmission eigenvalue of (3.2).

Under the Assumption 8.1, for a point z 2 D, let u(·, z), v(·, z) 2 L2(D)⇥ L2(D) be
such that u(·, z)� v(·, z) 2 H2(D) and satisfy

8
>>>>>>>>><

>>>>>>>>>:

�u(·, z) + k2n(x)u(·, z) = 0 in D,

�v(·, z) + k2v(·, z) = 0 in D,

u(·, z)� v(·, z) = �k(·, z) on @D,

@u(·, z)

@⌫
�
@v(·, z)

@⌫
=
@�k(·, z)

@⌫
on @D.

(8.12)

This interior transmission problem, which is discussed extensively in Section 3.1, will play
the role of a forward (interior) scattering problem that provides a new equivalent definition
of scattering poles. Here we have assumed that the refractive index n 2 L1(D), with
<(n) > 0 and =(n) � 0, is such that the resolvent of (3.2) is Fredholm, i.e., (8.12) has
a unique solution if k is not a transmission eigenvalue. As is shown in Section 3.1, this is
true, for example, if <(n)� 1 � n0 > 0 or 1�<(n) � n0 > 0 in a neighborhood of @D.

Remark 8.3. Complex transmission eigenvalues in the lower half-plane may exist in gen-
eral, and in fact for spherically symmetric media it is proven that they do exist [69], [71].
It is not clear how to fully understand the intersection of the set of transmission eigen-
values and the scattering poles. However, in general there are infinitely many scattering
poles that are not transmission eigenvalues. Indeed in [120, 149] it is proven that for in-
homogeneous media there exist infinitely many scattering poles lying along the complex
axis without a finite accumulation point. On the other hand, for media (n,D) satisfying
<(n)�1 � n0 > 0 or 1�<(n) � n0 > 0 in a neighborhood of @D, we showed in Section
3.1.3 (see Remark 3.19) that k := i for || large enough are not transmission eigenvalues

For any k 2 C, a function w 2 H1
loc

(R3
\D) that satisfies

⇢
�w + k2w = 0 in R3

\D,
w = S

@D

k
(@w/@⌫)�D

@D

k
(w) in R3

\D
(8.13)
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is referred to as a radiating solution to the Helmholtz equation in R3
\D. We then denote

the space of radiating solutions by

He

inc
(D) = {w 2 H2

loc
(R3

\D), w satisfies (8.13)}. (8.14)

The interior scattering operator Nk : L2(@C) ! L2(@C) is now defined as

Nk'(x) =

Z

@C

'(z)v(x, z) ds(z), x 2 @C, (8.15)

where v is defined by (8.12). Obviously

Nk : ' 7! ṽ'|@C , (8.16)

where (ũ', ṽ') 2 L2(D) ⇥ L2(D) is the solution to (8.12) with �k(·, z) replaced by
S
@C

k
('). Hence

Nk' = GkS
@C

k
('), (8.17)

where Gk : He

inc
(D) ! L2(@C) is defined as the mapping

w 7! vw|@C (8.18)

with (uw, vw) 2 L2(D) ⇥ L2(D) being the solution to (8.12), where �k(·, z) is replaced
by w.

In what follows we shall keep using the notation (ũ', ṽ') and (uw, vw) to refer to
solutions of (8.12) where in the boundary data �k(·, z) is replaced by S

@C

k
(') and w,

respectively.
In our discussion we use the following technical result.

Lemma 8.4. Let k 2 C and ' 2 L2(@C). The single layer potential w := S
k

@C
(') is in

H2
loc

(R3
\ C) and it satisfies w = S

k

@D
(@w/@⌫)�D

k

@D
(w) in R3

\D.

Proof. The mapping property (8.8) implies that w 2 H2
loc

(R3
\ C). Next, for p 2 R3

\D,
we recall from the definition of Sk

@C
(') that

w(p) =

Z

@C

'(y)�k(p, y) ds(y).

Multiplying identity (8.10) by ' 2 L2(@C), integrating over @C, and exchanging the order
of integration we obtain

w(p) = S
k

@D

✓
@w

@⌫

◆
(p)�D

k

@D
(w) (p)

and the proof is complete.

Theorem 8.5. Assume that k 2 C is not a scattering pole of the medium scattering prob-
lem (n,D) and satisfies Assumption 8.1. Then the operator Nk : L2(@C) ! L2(@C) is
symmetric and injective with dense range.

Proof. A simple exchange of integration yields that the transpose operator Nk
> : L2(@C)

! L2(@C) is given by
⇣
Nk

>'
⌘
(x) =

Z

@C

'(z)v(z, x) ds(z), x 2 @C. (8.19)
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Next we show that v(x, z) = v(z, x) for all x, z 2 D. Indeed, viewing v(x, z) as a function
x 7! v(x, z) which solves the Helmholtz equation in D we have

v(x, z) = �

Z

@D

✓
�k(y, x)

@v(y, z)

@⌫y
�
@�k(y, x)

@⌫y
v(y, z)

◆
ds(y),

and viewing v(z, x) as a function z 7! v(z, x) which solves the Helmholtz equation in D
we have

v(z, x) = �

Z

@D

✓
�k(y, z)

@v(y, x)

@⌫y
�
@�k(y, z)

@⌫y
v(y, x)

◆
ds(y).

Therefore

v(x, z)� v(z, x) =

Z

@D

✓
�k(y, z)

@v(y, x)

@⌫y
� �k(y, x)

@v(y, z)

@⌫y

◆
ds(y)

+

Z

@D

✓
@�k(y, x)

@⌫y
v(y, z)�

@�k(y, z)

@⌫y
v(y, x)

◆
ds(y). (8.20)

Form the boundary conditions in (8.12) and Green’s second identity applied to the two
solutions of the Helmholtz equation in D, namely, x 7! v(x, z) and z 7! v(z, x), we have

Z

@D

✓
�k(y, z)

@v(y, x)

@⌫y
� �k(y, x)

@v(y, z)

@⌫y

◆
ds(y)

=

Z

@D

✓
u(y, z)

@v(y, x)

@⌫y
� u(y, x)

@v(y, z)

@⌫y

◆
ds(y)

�

Z

@D

v(y, z)

✓
@v(y, x)

@⌫y
� v(y, x)

@v(y, z)

@⌫y

◆
ds(y)

=

Z

@D

u(y, z)

✓
@v(y, x)

@⌫y
� u(y, x)

@v(y, z)

@⌫y

◆
ds(y). (8.21)

Using again the boundary conditions in (8.12) and Green’s representation theorem for
x, z 2 D, z 6= x, we have that

Z

@D

@�k(y, x)

@⌫y
v(y, z)�

@�k(y, z)

@⌫y
v(y, x) ds(y)

=

Z

@D

✓
@�k(y, x)

@⌫y
u(y, z)�

@�k(y, z)

@⌫y
u(y, x)

◆
ds(y)

�

Z

@D

✓
@�k(y, x)

@⌫y
�k(y, z)�

@�k(y, z)

@⌫y
�k(y, x)

◆
ds(y)

=

Z

@D

✓
@�k(y, x)

@⌫y
u(y, z)�

@�k(y, z)

@⌫y
u(y, x)

◆
ds(y)

+ (�k(x, z)� �k(z, x)). (8.22)
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In the last equality we used the fact that one can find nonintersecting balls B✏(z) and
B✏(x) inside D since z 6= x, the fact that both �k(·, x) and �k(·, z) satisfy the Helmholtz
equation in D \

�
B✏(z) [B✏(x)

�
, and Green’s representation theorem for the integrals

over @B✏(z) and @B✏(x). Using the boundary conditions in (8.12) once again, the fact that
the functions x 7! u(x, z) and z 7! u(z, x) solve�u+k2nu = 0 in D, and the symmetry
of �k(x, z), we finally obtain

v(x, z)� v(z, x) = (8.21) + (8.22)

=

Z

@D

✓
@u(y, x)

@⌫y
u(y, z)�

@u(y, z)

@⌫y
u(y, x)

◆
ds(y) = 0.

Hence we have v(x, z) = v(z, x) for all x, z 2 D, which proves the symmetry of the
operator Nk.

Next, since injectivity of Nk implies the denseness of its range thanks to symmetry, we
only need to prove injectivity. To this end, let Nk' = 0. This means that ṽ' = 0 on @C.
Since �ṽ' + k2ṽ' = 0 in D and hence in C, Assumption 8.1 guaranties that ṽ' = 0 in C.
Therefore, by a unique continuation argument, ṽ' = 0 in D. Consequently, the function w
defined as

w = ũ' in D and w = S
@C

k
(') in R3

\D

is in H2
loc

(R3) and satisfies (8.7). From the proof of Lemma 8.4 we see that w satisfies the
integral representation in (8.7).

Now, since k is not a scattering pole, from Proposition 8.2 we conclude that w =
S
@C

k
(') ⌘ 0 in R3

\D. Finally, the unique continuation principle, Assumption 8.1, and the
jump relation for the normal derivative of the single layer potential across @C imply that
' = 0. This proves that Nk is injective and finishes the proof.

Lemma 8.6. Assume that k 2 C is not a scattering pole and satisfies Assumption 8.1. Let
z 2 R3

\ C. Then �k(·, z) is in the range of Gk if and only if z 2 R3
\D.

Proof. For z 2 R3
\ D we define w 2 H2

loc
(R3) to be the solution of (8.7) with v =

�k(·, z)|D. Since �k(·, z) satisfies the Helmholtz equation in D, we have vw = �k(·, z)
and therefore Gkw = �k(·, z)|@C .

Conversely, assume that for z 2 D \ C there exists w 2 He

inc
(D) such that the solution

vw satisfies vw = �k(·, z) on @C and hence, thanks to Assumption 8.1 and unique contin-
uation, vw = �k(·, z) in D. This is a contradiction since �vw 2 L2(D), while ��k(·, z)
is not.

We now prove a denseness lemma. To this end, one needs to exclude exceptional values
of k that correspond to being both Dirichlet and Neumann scattering poles, simultaneously,
i.e., the values of k 2 C for which there exists a nonzero wd 2 H1

loc
(R3

\D) satisfying
8
<

:

�wd + k2wd = 0 in R3
\D,

wd = 0 on @D,
w = S

@D

k
(@wd/@⌫)�D

@D

k
(wd) in R3

\D,
(8.23)

and nonzero wn 2 H1
loc

(R3
\D) satisfying

8
<

:

�wn + k2wn = 0 in R3
\D,

@wn/@⌫ = 0 on @D,
w = S

@D

k
(@wn/@⌫)�D

@D

k
(wn) in R3

\D.
(8.24)
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We refer the reader to [162, Chapter 7] for the above characterization of scattering poles
of (8.23) and (8.24). Note that for a unit ball they correspond to common zeros of h(1)

`1
and

h(1)0

`2
for some `1, `2 2 N. In general the characterization of this set is not understood.

Lemma 8.7. Let the boundary @D be of class C1,1. Assume that k2 is not an eigenvalue of
the negative Laplacian in C and assume that k is not simultaneously both a scattering pole
for the Dirichlet scattering problem and the Neumann scattering problem for D. Then the
operator S@C

k
: L2(@C) ! He

inc
(D) is injective with dense range.

Proof. Assume first that k is not a Dirichlet scattering pole and let Sk

@C
(') = 0. This

means that Sk

@C
(') satisfies (8.23), where we have used Lemma 8.4. Since k is not a

Dirichlet scattering pole we can conclude that Sk

@C
(') ⌘ 0 in R3

\D (see also Proposition
2.2 in [36]). Finally, the unique continuation principle, Assumption 8.1, and the jump
relation for the normal derivative of the single layer potential across @C imply that ' =
0. In the case that k is a Dirichlet scattering pole, then from our assumption it is not a
Neumann scattering pole and the same reasoning as above can be accordingly modified by
considering @

@⌫
S
@C

k
(') = 0 on @D to conclude in the same way based on (8.24).

As for the denseness of the range, according to Lemma 8.4 it is sufficient to prove that
either the operator S : L2(@C) ! H3/2(@D) or the operator K : L2(@C) ! H1/2(@D)
defined by

S(') := S
@C

k
(')|@D and K(') :=

@S@C
k

(')

@⌫
|@D,

respectively, has dense range when k is not a scattering pole for the Dirichlet (respectively,
Neumann) scattering problem for D.

To this end, assume first that k is not a scattering pole for the Dirichlet scattering
problem for D. Let  2 H�3/2(@D) be such that S> = 0 on @C where the transpose
operator S> : H�3/2(@D) ! L2(@C) is defined by

(S> )(x) :=

Z

@D

 (y)�k(x, y) ds(y), x 2 @C. (8.25)

We observe that S> := S
@D

k
 |@C and S@D defines an L2(D)-solution of the Helmholtz

equation (see Section 3.1.4). By the uniqueness of the Dirichlet problem in C, we have that
S
@D

k
 ⌘ 0 in C and, by unique continuation, in all of D. Thus the trace of S@D

k
 on

@D defined as an element in H�1/2(@D) vanishes (see, e.g., [133]). Let us now define
w =: S@D

k
 in R3

\D. Again from the discussion in Section 3.1.4, we obtain that w is an
L2 solution of the Helmholtz equation in R3

\ D with homogeneous Dirichlet boundary
conditions on @D. Elliptic regularity implies that this solution is in H1

loc
(R3

\D). Let B
be a bounded domain with C1,1 boundary such that D ⇢ B. Lemma 8.4 (where @D plays
the role of @C and B plays the role of D) implies that

w(p) = (S@B
k

(@w/@⌫)�D
@B

k
(w))(p), p 2 R3

\B.

(The application of Lemma 8.4 can be easily extended to densities that are only in H�3/2

using a density argument.) Applying the second Green’s formula in the domain between
B and D yields

w(p) = (S@D
k

(@w/@⌫)�D
@D

k
(w))(p), p 2 R3

\B.

Since B is arbitrary, we have that w satisfies the integral representation in (8.23) and there-
fore w = 0 by our assumption on k. The jump relations for normal derivatives of single
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layer potentials with H�3/2(@D) densities in Section 3.1.4 imply that  = 0, and this
finishes the proof for the first case.

We now consider the case where k is not a scattering pole for the Neumann scattering
problem for D and shall prove that K : L2(@C) ! H1/2(@D) has dense range. The proof
follows along the same lines as in the previous case and we will only give an outline. The
transpose operator K> : H�1/2(@D) ! L2(@C) is defined by

K> := D
@D

k
( )|@C .

Let us set w = D
@D

k
 . Properties of double layer potentials with densities in H�1/2 again

can be found in Section 3.1.4. Similar considerations to those above show that if K> = 0,
then w = 0 in D. Since the normal derivative of D@D

k
 is continuous across @D, we obtain

that w is an L2 solution of the Helmholtz equation in R3
\D with homogeneous Neumann

boundary conditions on @D. The result of Lemma 8.4 holds true (and can be proven
exactly in the same way) if we replace the single layer potential with the double layer
potential. Therefore, applying this lemma together with elliptic regularity for the Neumann
problem and the same argument as above for justifying the integral representation of w
outside D, we get that w is associated with a scattering pole for the Neumann problem.
Hence w = 0 and the jump relation for the trace of the double layer potential on @D
implies that  = 0.

As a consequence of Lemma 8.7, combined with Lemma 8.6, we can prove the follow-
ing theorem. In order to simplify the notation, for w 2 He

inc
(D) we set

kwkH3/2(@D) := kwkH3/2(@D) + k@w/@⌫kH1/2(@D),

which clearly defines an equivalent norm on He

inc
(D).

Theorem 8.8. Let z 2 R3
\D, and let @D be of class C1,1. Assume that k 2 C is not a

scattering pole of the medium scattering problem (n,D), and k satisfies Assumption 8.1,
and in addition that k is not simultaneously both a Dirichlet and a Neumann scattering
pole for D. Then for every ✏ > 0 there exists 'z

✏
2 L2(@C) such that

lim
✏!0

kNk'
z

✏
� �k(·, z)kL2(@C) = 0 and kS

@C

k
('z

✏
)kH3/2(@D) < C.

We now state the complementary result to the above theorem at a scattering pole.

Theorem 8.9. Assume that k 2 C is a scattering pole of the medium scattering problem
(n,D) and satisfies Assumption 8.1, and @D is of class C1,1. Let 'z

✏
2 L2(@C) be a

sequence such that
lim
✏!0

kNk'
z

✏
� �k(·, z)kL2(@C) = 0.

Then kS
@C

k
('z

✏
)kH3/2(@D) cannot be bounded for all z in a ball B ⇢ R3

\D.

Proof. Corresponding to the scattering pole k there is a nonzero (the corresponding eigen-
function) w0 2 H2

loc
(R3) that satisfies (8.7) with v = 0. Assume to the contrary that

there exists a sequence {'z

✏
} in L2(@C) and a small ball B ⇢ R3

\ D such that Nk'z

✏

converges to �k(·, z) in L2(@C) and kS
k

@C
('z

✏
)kH3/2(@D) < C for all z 2 B. From

the latter we can assume without loss of generality that SLk

@C
('z

✏
) converges weakly to

wz 2 He

inc
(D) as ✏ ! 0 with He

inc
(D) given by (8.14). Let vz = Gkwz , where (vz, uz)
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solves the interior transmission problem (8.12) with �k(·, z) replaced by wz , which for
w̃z := uz � vz 2 H2(D) can be written as

8
<

:

�w̃z + k2nw̃z = k2(1� n)vz in D,

w̃z = wz and
@w̃z

@⌫
=
@wz

@⌫
on @D.

(8.26)

It is clear from (8.17) and the convergence of Nk'z

✏
to �k(·, z) in L2(@C) that vz =

�k(·, z) on @C, and hence vz = �k(·, z) in C by the uniqueness of the Dirichlet problem
in C and consequently in D by analyticity. Considering Wz := w̃z in D and Wz := wz in
R3

\D from (8.26) and the facts that wz 2 He

inc
(D) in (8.14) and vz = �(·, z) we have

that Wz 2 H2
loc

(R3) satisfies (8.7) with v := �(·, z). The latter means that

(I � T (k))(Wz + �(·, z)) = �(·, z) in D.

Multiplying this equation by k2(n � 1)w0 and then integrating over D and changing the
order of integration implies that

Z

D

k2(n� 1)(Wz + �(·, z))(I � T (k))w0dx =

Z

D

�(y, z)k2(n� 1)w0(y) dy.

Therefore Z

D

�(y, z)k2(n� 1)w0(y) dy = 0 for z 2 B.

Unique continuation for solutions of the Helmholtz equation yields

P (z) :=

Z

D

�(y, z)k2(n� 1)w0(y) dy = 0 for z 2 R3
\D,

and hence P (z) = 0 and @P (z)/@⌫ = 0 on @D. Now inside D we have that P (z) 2

H2(D) satisfies
�P + k2P = �k2(n� 1)w0.

Since w0 solves �w0 + k2nw0 = 0 in D we conclude that (w0, v) with v := w0 � P
satisfies the homogeneous interior transmission problem, and from Assumption 8.1, i.e., k
is not a transmission eigenvalue, we conclude that w0 = 0 in D and therefore in R3 (by
unique continuation), which is a contradiction. This proves the theorem.

We can combine Theorems 8.8 and 8.9 to formulate the following criteria for the de-
termination of the scattering poles using GLSM similarly as in Theorem 5.2.

Corollary 8.10. Assume that the hypotheses of Theorems 8.8 and 8.9 hold. Define for
g 2 L2(@C)

J↵(�z; g) := ↵kSk

@C
(g)k2

H3/2(D) + kNkg � �zk
2
L2(@C) ,

where �z := �k(·, z). Let g↵
z

be defined as in (5.8). Then we have that for any ball B ⇢ D,
kS

k

@C
(g↵

z
)k2

H3/2(D)
is bounded and kNkg↵z � �zkL2(@C) ! 0 as ↵ ! 0 for almost every

z 2 B if and only if k is not a scattering pole of the inhomogeneous medium (n,D).

We conclude this section by sketching the above approach for the special case when
the operator Nk is defined on @C := @B� , where B� is a small ball inside D centered at
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the origin [37]. This allows us to give an equivalent definition of the involved operators in
terms of Fourier series representation which better reveals the duality between the exterior
and interior operators (since there is no natural dual definition of the far field for the interior
problem). To explain this, we first represent the far field operator introduced in Section
1.2.1 as a Fourier series in terms of spherical harmonics {Y m

`
(x̂)}. For g 2 L2(S2) we set

g(x̂) =
1X

`=0

`X

m=�`

g`,mY m

`
(x̂)

and define an isometry I between L2(S2) and l2(Z) by the mapping g 7! g̃ := {g`,m}.
Thus we now have a new representation of the far field operator, denoted by F̃ (k) :
l2(Z) 7! l2(Z),

F̃ (k) = I
�1⇤F (k) I�1,

where I�1⇤ denotes the L2-adjoint of I�1. The discussion on transmission eigenvalues in
connection to the kernel of the operator F (k) can now be carried over in exactly same way
as before if we replace F (k) by F̃ (k). To introduce the duality, we first observe that the
operator F̃ (k) can be equivalently defined using scattered waves associated with incident
spherical waves. More precisely, let us

`,m
(x) be the scattered field corresponding to the

incident wave (which is a Herglotz wave function)

v(x) := j`(k|x|)Y
m

`
(x̂).

Outside a ball BR of radius R containing D, the scattered field can be expanded as

us

`,m
(x) =

1X

p=0

pX

q=�p

ap,q
`,m

h(1)
p

(k|x|)Y q

p (x̂)

(note that Y q

p = Y �q

p
). Then, up to a multiplicative constant, the Fourier coefficients of

F̃ (k)g̃ are

(F̃ (k)g̃)p,q =
1X

`=0

`X

m=�`

g`,map,q
`,m

. (8.27)

Now reversing the role of the incident and scattered waves, we can define similarly to (8.27)
an interior far field operator to characterize the scattering poles where in the following we
assume that k is complex with =(k) < 0. To this end, let B� ⇢ D be a ball centered at the
origin, and for an outgoing solution to the Helmholtz equation,

w`,m(x) = j`(k�)h
(1)
`

(k|x|)Y m

`
(x̂),

we denote by (u`,m, v`,m) 2 L2(D) ⇥ L2(D) the solution of the interior transmission
problem 8

>>>><

>>>>:

�u`,m + k2n(x)u`,m = 0 in D,
�v`,m + k2v`,m = 0 in D,
u`,m � v`,m = w`,m on @D,

@u`,m
@⌫

�
@v`,m
@⌫

=
@w`,m
@⌫

on @D.

Inside B� , the field v`,m can be expanded as

v`,m(x) =
1X

p=0

pX

q=�p

bp,q
`,m

jp(k|x|)

jp(k�)
Y q

p (x̂).
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Thus, we can define the interior far field operator F̃int : l2(Z) 7! l2(Z) by its Fourier
coefficients

(F̃int(k)g̃)p,q =
1X

`=0

`X

m=�`

g`,mbp,q
`,m

. (8.28)

Observe that this operator can be defined for any k 2 C with =(k) < 0 that does not
coincide with a transmission eigenvalue. Now, let k be such that there exists a g̃ 6= 0 with
F̃int(k)g̃ = 0. Then by unique continuation we have that

vg̃ :=
1X

n=0

nX

m=�n

gn,mvn,m = 0 in D,

and consequently one can show that w 2 H2
loc

(R3), defined by

w =
1X

`=0

`X

m=�`

g`,mu`,m in D

and

w =
1X

`=0

`X

m=�`

g`,mw`,m in R3
\D,

is a nontrivial solution of
�w + k2nw = 0 in R3

and
w =

Z

@D

✓
�(·, y)

@w(y)

@⌫
� w(y)

@�(·, y)

@⌫

◆
dy in R3

\D.

This means that such a value of k is a scattering pole. For the given inhomogeneity (D,n),
there is a duality between F̃ (k) whose kernel is related to the transmission eigenvalues and
F̃int(k) whose kernel is related to the scattering poles. Both are defined by similar expres-
sions, but F̃ (k) corresponds to the exterior scattering problem due to an incident Herglotz
wave function, whereas F̃int(k) corresponds to the interior scattering problem due to an
incident outgoing spherical wave. Note that the interior operator F̃int(k) coincides (up to
an isometry) with the operator Nk (8.16) when the single layer potential is supported by
@C := @B� .
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