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Abstract

In this work, we construct the Born and inverse Born approximation and series to
recover two function-valued coefficients in the Helmholtz equation for inverse scat-
tering problems from the scattering data at two different frequencies. An analysis of
the convergence and approximation error of the proposed regularized inverse Born
series is provided. The results show that the proposed series converges when the
inverse Born approximations of the perturbations are sufficiently small. The pre-
liminary numerical results show the capability of the proposed regularized inverse
Born approximation and series for recovering the isotropic inhomogeneous media.
Keywords: inverse scattering problem; inverse Born series; convergence; approxi-
mation; two function-valued coefficients.

1 Introduction

The scattering of the time-harmonic incident plane wave ui(x;é; k) = e**? with the
probing wave frequency k and incident direction bes (with S denoting the unit sphere)
by an inhomogeneity occupying a bounded Lipschitz domain ©Q C R? is mathematically
formulated as follows: find the total wave field v € H. (R?) with u = u® 4+ u’ such that

V-a(z)Vu + En(z)u =0 in R? (1.1)
Tli_)réloré (682‘ - ikus) =0 with r = |z (1.2)
where
B 1 in R?2\ Q _ 1 in R2\ Q
a(z) _{ 1+~(x) in Q and - n(z) = { 1+n(x) in Q ’
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with the contrasts v being piecewise continuously differentiable and 7 being bounded
in Q, and the Sommerfeld radiation condition (1.2) on the scattered wave field u° is
satisfied uniformly with respect to & = x/|z|. Problem (1.1)—(1.2) models the scattering
of acoustic waves by an isotropic inhomogeneous medium with contrasts in both the sound
speed and density [4] in two dimensions. Thanks to Sommerfeld radiation condition (1.2),
the scattered filed u® assumes the following asymptotic behavior

€1k|x\

Vel

where u™>(Z, 0; k), known as the far-field pattern of the scattered field, is a function of
z € S for fixed k and 6.

u’(z; 0, k) =

P 1

Definition 1.1 (Scattering Data and the Inverse Problem). The set of measured far-field
patterns

{uo"(:ﬁ,é; k): €S, 0¢ S}
is called the scattering data at frequency k. The inverse scattering problem we consider

here is to determine the contrasts v and 7n from the scattering data at two different
frequencies ki # ks.

It is well-known that the uniqueness of the inverse scattering problem derived from
(1.1)~(1.2) holds [7]. We also refer the reader to [2, 3] for coefficients less regular than as-

sumed here. By noting that the incident wave field u’(x; 0; k) = e solves the Helmholtz
equation with the homogeneous media (i.e. v = 0 and n = 0) in R?, the perturbed
Helmholtz equation (1.1) for the scattered field takes the form

V- a(z)Vu' + B*n(z)u® = =V - y(2)Vu' — E*n(z)u’ for x € R? (1.3)
or equivalently
Au® + k*u® = —V - y(z)Vu — E*n(z)u for z € R (1.4)

With the Sommerfeld radiation condition (1.2), it is easy to verify that u® satisfies the
following Lippmann-Schwinger volume integral equation,

w*(z; 0; k) =Vw-/QG’“(w,y)v(y)Vy(uerui)(y)der/Q G"(z,y)k*n(y) (v’ +u')(y)dy, (1.5)

with G*(z,y) =i/ 4H0(1) (k|z—y|) being the full-space fundamental solution of the Helmholtz
equation in R?, where Hél) is the Hankel function of the first kind of order zero. The
volume integral equation (1.5) allows 7 to have jumps in , and we refer the reader to [5]
for the sufficient conditions on its solvability.

Due to the dependence of u® on v and 7, equation (1.5) is nonlinear with respect to
and 1. When the perturbations v and 7 are sufficiently small, the scattered field u® can
be approximated by the linearized version of (1.5):

u®(; 0; k) %Vm-/QG’““(w,y)v(y)Vyui(y)dy+/QG'“(w,y)kQU(yW(y)dy- (1.6)
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However, when the perturbations grow, the scattered field is no longer well approximated
by a simple linearization (1.6). In this case, one may expand the approximation of u*
from (1.6) (e.g., Born approximation) by the Born series with Born approximation being
the first-order term. A direct inversion of the Born series is typically ill-posed, and the
ill-posedness is carried by the inversion of the Born approximation. The inverse Born
series (IBS) is designed to iteratively reconstruct the potential in a convergent manner
and suggests the solution to the inverse problem as an explicitly computable functional
of the scattering data. The IBS extends the validity of the inverse Born methods and is
widely applied in various inverse scattering problems, including optical tomography [12,
14, 15, 11], electrical impedance tomography [1], and acoustic and electromagnetic imaging
[9, 10]. The main challenge in employing IBS for inverse scattering problems is ensuring
the convergence and stability of the series, which has been studied in [14, 1, 11, 10, 8]; see
[16, Chapter 12] for an overview. We also refer the reader to [6] where the applicability of
the Born approximation is broadened by two different neural network-based algorithms
when the scattering is not weak.

In this work, we construct the IBS to recover two function-valued coefficients in the
Helmholtz equation for inverse scattering problems and provide sufficient conditions on
the convergence of the IBS for this problem, when the regularized inverse Born approxi-
mation is employed. We then discuss the convergence of the IBS with the spectral cutoff
regularization based on the disk prolate spheroidal wave functions (PSWF's) as eigenfunc-
tions [13, 19]. Moreover, when the forward and inverse Born series converge, we derive an
upper bound on the approximation error of the IBS. It is worth noting that the case we
consider in this work, involving two unknown function-valued coefficients, is fundamen-
tally distinct from the single-coefficient scenario. This distinction introduces challenges
for both theoretical and numerical analyses.

The rest of the paper is organized as follows. The Born and regularized inverse Born
approximation are investigated in Section 2 while the numerical results indicating the
capability of the proposed method to recover sufficiently small perturbations n and v are
presented in Section 5.2. The Born and regularized inverse Born series are constructed in
Section 3 and the convergence analysis of the IBS is established in Section 4. Specifically,
sufficient conditions on the convergence of the IBS are given in Theorems 4.1 and 4.2 (and
Corollary 4.2), while the approximation error of the IBS with the proposed regularization
technique is given in Theorem 4.3. Preliminary numerical examples of the performance
of the IBS are provided in Section 5.

2 Born and inverse Born approximation

2.1 Born approximation

In this section, we study the regularized pseudo-inverse of the forward operator for the
linearized problem (1.6) which states

u®(; 0; k) z/

ikV.G (2, y) - 5 (y)e™ dy + / G* (@, y)k*n(y)e™ dy.
L Q

3



The asymptotic expressions

GHa,y) = So e ®v 10 () and

’ 8k o /|z |z[372

k ]L | ei% eik‘ﬂ A _ka,y 1 (21>
V.G z,y) = —V,GY(z,y) = = —‘xlzkxe +0 (Iz\3/2>

imply that

eiT k2

u® (i, 0; k) ~ N ( /Q — (& - 0)e* DUy (y)dy + /Q eik(e‘”'”n(y)dy).

The support ) of the perturbations is part of the unknown. Without loss of generality,
we assume that the perturbations are supported in the unit disk centered at the origin
B := B(0,1) C R? i.e., Q C B. Note by the scaling properties of the Helmholtz equation,
the given formulation in Q C B(0, R), for any R > 0, at frequency k is the same the
problem formulated in Q C B with k/R being the frequency. Then by extending v and
n by zero in B\ Q, we arrive at the following expression for the approximate scattering
data

A e'1k? NP
u(z,05 k) = / —(4 - 0)e*0-2)y d +/
Fo.00) =S ([ (a0 + [

Obviously, the extension by zero of v in B is still piecewise continuously differentiable.

It follows from a direct calculation from the fact z, 0 € S that §—7 € 2B. We introduce
a new variable p := 2(0 — ) € B and consider the scaled approximate scattering data as

a function of p, defined by

eik(é‘i)'yn(y)dy) :

up(p; k) ::\/87re_igk_%u§°(i,é; k) :/

—(& - )™y (y)dy + / MO (y)dy
B

B
—mw-n/émwww+/émwww,
B B

where the last equation is derived using the identity

o a—=22 =10 — |2

By defining the restricted Fourier operator

R / euf(y)dy, pe B, (22)
B
we obtain
w(p; k) = (2|p|> = 1)F*(p;7) + F*(p;m), p € B. (2.3)



To reconstruct the perturbations v and 7, we need to solve the linearized ill-posed
inverse problem (1.6) with scaled scattering data at two different wave frequencies k and
Ck with £ > 1, i.e., {up(p; k) Uup(p; k) | p € B} where

w(p; k) =(2[p|* = 1)F"(p;7) + F*(p;n),
and  wy(p; k) =(2|p|> — 1)F*(p;7) + F*(p; )
(
(

)
2ol = 1) [ e o(gyay + [ i) dy
B
)

B
2[p|* — 1)F*(lp; ) + F*(¢p; ),

which yields
up(0 ' p; k) = (2072|p> — 1)F*(p;v) + F*(p;n), p € B. (2.4)

Combining formulas (2.3) and (2.4), we derive the following formula of the scattering data
at two wave frequencies k and ¢k in the matrix form, i.e.,

Lb?g(ﬁ%ﬂ - [2£2|§|‘;|2_—1 1 ﬂ F (p; BD = A(p) F* (p; [Z]D = Kb( m 2 |
2.5

where F* is applied element-wise to the vector-valued functions.

2.2 Regularized inverse Born approximation

When the operator F* is invertible and 0 # p € B, the above matrix equation (2.5) lead
to the following reconstruction formula

ol =5 (it ) =7 (40 L))

1 -1
1—2072p]* 2[p]* -1
the vector-valued functions. We consider the regularized pseudo-inverses of F* and A(p),
denoted by (F*)' and Af(p) respectively, when F* and A(p) are not invertible or the
inverses are unbound. Then we define the regularized pseudo-inverses of K, by

2[pl(€2-1)

where A(p)™ = s [ } and (F*)~! is applied element-wise to

Kl e Kl(f) = (FH (A (p)f(Dp)) (2.6)

with f being the vector-valued function. For the inner component A'(p), we set

Al(p) = 02 1 -1
P o max(e, [p)2( — 1) [1—2072|p|* 2[p|2 —1

(2.7)

for some regularization parament ¢ > 0. For the outer component F*, it is worth noting
that the operator F* exhibits a low-rank structure, which motivates the study of (F*)T.
We refer the reader to [13, 19] for its low-rank approximation based on disk prolate
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spheroidal wave functions (PSWFs), employed in this work, and to [20] for its comple-
mentary low-rank approximation using butterfly factorization and neural networks. For
the reader’s convenience, we introduce the inverse Born reconstruction via a spectral cutoff
regularization based on the disk PSWFs [13, 19] below.

First, we introduce the spectral decomposition of F* considered in this work. Ac-

cording to [17], there exist real-valued eigenfunctions {¢n, ,(z; c)}lsﬂéz& of the restricted

Fourier operator F*, defined in (2.2), with bandwidth parameter ¢ := 2k:

-kam,n,l(x) = / eicx.ywm,n,xy; C)dy
B
= o (C)Vmni(x;c), = €B (2.8)

with ¥y, . (x; ¢) being the disk PSWF and a,,, ,,(c) being the corresponding prolate eigen-
value, where N ={0,1,2,3,...} and

1 m=0
H(m):{ {i;} m>1

Note that the disk PSWF's are also eigenfunctions of a Sturm-Liouville operator [17], i.e.,

,Dc[wm,n,l](x> == Xm,nwm,n,l(x)7 HAIS B7 (29)

where X, (c) is the Sturm-Liouville eigenvalue and
a2 1 1 2.2
D.:=—(1—=7r°)0; — =0, +3r0, — A+ cr
r r

with the Laplace-Beltrami operator Ay = 92 being the spherical part of Laplacian A.
Thanks to the above eigensystems, the following lemma [17, 18] indicates a low-rank
structure of F* and guarantees that the eigenfunctions, i.e., disk PSWFs, can be computed
using the Sturm-Liouville operator, ensuring both stability and efficiency. We refer the
reader to [18] for the explicit algorithm used in the computation.

Lemma 2.1. For any ¢ > 0, {{yn(; c)}ifﬂ,g’;g forms a complete and orthonormal system

of L*(B), i.e., forY m, n, m/, n’ € N, [ € I(m), I' € I(m’), there holds

/ wm,n,l<y; C)wm’,n’,l’ (Z% C) dy = (Smm’énn’ (Sll/u
B

where § denotes the Kronecker delta.

(i) The corresponding prolate eigenvalues {0 n(¢)}mnen i (2.8) are non-zero, and
Amn(€) = |amn(c)| can be ordered for fized m as

Ao (€) > Ay (€) >0, Vng < no.

Moreover, Ay, ,(c) — 0 as m,n — +o0.
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(ii) The corresponding Sturm-Liowville eigenvalues {Xmn tmnen in (2.9) are real positive
and are ordered for fixed m as

0< Xm,ny (C) < Xm,na (C), VTL1 < No.

It is worth noting that the prolate eigenvalues au,,(c) decay to zero exponentially fast
and the dominant prolate eigenvalues are numerically the same.

Now, we can state the spectral cutoff regularization (e.g., [13, 19]) for the outer com-
ponent (F*)T in the inverse Born reconstruction based on the above observation. In
particular, for any f € L?(B), we have the following spectral decomposition of F*:

= > (0 (s (50 Ymna (5 €), (2.10)

m,n,l

with (-,-)p being the L?(B) inner product, and define

FHH= >

lotm,n (c)[>a

ami(c) s tmna(5€)) g Ymana (), (2.11)

with a > 0 being the spectral cutoff parameter.

3 Born series and inverse Born series

In this section, we shall first derive the Born series of the scattered wave field u* = Zj’;l uf

by using the recursive relation of its sequential terms derived from the Born approximation
(1.6), i.e

w1 (3 0: k) =V, / G¥(,y )y (y) Ve (y; 6; K)dy + / G ()P )y 65 K)dy
B B

=/ Vo - Gz, y) 7(y) Vi (y; 0; k’)dy+k2/ G* (a, y)n(y)us (y; 0; k)dy

B

= [ V.G ) Tyl 0y + 1 [ Gt by,

with ud(z;0; k) = w'(z:0;k) = ¢ being the incident wave field. After defining the
integral operators

EFr . f»—)Fk( ; :szBGk y)f(y)dy, r€B (3.1)
and FF: f— Ff(x;f) = [, V,GF(z,y) - f(y) dy, z€B (3.2)

with f being the scalar-valued functions and f being the vector-valued function, we derive
the recursion

~

Wy (2303 k) =Ff (259() V(5 0; k) + Fy(zn()us(5 0; k). (3.3)



Now, we start with the first-order iteration uj. The recursion (3.3) with j = 0 and
u§ = u' gives

uj (23 6; k)—/VxG’“(x,y)’Y(y)'Vyui(y; 0;k)dy + k* | G*(x, y)n(y)u' (y; 0; k)dy
B

B

)

Further, the gradients of uj(z) with respect to x is given by

oy
~—

=Ff(z;7() V' (-5 0: k) + F (xyn(-)u' (- 6;

Vot (z; 0; k) = /B VoV G (2, y)v(y) Vyu'(y; 0; k)dy + & /B Vo G*(x, y)n(y)u' (y; 0; k)dy
=F§(;7()Vu' (-0 k) + F(a;m()u' (6 ),
where
Fy: [ F(af) =k [ VoG y)f(y)dy, z€B (34)
and Fy: £ Fs(a;f) = [, V,V,GF(z,9)f(y) dy, =€ B.

[

1—|p|

We recall the relation p = é_Tf and define ¢(p) = 7

0 -1
[1 0 } p such that

q(p) = (—/1—|p|2sinf, /1 — |p|2cosf)’ for any p = (|p|cosb,|p|sinb)’,
and thus
O=qp)+p  and i=q(p)—p, when  0; € (05, 0; + ),
0 = —(q(p) —p) and z=—(q(p)+p), when 0; € (6;—m,0;).

Thanks to the reciprocity relation of the far-field pattern for the jth iterative scattered
wave field u3°(Z;0;k) = u$°(—0; —2;k), we only need to consider the case where 0; €
(05,65 + ™). Above identities yield

Wiy pi k) = €MV = RV and V0l (y; py k) = k0N = ik(q + p)u' (y; p; k),

and thus we rewrite the jth iterative scattered wave field and its gradient as functions of
p and k (and y) as

ui (x5 py k) =FF (2;9(y) V' (y; pi k) + Fo (25 n(y)u’ (v; ps k),
Vui(z;p; k) =F5 (z:9(y) Vyu' (y; p; k) + Fs (3 n(y)u' (y; pi k).

For the sake of simplifying the analysis, we use the notations u*(-) = u'(-; p; k) and u}(-) =

ui(-;p; k) for any j > 1 and consider the scaled far-field pattern of the jth iterative
scattered wave field defined as

uj(p; k) == v 87Te_i§]g_%u]<?°(:%; 0; k)
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with the relation p = O’T‘” Note that the first-order term is the scaled Born-approximated
scattering data discussed in Section 2.1, i.e., u3® = u;° and u; = u;. Then the asymptotic
expressions of G¥(z,y) and V,G*(z,y) in (2.1) imply that

wr(p k) =k~ /B ke MUy (y) - Vi (y)dy + /B e FE () (y)dy

—— [ M) =) g+ oy + [ )y
=F*(v(p = @) - (g + p)u') + Fo*(nul),
where F2*(f) = [ L €"P=2Y f(y)dy. Furthermore, we can derive that
ui(p; k) =wy(p; k) = (2[p* = D)F*(p; ) + F*(ps 1),
ur (€ p; k) =up (€' ps k) = (2072 [p]* = DF* (p;7) + F*(psm).
We define the operator

w =m0 = L] e,

where F* defined in (2.2) is applied to the vector-valued function element-wise, such that

— t
Ki((v,n)") = (wi(p; k), ua (¢ p; k)"
Next, we consider the second iteration uj. Together with the above estimates on uj

and its gradient, we derive from the recursion (3.3) and the relations VF} = F% and
VF} = FX that

uy =Ff (yVug) + Fy (nus)
—F{ (7 (FS(yVu) + Fs(na)) ) + B (n(FE VW) + B Gra)) )
Vus =F5(7Vui) + F3(nui),

and thus

us(p; k) =k 2 /B ikze” ™y (y) - Vus§(y)dy + /B e~ (y)ui (y)dy

=ik [ (g eI () - Vuiy)dy + [ 0D )dy
B B
:Z'kfl}'g’k(fy(q —p)-Vui) + }"g’k(nuf)
=ik 3 (20— p) - (F5G, V) + FSGn, ) ) + F5* (n(FE V) + B o)),

Then, we define the operator K» by K»((v,n)", (v,n)") = (u2(p; k), ua (¢ 'p; Kk:))t.
Similarly, for any 7 > 1, we can derive that

w =Ff (Vi) + Fy(nui_y), Vul =Fs(yVul_,) + Fi(nui_y), (3.6)
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wi(p; k) =ik~ FP(v(g — p) - Vi _y) + FyP(nus_y), (3.7)

and we define the j-multilinear operator K; such that
Ki (o) (ram)') = (us(ps k) g (€ ps R))

Let ¢ = > 77 (u;(p; k), ui (€ p; Ek))t and ¥ = (v,n)", then the Born series for the

j=1
scaled far-field pattern ¢ is given by

6= K;(v,-- 1)
j=1
Given the above Born series for ¢, the IBS [8] is defined as
V= =) Ki(9), (3:8)
j=1 j=1

with

1=K () = K(9),
Uy =Ka(¢) = =K1 (Ka(K1(9), Ki(0))) = =K1 (K2 (¢, ¢1)),
V3 :=K3(0) = =K1 (K2 (1, ¥2) + Ka(tha, 1) + K3(¢1,¢1,¢1)),

Ui =Ki(0) = =Ki( D > K, 14,)),

m=2 zgl it=7j

where Ky = K| = Kg, defined in (2.6), is the regularized pseudo-inverse of the operator
K;.

4 Convergence of the regularized inverse Born series

In this section, we discuss the sufficient conditions for convergence of the IBS (3.8) and
its approximation error.

4.1 General regularized inverse Born series

We start with the convergence of the general regularized inverse Born series with a regu-
larized and bounded operator K;. First, we state a sufficient condition for the convergence
of the general IBS established in [8, Theorem 2.2]. We also refer the reader to the sta-
bility of the general IBS in [14, Theorem 3.2, where the estimates depend on v, pu and
|11l (z2(B))2—x2 introduced in the following lemma.
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Lemma 4.1. Let p and v be positive constants such that
1 (s o) amy < vid T ||yl a2, for any > 1,

with X being a Banach space and ||v||x2 := (2]2.:1 ||vj||/2y)%, for any vector-valued func-
tion v = (vy,ve)" € X2. The IBS (3.8) converges if ||K1(¢)|lx2 < r with the radius of
convergence r = (2u(v/16C% + 1 + 40))_1, where C' = max(2, v||K || (z2(m))2—x2)-

Now, we shall specify the constants v and p in the following proposition and defer its
proof to Appendix A and the estimation of the corresponding coefficients a(k), b(k) and
c(k) to Lemma A.1.

PI‘OpOSitiOIl 4.1. Let Q;j = Kj(1/~}1, Tt ,QZJJ‘), then ||Q~5j||(L2(B))2 < uoopgll'[z:1||@/~zi||(mo(3))z
with Ve = V2|B| and jioe = V/2(pto(k) + po(€k)), where

po(k) = max(1, kb(k), k' c(k), k2| B|2a(k)),

a(k) = sup,ep [|GF(x, )2y, b(k) = [1FFll(2)2—1208) and c(k) = |F5 || L2(m)- 2082
Corollary 4.1. Let ggj = Kj(&l, ce ,@Ej) and

M =min (|{z € B: %) > Sl [z € B: (@) > Slllmm}]),  (41)

then ||gz~5j||(Lz(B))2 < Vgug_lﬂg:1||@@||(,;z(3))z with vy = 2M_%l/oo and fiy = QM_%,uoo.

Proof. 1t is well-known that M € (0,|B]). Then it follows directly from Proposition 4.1
and the estimate

—_

- 1,0~
H%’H(L"’(B))2 > §M2H¢i||(L°°(B))2v
that
~ 1~
[Vill (oo Byy2 < 2M 2|5 (L2(BY)2-

]

Now, we can give the convergence conditions of the IBS (3.8) from Lemma 4.1 with
the help of Proposition 4.1 and Lemma A.1.

Theorem 4.1. Let k > % and ||y || 2Bz ro=pyz < 71 with 7 > 0, then the IBS (3.8)
converges if |y (@)||(ze(y2 < T with the radius of convergence

"> Croo(l + E%)_lk_% min(Z_%ﬂ, T)

with a constant ¢, o that is independent of £, k or .
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Proof. 1t follows directly from Lemma A.1, the definitions of ug(k) and i, in Proposition
4.1 and the assumptions |B| = 7 and k >  that

po(k) = max(1, kb(k), k~Le(k), k*|B|za(k)) < (3v27 + Q@W)kg,
47

V3

Thus, by Lemma 4.1 and the assumption ||KCi||(r2(p)2—r=p)y2 < 7', the radius of
convergence 1 satisfies

3
2

oo =V2(po(R) + po(€k)) < (6v/7 + —=) (1 +£2)k2.

r

(2000 (v/T6CZ 14+ 4C)) ™" = ((6v7 + %)(1 (R0, + 1))‘1

> (18(3\/7? + %)(1 + E%)k%C’OO)

where

Coo = max(2, Vso HKl H (LQ(B))2_>(LOO(B))2)

= max(2, V2| B|[|K: | (12(5))2 (1o (my2) < V2rmin(2- 2w, 7) 7,

which imply
o . \! 1
r> (18\/5(3\/E + 7%%) (1+03)" %2 min(2 %7, 7).

This completes the proof. n

Corollary 4.2. Let k > 3, M be defined in (4.1), and ||[K1||r2)2—r2my2 < 7 with
7 > 0, then the IBS (3.8) converges if ||K1(9)|(2(py2 < 1 with the radius of convergence

r > cra(l+ E%)_lk‘_%M% min(v/27, TM%)
with a constant c, o that is independent of ¢, k, M or .

Proof. Following the analysis in the proof of Theorem 4.1, the relations vy = 2M T
and po = 2M 2 loo in Corollary 4.1 and the estimates in Lemmas A.1 and 4.1 yield that

3
2

Co =max(2, 1a||K1 | (2(B)2—(12(B))2) < 2 ﬂmin(\/ﬁﬂ,TM%)_l.
Together with the fact that 2M 3> 1, there holds
2 -1 1 1
> (72\/5(3\/E + 7%%) (1+ 03)"1k=3 M3 min(v2r, TM?),

which completes the proof. O]
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4.2 Regularized inverse Born series with the disk PSWFs

In this section, we study the convergence and approximation error of the IBS (3.8)
with the proposed regularization technique discussed in Section 2.2. Numerically, we
employ the spectral cutoff regularization for the outer component (F*)" of the inverse
Born reconstruction Ky, where the input scattering data will be projected onto the disk
PSWFs whose corresponding prolate eigenvalues are larger than a spectral cutoff pa-
rameter o = &||F"||r2(p)—r2(p) with the constant & € (0,1), as defined in (2.11). In
addition, let the inner component A'(p) be defined in (2.7). This yields an upper bound
of |IC1|(z2(B))2—(L2(B))2 and the corresponding radius of convergence for IBS (3.8) is given
in the following theorem.

Theorem 4.2. Let k > 1, M be defined in (4.1), (F*)' be defined in (2.11) with ¢ = 2k
and o = &||F¥|| 125y 12(p) being the cutoff parameter, and A'(p) be defined in (2.7) for
some constants & € (0,1) and € > 0. Then there holds

k

Kille2myz-azm)y? € —F/———,
1K1l r2my2—r2(my)2 < 27 /min(k, 2)

Moreover, the radius of convergence r of the IBS (3.8) satisfies

where 7 = ae*(1 —£72).

> cra(l+ £%>_1]{,‘_%M% min(v/27, QWk_l%M%)
with a constant ¢,y that is independent of ¢, k, M or T.
Proof. By the definition of K, = K] in (2.6), for any f € (L*(B))?, there holds
11 () |2y <IF) |2y 28 | ATE] (222
§||(fk)T||L2(B)—>L2(B) 21612 ||AT<p>||F||f||(L2(B))2

(@l F* |25y 12(8) lmﬂfﬂwwn%

which implies

€2

Il z2my2—2myz < (d||fk||L2<B)eL2(B)>_lm = (FIIF 2 r2m)

where 7 = Ge*(1 — £7%). Now, we derive a lower bound for [|7*]|2(5)-2(m) > d(k) which
yields
I z2myz—amye < (Fd(k) ™ =771

In fact, let f = |B|"2 = 72 such that | fll2(s) = 1, then
_1 i2kp-
1F* (s Pl 22wy = 2||/62k”dy||L2<B>~
B
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By using the Jacobi-Anger expansion [4, (3.112)], we can further decompose ¢2*? as

eV — Jo(2k[plly]) + 2D i" Ju(2K[pl[y]) cos (n(8, — 6,)), (42)

n=1

with 6, and 6, denoting the arguments of y and p respectively. Then we derive that
1
[ evray = [ nizrlpllsldy =2n [ ao2Hlplo)pds
B B 0
-2 -2 2 1y, -1
2kl [ (o) = Ml 2R,
0
and thus
|| F (s )72 = /Bemp'ydylﬂ(g) = |7k~ p[ 7 T (2KIp) 122 s
1
e [ ol a2kl Py = 207 [ 2k
B 0

2k
2
:27r3k_2/ p HJ(p)|Pdp > 27T3k_2—2 min(k, 2) > 47k ? min(k, 2)
0 T

which implies ||F*||(r2(p))2—r2(8))2 = 2y/min(k, 2)k™" := d(k) and thus
7 = 7d(k) = 2+/min(k,2)k 7.
Finally, Corollary 4.2 completes the proof. O

Now, we derive the approximation error of the IBS (3.8) based on the following lemma
established in [8, Theorem 2.4].

Lemma 4.2. Let the assumptions in Theorem 4.2 hold and that the forward and IBS
(3.8) converge. Let 1) denote the sum of the IBS. We assume that

M = max(||¢]| z2myz, 19 2my2) <zt (1— /1= (1 + Cr,) ™),

where Ci, := ||K1l|(12(y2—2(B))2- Then the approzimation error can be bounded by

19 — Z’C Miz2(mye <2u2(1/16C2 + 1(1 — Cragio)) OV

-1
+ (14 (1= = M) )0 ) 10 = KKl ey
where Cy = max (2, Cx,) and Cratio = [|K10||(22(5))2/7-

To provide a more specific upper bound on the approximation error of the IBS (3.8),
we evaluate the ability of the proposed regularized inverse Born approximation to recover
~ and 7 from the Born scattering data in the following lemma.
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Lemma 4.3. Let the assumptions in Theorem 4.2 hold and 1 = (v,n)' € (L*(B))?. Then

for any v and n such that (|lv — 7205 + In — n"‘H%Q(B))% < Oy for some v*,n* €
Spar{ Yy i (-5 2k) | n(2k)| > a} with ¥, .y being the disk PSWEF discussed in Section
2.2, there holds

H([ ICIKl)wH L2(B))2 <3 271'0[ EHQ/JH L2(B))2 —|—5

Proof. The definitions of K; = K] in (2.6) and K; = K, in (2.5) yield

Kufus = (P (A AP Gr0) = (P (L),

Thus, we can decompose ||(I — K1 K1)vY||(12(p))> into two components

(I = K1 K1)Y | 2By

Ip|?
<|(I = (FIF") || r2my)2 + ||(7k)T<(m - 1)fk(P§¢)> l(z2(m))2
Z:IIl + IIQ

For the first term II;, the spectral decomposition of F* given in (2.10) with ¢ = 2k and
the reconstruction formula (2.11) imply

I = (I = (F)F) Nz + 1T = (F)F )l L2
<llv = Z2s) + n = n*ll72(5) < a.

For the second term II,, by the estimate ||(F*)'||r2p)—r2m < o' derived from the
reconstruction formula (2.11), we have

oy /1P oy Ipl?
15 <a 2”(6—2 — D) F" ;9172800 + @ 2”(6_2 — ) F"(0;0) 172 80.0)

2
_an IP
<o) B 12, 0 (sup [P ()2 + sup | P4 (i) ).
€ |p|<e Ip|<e
where
T / pl> 2 / P> T 4
Pl - YL 1| dp=2 Pl pdp=2=
” 2 HLQ(B(O,E)) B0 p m 0 2 pap 36
and

sup |F* (p;y)[* + sup [FF(p;n)|* < /Ie’z’“”yll’r )|dy)? /|e’2'“”|\77 )|dy)?

Ip|<e Ipl<e
§|B|(H’YHL2(B) + HTIHL%B)) = |BHWH(L2(B))2

Combing the above estimates and the identity |B| = 7 gives

H([ K1K1>¢” L2(B))? < 3~ 27TOd EH’wH L2(B))2 +6
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Recall that ¢ denotes the sum of the IBS and
M = max (¢l z2sye, [Pl zzmy2) < pa' (1= V1= 1+ Cx,)7),

where CICl = V2HIC1||(L2(B))2%(L2(B))27 Vo = 2%|B|M_% and Mo = Q%M_%(,uo(k) + M0<€]{})),
with

po(k) = max(1, kb(k), k™ c(k), k*| B|2a(k)),

a(k) = sup,ep |G*(x, )| z28) < k72, b(k) = [|[FF||2my2or2m) < |Bl7(3V2 + (/55) k3

and c(k) = [|[F3 | r2(3)- 282 < |B|z (3v2+,/ %”)k% Based on the estimates in Lemmas
4.2 and 4.3, we can derive the following theorem on the approximation error of the IBS
(3.8).

Theorem 4.3. Let the assumptions in Theorem 4.2 hold and that the forward and IBS
(3.8) converge. Then for any ¢ = (y,n)" € (L*(B))* such that (|y —v*|720m + lIn —

77C“||2L2(B))§ < dy for some v*,n* € span{tmni(-;2k) @ |amn(2k)] > a} with Y, being
the disk PSWF discussed in Section 2.2, the approzimation error of the IBS (3.8) can be
bounded by

N
¥ = 30 K5Oy <24/ 1603 +1(1 = ) 'O
j=1

—1 1
+ (1 +(1-(1- ,U/QM>72)C]C1) (37 z2ma teM + 4y,

where Cy = max (2, Cx,) and Cratio = [|K10||(22(8))2/7-
Proof. 1t follows directly from Lemmas 4.2 and 4.3. m

5 Numerical experiments

In this section, we shall present preliminary numerical results to demonstrate the feasi-
bility of the IBS to recover the perturbations n and «y from noisy scattering data (with
2% relative noise) at two wave frequencies generated from the scattering problem (1.3).

5.1 Data generation

In the numerical experiments below, we consider a unit disk 2 = B. The perturbations
of interest, i.e., y =a — 1 and n = n — 1, are generated by

(i) [Unseparated perturbations]| The weighted sums of Gaussian functions combined
with a mask, given by

J _(@=2q,5)*+(y=va ;)> _ @=rp )2+ (y—yn y)?

J
Y = Xa Z Ca,j€ s and 7= xq Z Cn,j€ 2 . (5.1)

7=1 7=1
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where Yq is the indicator function of €2, the peaks

(Zajs Ya,j) = (Ta; €088, 5,108i00,,) and (Tnj,Ynj) = (Tn,; cOSOy j, 7y SN0, ;)

locate inside the circle of radius 0.5 centered at the origin, and the standard de-
viations 0,; = R,;(8In2)"2 and 0,; = R,;(8In2)72, with ¢, ca; € [0,J71),
Taj,Tnj € [0,0.5), 4, 0,; € [0,27), Ry € (1 — max(|zayl,|vay]))[0.3,1) and
Ry ; € (1 —max(|zy ], [yn;]))[0.3,1) randomly sampled from uniform distributions.
The bounds for rq;,7,,; and R, ;, R, ; guarantee that the significant part of the
Gaussian functions are within the unit circle and are not too concentrated in order
to avoid small inhomogeneities, and the bounds for ¢, j, ¢, ; ensure that the values
of a and n are not too far away from 1.

(ii) [Separated perturbations] The weighted sums of 2 Gaussian functions combined
with a mask, given by

_ <z—z$)2++<y—yi>2 _ (=) %+ (y—yg)?
Y= Xa (c;"@ 2(0q)? + c, € 2(0g )2
ez )%+ (y—uh)? _(e—zp) 2+ (y—yn)?

1= xalere REE g i),

(5.2)

where Yq is the indicator function of €2, the peaks

(zF,yF) =(rq cosf, £ 0.3,7,sin 6, £ 0.3)
and (x5, yF) =(r, cos, £0.3,7,sin6, +0.3)

locate inside the circle of radius 0.8 centered at the origin, and the standard de-
viations 0= = RX(8In2)"2 and o = RE(8In2)"2, with ¢, ¢X € [0,0.5), ro,r, €
[0,0.5), 64,6, € [0,27), Rf € (1 — max(|zF + 0.2],|yF +0.2]))[0.3,1) and RE €
(1 — max(|zf 4+ 0.2|, |y + 0.2]))[0.3,1) randomly sampled from uniform distribu-
tions. The design of the peaks and the bounds for R and RE help separate the
significant part of the Gaussian functions, although not all of them are fully sepa-

rated.

The scattering data at wave frequency k € {5,10,15} are generated by solving the
scattering problem (1.3), where the radiation boundary conditions are implemented using
the perfectly matched layer with order 4, using the Finite Element Method (implemented
in NGsolve, available from https://github.com/NGSolve) with polynomials of order 4 on
a mesh of sizes ﬁ and 7 in {2 and in the air, respectively.

The exact perturbations v and 7 are discretized in the computational domain [—1,1)?
with a equispaced mesh of Ny X Ny points (i.e., Noye X Noyt pixels), while a single scatter-
ing data u®™ is first measured with Ny, receivers and N, sources with the same equiangular
directions {z;, é]}f\;“:l Then the datum u™(Z;,6;; k) on S x S is further transformed to
an (approximately) equivalent datum evaluated at p,, i.e., u™(p,; k) on B, under the
following transformation: Let {¢;,wy, }]T:_Ol be the set of Gauss-Legendre quadrature nodes

and weights, and {0; = 27wy, = %}f‘i o' be the set of trapezoidal quadrature nodes and

2 W,
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weights, then we identity {4/ tj; ! (cos 6;, sin Qi)t}?;ol’i]‘:/fofl by {pn}:M and approximate
u(pn) by
0, — i

2 HZ

A

u(pn) = u™ (4,0 k), where (i*,j%) = argmini’ijn -

Note that the quadrature nodes satisfy that |p,| # 0. We refer the reader to [19] for the
selection of M and T'. In the numerical experiments, we set N;, = Ny = 64.

5.2 Regularized inverse Born approximation

In the following, we provide several results on the capability of the regularized inverse Born
approximation to recover sufficiently small perturbations of the form (5.1), with J = 5 and
magnitudes less than 0.04, from the scattering data u™ at wave frequency k € {5,10, 15}
generated by solving the scattering problem (1.3). After generating, reorganizing and
preprocessing the scattering data with A(p,)~!, we implement the reconstruction formula
(2.11) with ¢ = 2k and a = 0.9||F*|| 12(5)-12(5) = 0.9]ag 0|, which first projects {u(p,) L2
onto the disk PSWFs; see [19] for the explicit algorithms and [18, 19] for the evaluation
of disk PSWFs.

The reconstructions of the perturbations v and 1 generated by the regularized inverse
Born approximation are given in Figure 1. The results indicate that the proposed method
has the capability to recover small perturbations with desirable quality. However, when
the perturbations are relatively large, the inverse Born approximation which relies on
linearized inverse problems may fail to reconstruct the unknown inhomogeneities; see
Figures 3 and 4.

5.3 Regularized inverse Born Series

Now, we discuss the effect of IBS on reconstructing relatively large (unseparated and
separated) perturbations of the forms (5.1) and (5.2), with J = 5 and magnitudes between
0.08 and 0.2, from the scattering data u™ at wave frequency k € {5, 10, 15} generated by
solving the scattering problem (1.3). Based on the estimates on the radius of convergence
of IBS in Theorems 4.1 and 4.2, we select the scattering data at £ = 5 and ¢k = 10
to recover the perturbations v and n for the convergence of IBS. The results of the
reconstructions of separated v and n are given in Figure 3, while the results for unseparated
v and 7 are given in Figure 2. The reconstructions of v and 1 derived from the truncated
IBS 37, K;(¢) for different scattering data (with 2% relative noise) are denoted by 7;
and 7);, respectively.

An improvement (either less or more) in the reconstructions is observed in these ex-
amples. Specifically, the inverse Born approximation locates the perturbations, while the
subsequent terms in the series help recover the magnitude of the perturbations. The
quality of the reconstructions from IBS closely depends on that of the inverse Born ap-
proximation. Based on the observation discussed in [19], the reconstruction obtained from
the proposed regularized inverse Born approximation becomes better when the frequency
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Example 1:

Reconstruction 5,

Groud-truth

Example 3:

Reconstruction -,

1

Groud-truth

Example 2:

Reconsruction

Groud-truth

1 1
{0025 0.025 002 002
05 05 05 X
o002 002 0015 0015
0015 0015
° 0 0.0t 001
001 001
05 05 05 -0
0005 0005 0.005 0.005
Bl o -1 o o E o
4 05 0 05 1 4 05 0 05 1 05 0 05 05 0 05 1
Reconstruction 1, , Groud-truth Reconsruction 1, , Groud-truth 1
002 002 0.025 0025
002 002
05 0015 05 0015 05 05
0015 0015
001 0 00t o
001 001
05 05 05 05
0008 0008 0.005 0.005
o Bl o o Bl o
4 05 0 05 1 405 0 05 1

Example 4:

Reconsruction

Groud-truth 5

1
0035 0085 004 004
003 008
05 0s 0s 008 X 008
0025 0025
002 002 o
002 002
0015 0015
05 001 -05 001 <05 001 -0 001
0.005 0005
o o -1 0 E o
05 0 05 4 05 0 05 1 05 0 05 1
Reconstruction 1 y Reconstruction 1, y
4 Groud-truth 1 | 1 00e | Groud-truth 1 o0t
0025 0025
05 002 . 002 05 003 05 003
oot 0018 0 002 4 002
001 001
05 -0 05 001 05 001
0005 0005
o E o -1 o - o
4 05 0 05 1 4 05 0 05 1 4 05 0 05 1

Figure 1: Reconstructions of v and n derived from the proposed regularized inverse Born
approximation for different scattering data (with 2% relative noise).
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Example 1:

Reconstruction 7, Reconstruction 7, Reconstruction

Reconstruction 7,

Groud-truth 7

Reconstruction 7, Reconstruction 7,

05 0 05 1

Reconstruction -,

1
01

008

006

004

: 002
05 o0 o5 1 °

Reconstruction 7, Reconstruction 7,
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002
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00t
05
0.005
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05 0 05 1

Reconstruction 7,

Reconstruction =, Reconstruction

Groud-truth 1

Reconstruction 1,

05 0 05 1

Reconstruction -, Groud-truth

015 05 015 05 015

01 o1

005 05 005 05 005
4oes o o0s 1 ° 05 0 05 1

Example 3:

Reconstruction =, Reconstruction 7,

1 1
0s o1s o5 os
o1 o1
05 o s s
-05 o 05 1 L 05 0 05 1 ° -05 o 05 1

Reconstruction 1, Reconstruction 1, Reconstruction 1, Groud-truth 5

i or 1 or
o1 o1
05 05
o008 o008
006 006
004 004
X 05 05
00 o
0 0
05 0 05 1 g 05 0 05 1

Figure 2: Reconstructions of v and 7, i.e., 7; and n; that derived from the truncated
IBS for different scattering data (with 2% relative noise) at wave frequencies k = 5 and
Ck = 10, generated with the perturbations of the form (5.2).
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Reconstruction 7,

oce
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00t
o2
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Reconstruction 1,
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Reconstruction 7,
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015
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Reconstruction 1,
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Figure 3: Reconstructions
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Example 1:
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Reconstruction 1,

Reconstruction 1,
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Example 3:

Reconstruction 7

Reconstruction 1,

Example 4:

Reconstruction 7

02
015
01
005
05 0 05 1

Reconstruction 1,

05 0 05 1
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05 0 05 1

Groud-truth 5

5 0 05 1

Reconstruction 1

Reconstruction 4, Groud-truth

Groud-truth
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08 015
01
05 005
o

05 0 05 1

Reconstruction 7, Groud-truth 5

015 05 015
005 05 005
05 0 05 1 05 0 05 1

Reconstruction 1,

Groud-truth 5

4 05 0 05 1

Reconstruction 7,

Groud-truth

02
. 05 015
01
X 05 005
o

05 0 05 1

05 0 05 1

of v and n, i.e., 7; and 7; that derived from

4 05 0 05 1

Reconstruction i, Groud-truth

02
X 015
01
X 005
o
- 5 0 05 1

IBS for different scattering data (with 2% relative noise) at wave frequencies k

(k = 10, generated with the perturbations of the form (5.1
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k increases. As observed in Examples 1-3 of Figure 3, the current wave frequencies may
not be high enough for accurate reconstructions. To improve the quality of the reconstruc-
tions from IBS, we use the scattering data at higher wave frequencies in the regularized
inverse Born approximation. However, higher wave frequencies may lead to the diver-
gence of the IBS due to the estimates in Theorems 4.1 and 4.2. Thus, we investigate the
reconstructions of IBS from the scattering data at wave frequencies k£ = 10 and ¢k = 15,
where the first-order term, i.e., the regularized inverse Born approximation, is evaluated
at k = 10 and ¢k = 15 while other terms are evaluated at £k = 5 or kK = 10 and ¢k = 10
or lk = 15. The results for Examples 1, 2 and 3 in Figure 3 are given in Figures 4, 5 and
6, respectively. Note that although we compute {/C;(¢)}_, at different wave frequencies,
the input data ¢ depends only on the scattering data at £k = 10 and ¢k = 15.

Ka, K3 and K4 with £k =5 and /k = 15:

Reconstruction 7, Reconstruction Reconstruction 7, Groud-truth
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+ 05 o os 1 ° s 0 o5 1 0 s 0 oo o1

Reconstruction 1, Reconstruction 1, Reconstruction 1,

008
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oce
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1 -05 0 05 1 °

Ko and K5 with k& = 10 and ¢k = 15 & K4 with kK =5 and ¢k = 15:
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1 1
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0s 05
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05 002 05

el o -1

4 05 0 05 1 E

Reconstruction

Reconstruction 7,

1

05
004 o
05 002 -05

o 1

Groud-truth 5
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05 005 05
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o 003 o
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001
B} ] A
4 05 0 05 1 4 05 0 05 1
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o -1

1 05 0 05 1 E

Reconstruction ~ Reconstruction 1, Groud-truth

A
1 1
008 008 008
05 05
006 006 006
0 o
004 004 o004
002 05 002 05 002
o Bl o A o
105 0 05 1 4 05 0 05 1 4 05 0 05 1

Reconstruction 1, Reconstruction 1, Reconstruction , Groud-truth

1 1 1
006 006 006 o006
005 05 005 05 00s 05 005
004 004 004 004
003 o 003 0 0.03 0 003
00 e o2 0o

05 05 05

oot oot 001 oo
3 4 3 - o 4 o

105 0 05 1 4 05 0 05 1 4 05 0 05 1 4 05 0 05 1

Figure 4: Reconstructions of v and 7, i.e., 7 and 7; that derived from the truncated
IBS for different scattering data (with 2% relative noise) at wave frequencies k = 10 and
(k = 15, generated with the perturbations of Example 1 in Figure 3.

1
0s 005 05
0
05 05

o 1

On the basis of the above observation, the wave frequencies for the IBS are important
for both its convergence and the quality of the reconstructions. A proper balance is
necessary for accurate recovery of the inhomogeneities.

A Auxiliary estimates

In this appendix, we give several auxiliary estimates that have been used in the conver-
gence analysis of the IBS (3.8). First, we state the proof of Proposition 4.1.
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Ka, K3 and K4 with £ =5 and Ek‘ = 15
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Ko with £k =5 and fk = 15 & K3 and K4 with £k = 5 and ¢k = 10:
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005 05 005 05 005 005 - 005

Figure 5: Reconstructions of v and 7, i.e., 7; and n; that derived from the truncated
IBS for different scattering data (with 2% relative noise) at wave frequencies k = 10 and
Ck = 15, generated with the perturbations of Example 2 in Figure 3.
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Figure 6: Reconstructions
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of v and n, i.e., v; and 7; that derived from the truncated
IBS for different scattering data (with 2% relative noise) at wave frequencies k = 10 and

(k = 15, generated with the perturbations of Example 3 in Figure 3.
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Proof of Proposition 4.1. For any j > 1, it follows directly from a slightly modified
version of recursion (3.6) for u3, where 7 and ~y are replaced by 7; and ~; respectively, as
well as from the definitions of the integral operators F{¥ and F¥ in (3.1) and (3.2), that

32y = 1 F (95 ) + F i) 2o
S i $
S||F1k||(L2(B))2—>L2(B)||%‘V“J'—1||(L2(B))2 +|B|? ||Fé€(77j“j—1)||L°°(B)

S 1 S
<IFf N emyz—rae il =@ Vi ll 2y + | BI2E sup | ; G*(, y)n; (y)u5_ (y)dy|

S 1 S
<b(R) |7l V05 1 2oy + K2 B2 alk) ngl] e ) 1205 [ 2
where a(k) = sup,cp |G*(2, )| 12(5) and b(k) = || Ff | (r2(p)2—12(3) < 0o. Indeed, F} :
(L?*(B))? — L2(B) has a weakly singular kernel and hence is a compact operator with
operator norm ||Ff||(r2(py2—r2(s) < oo. Similarly, with the modified version of recur-

sion (3.6) for Vu$, the definitions of F% and F§ in (3.4) and (3.5), and the estimate
HFI§\|(L2(B))2_>(L2(B))2 < 1 stated in [1, Lemma 2.2], there holds

IVl z2my2 =IF5 (v Vus_y) + Fa(miws_ )2y
< VUl ey + sl 2my—az2mne gl ce sl e
<Ivillzoe () IVU; [l z2(myy> + c(B)Injll ey l|w5 1 [ 2By,

where c(k) = |F5ll23)-2my2 < oo We define aj(k) = |Jufll2s) and b(k) :=
Vsl (z2(B))2, and obtain the following coupled recursions:

1
15(8) <BOE) oy () + K2 B ak) iy (), "
by (k) <Isll e myb1 (k) + (k) s Ly ()
with the initial terms ao(k) = ||u’]|12(p) = |B|z and by(k) = VU || 2 < k|Blz.
Next, by the recursion (3.7) for u;(p; k) = u;(z, 0; k) with the relations ¢ —p = & € S,
we derive that
(93 k)| 2y <IBIZ ik~ F§* (v5(q = p) - Vus_y) + F§* (i) 1<)
1,
<IBJZ (k7 [l mbj1 (k) + 10| o= (my @51 (K))
We suppress the subscripts of ||7;||r~s) and ||7v;||L=(p) in the following analysis. By
noting that Q;j = (u;(p; k), u; (€ 'p; Ek’))t, the above inequality and the coupled recursions
(A.1) imply that
- _ 1
05llcz2cmye = (luy (3 k)20 + llug (€ p; €k) 1 72))
<l (03 F) |2y + [l (€ 3 K || 2 )
<IBJ=2 (K ll1b-1.(k) + Imjllag—1 (k) + (&)~ ;1051 (€k) + lInjllaj—1 (€k)))
:=|B|z (L;(k) + 1;(¢k)),
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where

Li(k) =k~ yillb5-1 (k) + lInjllaj—1 (k)
< (Il ll =+ ko) 1)k~ -1 [1bj-2(k)
+ (K7 (k) sl + K21 BI2ak) msl1) s llaj (k)
< max(1, kb(R), K~e(k), £\ Bl3a(k)) s | + s D+ ()
=0 (k) (sl =+ {175 [T -1 (F),
L (k) <po(CR) (sl =+ [lm; )11 (€K)
with po(k) = max(1, kb(k), k~'c(k), k2| B|2a(k)). Let ¢; = (y;,m;)" for any j > 1, the

Cauchy-Schwarz inequality gives [|;]| + [ln;]| < V2(1y )12 + 1101122 = V2105l =2
and hence

L (k) <V2p0 (k) ||9;]| (zoe (2 Li—1 (k) < (V200 (k) Iy ||| o= (2T ()
<(V2p0(k)) I 2||¢z||(L°°(B 2 (K I [bo(k) + [[m | ao(k))
<| B2 (V20 (k) Ty | e (e (1 | + )
<V2| B2 (V20 (k)Y T |6 1= (52

Finally, by combining above estimates, we obtain

163l zamye <IBIE (L (k) + L (¢h))
<|Blv? (o (kY ™"+ po(CRY )T |16l (poe 2
<IBIVZ (a(k) + pro( k) T [l =y
=vaopils ' TH_, H%’H(L‘"’(B))2
where voo = V2|B| and f1eo = v2(po(k) + 110(¢k)). This completes the proof. O

Next, we provide upper bounds of the coefficients a(k), b(k) and c(k) within Proposi-
tion 4.1 in the following lemma.

Lemma A.1. Let a(k‘) = SUDPgeB ||Gk(x,-)||L2(B), b(k) = ||FFH(L2(B))2*)L2(B) and C(k?) =
IF%| 12(8)—(12(B))2, then for any k > %, there hold

Qk 1 3 1 1 1 1
2k 2k2 3 3
1 3 87 5 1 87 5
and - c(k) S|BJ (2 + 1[5k < IBI2(3v2+ /)42
2

Proof. First, we evaluate a(k). By noting the upper bound of |Hél)(p)| that
1—Inp, 0<p<1,

(_)%a 1 <p
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we derive from the definition G*(x,y) = iHél)(k]:z: —y|) that

1
(R =sup |6 M < [ 1G5 0Py < 5 [ 1 ) Py

zeB

_16/ / [Hg (kp)Ppdpdd < — / |15 (kp) pdp

—1

<3l /k /_ ) HD (kp)Ppdp < < (/ (1—1n(kp))2pdp+/:l %dp)

22— k1), _w, 5  22k—1)
T 1= Inp)2pdp 4+ 2Ky T2 <
S0 /0( wplpdot =) <ol t g ) S e

which implies a(k) < Y2t

Next, we consider b(k) = HF’“H 12(B))2—12(p)- By the definition of F{ in (3.2) and the
identity V,G*(z,y) = — %= g (k|2 — y|) | there holds

4lz— yl

1
IF 2myemrzmy = sup [|FF(E)|lz2m) < 1BIZ - sup  |[|[FF ()| (my

1l (2 (5))2=1 1l (2 (5))2=1

<IBlE s sup [ V.64l dy

HfH(LQ(B))2:1 x€EB

k. .1
L) — sup/\H (klz — y])I£(y)] dy

HfH(L2(B) 2=1z€B

k
::—|B|% sup  supl(z).
HfH(LQ(B))2:1 zeB

Then the upper bound of ]Hl(l)(p)\ that

indicates

_ / \HO (k| — y))|1£(y)] dy

3 /3

X{y\x y|<k— 1}|x—y| 1|f |dy+ /]x—y[ 2|f |dy
7Tk
:—/hlxy|f |dy+\/ /hg:vy|f )| dy
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Next, for any x € B, the Schur’s test ensure that

1 H1[|z2(8)-12(5) <SuP/ hi (2, y)dy </ Xgylyi<k-13 |y~
2B

k— 1
/ / p tpdpdd < 2wkt

and
[ Hallr2()—12(8 )<Sug/ ha(z,y d?/</ vl 2dy
Te
8
/ / “3pdpdf < \f”
Finally, by combining the above estimates and the identity ||f||(z2(p))2 = [/|f|||z2(5), We
obtain
k 3
b(k) =||F|l 22128y < 4|B\ sup  sup (_k’Hl z; |f(y) H2 (x; |£(y)
||\f\||L2<B>71meB m

k
§1|B| (—||H1||L2(B ~eam) A ||H2||L2 B)>L2(B))

3 1
<|B|: (%2 1 3)“-

Following the analysis for b(k), we derive from the definition of F¥ in (3.4) that

33 + 8—7T)k3.

clk) = [|[FX|| o sy < | B2
(k) = [F3llL2B)=(z2(B))? < | |(2k:§ 3

This completes the proof. n

References

[1] S. Arridge, S. Moskow, and J. C. Schotland. Inverse Born series for the Calderon
problem. Inverse Problems, 28(3):035003, 2012.

[2] K. Astala and L. Paivérinta. Calderdén’s inverse conductivity problem in the plane.
Annals of Mathematics (2), 163(1):265-299, 2006.

[3] A. L. Bukhgeim. Recovering a potential from Cauchy data in the two-dimensional
case. Journal of Inverse and Ill-posed Problems, 16(1):19-33, 2008.

[4] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory,
volume 93 of Applied Mathematical Sciences. Springer, Cham, fourth edition, 2019.

28



[5]

[11]

[12]

M. Costabel. On the spectrum of volume integral operators in acoustic scattering. In
C. Constanda and A. Kirsch, editors, Integral Methods in Science and Engineering,
pages 119-127, 2015.

A. Desai, T. Lahivaara, and P. Monk. Neural-enhanced Born approximation for
inverse scattering. Preprint, arXiv:2503.01596, 2025.

F. Gylys-Colwell. An inverse problem for the Helmholtz equation. Inverse Problems,
12(2):139-156, 1996.

J. G. Hoskins and J. C. Schotland. Analysis of the inverse Born series: an approach
through geometric function theory. Inverse Problems, 38(7):074001, 2022.

K. Kilgore, S. Moskow, and J. C. Schotland. Inverse Born series for scalar waves.
Journal of Computational Mathematics, 30(6):601-614, 2012.

S. M. Kimberly Kilgore and J. C. Schotland. Convergence of the Born and inverse
Born series for electromagnetic scattering. Applicable Analysis, 96(10):1737—1748,
2017.

M. Machida and J. C. Schotland. Inverse Born series for the radiative transport
equation. Inverse Problems, 31(9):095009, 2015.

V. A. Markel, J. A. O’Sullivan, and J. C. Schotland. Inverse problem in optical
diffusion tomography: nonlinear inversion formulas. Journal of the Optical Society
of America A, 20(5):903-912, 2003.

S. Meng. Data-driven basis for reconstructing the contrast in inverse scattering:
Picard criterion, regularity, regularization, and stability. SIAM Journal on Applied
Mathematics, 83(5):2003-2026, 2023.

S. Moskow and J. C. Schotland. Convergence and stability of the inverse scattering
series for diffuse waves. Inverse Problems, 24(6):065005, 2008.

S. Moskow and J. C. Schotland. Numerical studies of the inverse Born series for
diffuse waves. Inverse Problems, 25(9):095007, 2009.

R. Ramlau and O. Scherzer, editors. The Radon Transform. De Gruyter, Berlin,
Boston, 2019.

D. Slepian. Prolate spheroidal wave functions, fourier analysis and uncertainty: ex-
tensions to many dimensions; generalized prolate spheroidal functions. Bell System
Technical Journal, 43(6):3009-3057, 1964.

J. Zhang, H. Li, L.-L. Wang, and Z. Zhang. Ball prolate spheroidal wave functions in
arbitrary dimensions. Applied and Computational Harmonic Analysis, 48(2):539-569,
2020.

29



[19] Y. Zhou, L. Audibert, S. Meng, and B. Zhang. Exploring low-rank structure for an
inverse scattering problem with far-field data. Preprint, arXiv:2412.19724, 2024.

[20] Z. Zhou. On the recovery of two function-valued coefficients in the Helmholtz equation

for inverse scattering problems via neural networks. Advances in Computational
Mathematics, 51(12), 2025.

30



