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Motivation

Two disadvantages of DG methods for simple
problems for which standard conforming Galerkin
methods work well (e.g., approximating second order
elliptic problems using triangular or tetrahedral finite
elements) are:

(1) more degrees of freedom needed

(2) bilinear forms for DG method more complicated
because of jump and penalty terms.

However, in some applications, construction of
conforming elements not so easy or requires many
more degrees of freedom than needed for optimal
order approximation.
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Pr on an element enough to get approx of O(hr+1).
When spaces discontinuous, can define functions
directly on physical element.

When some continuity needed, usually define spaces
by mapping from reference element.

Explore difficulties of this procedure.

In particular, what functions do we need on reference
element to produce Pr on the physical element?

For triangles (and tetrahedrons), shape functions
usually Pr. For affine maps, Pr maps to Pr. For
bilinear and trilinear maps, this is not the case.

Additional complications when functions defined by
Piola transform.
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Outline of Talk

1. Scalar quadrilateral finite elements in 2D

2. H(div,Ω) quadrilateral finite elements in 2D

3. H(div,Ω) hexahedral finite elements in 3D

4. H(curl,Ω) hexahedral finite elements in 3D
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Construction: Scalar Finite Elements - 2D

Let K̂ be reference element (unit triangle or square).

Let V̂ be finite dimensional space of functions on K̂,
typically polynomial:
Pr(K̂), polynomials of total degree ≤ r on K̂

or Qr(K̂), polynomials of degree ≤ r on K̂ in each
variable separately.

Let F be an isomorphism of K̂ onto element K, i.e.,
x ∈ K = F (x̂), x̂ ∈ K̂.

For triangular or rectangular finite elements:
F is affine, so x = Bx̂ + b.

When K is a quadrilateral, F is bilinear map, i.e.,

(x, y) = F (x̂, ŷ)

= (a1+ b1x̂+ c1ŷ + d1x̂ŷ, a2+ b2x̂+ c2ŷ + d2x̂ŷ)

For scalar functions, if v̂(x̂) defined on K̂, define:
v(x) on K by v = v̂ ◦ F−1.
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Then for V̂ = shape functions on K̂, define

VF (K) = {v : v = v̂ ◦ F−1, v̂ ∈ V̂ }.

For triangular meshes, if F is affine and V̂ is Pr(K̂),
then VF (K) = Pr(K).

For rectangular meshes, if F has form
(a1x̂ + b1, a2ŷ + b2) and V̂ is Qr(K̂), then
VF (K) = Qr(K).

For quadrilateral meshes, space VF (K) more
complicated.

Example:

F (x̂, ŷ) = (x̂, ŷ(x̂ + 1))

maps unit square to quadrilateral K with
vertices: (0,0), (1,0), (0,1), (1,2).
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So

x̂ = x, ŷ = y/(1 + x).

Suppose V̂ is linear functions on K̂, i.e., span of
1, x̂, ŷ. Since u(x) = û(x̂), VF (K) is span of

1, x, y/(1 + x).

If V̂ is bilinear functions on K̂, i.e., span of 1, x̂, ŷ, x̂ŷ,
then VF (K) is span of

1, x, y/(1 + x), xy/(1 + x).

Key fact: Span of 1, x, y/(1+x) does not contain y.
But span of 1, x, y/(1+x), xy/(1+x) does contain
y since

y = y/(1 + x) + xy/(1 + x).

So in first case, VF (K) does not contain P1.
In second case it does.

Define finite element space as

Sh = { v ∈ L2 | v|K ∈ VF (K), ∀K ∈ Th }.

Interested in best approximation of u by functions in
Sh as a quantity involving powers of h, the maximum
element diameter.
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Scalar approximation on rectangular meshes:

Let Th be uniform mesh of unit square Ω into n2

subsquares when h = 1/n.

Equivalent conditions for optimal order convergence:

Theorem: Let V̂ be a finite dimensional subspace of
L2(K̂), r a non-negative integer. The following
conditions are equivalent:

There is a constant C such that for all u ∈ Hr+1(Ω)

inf
v∈Sh

‖u − v‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω).

inf
v∈Sh

‖u − v‖L2(Ω) = o(hr) for all u ∈ Pr(Ω).

V̂ ⊇ Pr(K̂).

Thus, for optimal order approximation, need
V̂ ⊇ Pr(K̂).

Need stronger condition on quadrilaterals.

Now let Th be family of shape-regular quadrilateral
meshes of Ω.
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Theorem: Let V Th be functions on Ω that ∈ VFK
(K)

when restricted to K ∈ Th. Then V̂ ⊇ Qr is
necessary for condition:

inf
v∈Sh

‖u − v‖L2(Ω) = o(hr) for all u ∈ Pr(Ω).

Proof : Show that for Ω = unit square and simple
sequence of meshes (all elements similar to a single
right trapezoid) and u a polynomial, whenever Qr is
not contained in V̂ , then above estimate violated.

Divide unit square into four congruent trapezoids and
define mesh Th of scaled and translated versions of
these trapezoids.

For error estimate to hold, need VF (K) to contain
Pr(K) for each element K. Relate this to condition
on K̂.
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Key lemma:

Consider following choices of mapping F .

F 1 : x = x̂, y = (1 + x̂)ŷ,

G1 : x = ŷ, y = (1 + ŷ)x̂,

from K̂ to quadrilateral K1 with vertices
(0,0), (1,0), (0,1), and (1,2).

Lemma: Let V̂ be a vectorspace of functions on K̂.
Suppose that VF1(K1) ⊇ Pr(K1) and VG1(K1) ⊇
Pr(K1). Then V̂ ⊇ Qr(K̂).

Proof: case r = 1. Since VF1(K1) ⊇ 1, x, y,
V̂ ⊇ 1, x̂, (1 + x̂)ŷ. Since VG1(K1) ⊇ 1, x, y,
V̂ ⊇ 1, ŷ, (1 + ŷ)x̂. Hence:
V̂ ⊇ 1, x̂, ŷ, x̂ŷ = Q1(K̂).

Implication for optimal order approximation.

Roughly speaking, for optimal O(hr+1)
approximation, require space of functions
defined on K to contain polynomials of degree ≤ r.
By above, this requires condition on space V̂ .
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Using discontinuous quadrilateral elements, only
need Pr defined directly on K for optimal order
approximation.

Mapping from reference element (to construct
continuous elements), need to start with Qr on
reference element to get Pr on physical element K.

Note: for continuity, do not need all of Qr.

Serendipity spaces Sr(K̂):

Sr(K̂) = span of Pr(K̂) together with monomials
x̂rŷ and x̂ŷr.

S2 = P2 + x̂2ŷ + x̂ŷ2 = Q2 − x̂2ŷ2

Eliminate interior degree of freedom, but maintain C0

elements. On rectangles, have O(h3) approximation.
Result implies only O(h2) approximation on
quadrilaterals.
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Stationary Stokes equations:

Choice of bilinearly mapped piecewise continuous Q2

for the two components of velocity and discontinuous
piecewise linear elements (unmapped) for pressure
known to be stable and O(h2) in H1 for velocities
and in L2 for pressure. If pressure elements defined
by composing linear functions on K̂ with bilinear
mappings, would only get O(h) for the pressure.

Nonconforming elements:

For triangular element, simplest is P1 with dof at mid-
points of triangles edges. For rectangles, bilinears
with dof at midpoints of edges not unisolvent.

(x̂ − 1/2)(ŷ − 1/2) = 0 at midpoints of edges.

Alternative: replace basis function x̂ŷ by x̂2 − ŷ2. OK
on rectangles, but now V̂ does not contain Q1, so
degradation of convergence.
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H(div,Ω) Finite Elements

To construct finite element subspaces of H(div,Ω),
need continuity of u · n across element interfaces.
Starting from reference element (unit square) K̂, this
is done using Piola transform defined by:

u = PKû = JF (x̂)−1DF (x̂)û(x̂)

where x = F (x̂) and DF (x̂) is Jacobian matrix of
F and J its determinant.

Transform has property: if u and û related as above
and p(x) = p̂(x̂), then∫

∂K
u · n p ds =

∫
∂K̂

û · n̂ p̂ dŝ.

Best known example of shape functions on reference
square are Raviart-Thomas elements of index r,
V̂ = RT r := Pr+1,r × Pr,r+1.

Other examples are BDMr and BDFMr+1.

BDM1 = span of P1 and vectorfields curl(x̂2
1x̂2)

and curl(x̂1x̂2
2).

BDFM2 = span of P1 and (x1x2,0), (0, x1x2),
(x2

1,0), and (0, x2
2).
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By previous results, if Th = sequence of meshes of
unit square into congruent subsquares of side length
h = 1/n, then

inf
v∈V Th

||u − v||L2(Ω) = o(hr) for all u ∈ Pr(Ω)

(1)
is valid only if V̂ ⊇ Pr(K̂) and the estimate

inf
v∈V Th

‖div u − div v‖L2(Ω) = o(hr) (2)

for all u with div u ∈ Pr(Ω)

is valid only if d̂iv(V̂ ) ⊇ Pr(K̂).

For these estimates to hold for more general
quadrilateral mesh sequences Th, stronger
conditions on V̂ required.
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Define:

Sr = subspace of codimension one of RT r spanned
by vector fields in RT r except two fields (x̂r+1

1 x̂r
2,0)

and (0, x̂r
1x̂r+1

2 ) replaced by single vector field
(x̂r+1

1 x̂r
2,−x̂r

1x̂r+1
2 ).

S0 = (a+bx1, c−bx2), RT 0 = (a+bx1, c+dx2).

Rr = subspace of codimension one of Qr+1, space
of polynomials of degree ≤ r + 1 in each variable
separately, spanned by monomials in Qr+1 except
x̂r+1
1 x̂r+1

2 . (R0 = P1).

Thm: Suppose that estimate (1) holds whenever Th

is a shape-regular sequence of quadrilateral meshes
of a two-dimensional domain Ω. Then V̂ ⊇ Sr.

Thm: Suppose that estimate (2) holds whenever Th

is a shape-regular sequence of quadrilateral meshes
of a two-dimensional domain Ω. Then d̂ivV̂ ⊇ Rr.
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Proof: Take Ω and sequence Th of meshes as before
and prove that whenever V̂ does not contain Sr, there
exists u (again a polynomial) such that

inf
v∈Sh

||u − v||L2(Ω) 6= o(hr).

Key lemmas:

Consider following choices of mapping F . For α > 0,
define

F α : x = x̂, y = (α + x̂)ŷ,

Gα : x = ŷ, y = (α + ŷ)x̂,

from K̂ to quadrilaterals Kα with vertices
(0,0), (1,0), (1,1 + α), and (0, α).

Then, applying Piola transform associated to F

F = F α : û1 = (α + x̂)u1, û2 = −ŷu1 + u2,

F = Gα : û1 = x̂u1 − u2, û2 = −(α + ŷ)u1.
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Lemma: Let V̂ be a space of vectorfields on K̂.
Suppose VF1(K1) and VG1(K1) each
⊇ Pr(K1) and VF2(K2) and VG2(K2) each
⊇ Pr(K2). Then V̂ ⊇ Ŝr(K̂).

Proof by induction on r. The case r = 0 checked
by taking u(x, y) = (1,0) and (0,1). Then V̂ must
contain

(α + x̂,−ŷ), (0,1), (x̂,−(α + ŷ)), (−1,0),

α = 1,2. Spanned by (x̂,−ŷ), (0,1), (1,0).
Precisely RT 0(K̂)/(x̂, ŷ) = P1,0 × P0,1/(x̂, ŷ).

Next consider divergence. Note d̂iv û = J div u.

Recall R̂r = Q̂r+1/x̂r+1ŷr+1.

Lemma: Let V̂ be a space of vectorfields on K̂.
Suppose div VF1(K1) and div VG1(K1) each
⊇ Pr(K1) and div VF2(K2), div VG2(K2) each
⊇ Pr(K2). Then d̂ivV̂ ⊇ R̂r(K̂).

Proof: A simple calculation shows that

JFα = α + x̂, JGα = α + ŷ.

Only look at case r = 0. Taking div u = 1. Easily
follows d̂ivV̂ must contain α + x̂ and α + ŷ for α =
1,2. This space is precisely R̂0(K̂).
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Can show necessary conditions are sufficient
for optimal order approximation with usual seminorm.

For quadrilateral mesh in which quadrilaterals not
necessarily parallelograms, previous best known
estimate, proved by Thomas was

inf
v∈V Th

||u − v||L2(Ω)

≤ Chr+1[|u|r+1 + h|div u|r+1]

Corollary: for RT elements, no longer need second
term on right side of Thomas estimate for optimal
order L2 approximation.

Note, however, Raviart-Thomas elements do not
produce optimal order approximation in H(div,Ω)

on quadrilaterals.
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Situation for BDM and BDFM even worse. Recall
BDFM1 = RT 0. For r ≥ 1

BDMr = P2
r + a curl(x̂r+1ŷ) + b curl(x̂ŷr+1)

BDFMr+1 = P2
r+1 − (0, x̂r+1) − (ŷr+1,0)

RT r = Pr+1,r × Pr,r+1

Sr = RT r − (x̂r+1ŷr, x̂rŷr+1)

dimBDMr = (r + 1)(r + 2) + 2,

dimBDFMr+1 = (r + 2)(r + 3) − 2.

Both < dimSr = 2(r + 1)(r + 2) − 1, so neither
gives optimal order L2 approximation.

Example: r = 1. dimS1 = 11, dimRT 1 = 12,
dimBDM1 = 8, dimBDFM2 = 10.

Spaces BDM1, BDFM2, RT 1, and S1

all contain P1, so all give optimal L2

approximation on rectangles.
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Construction of spaces with optimal order
H(div,Ω) approximation:

For O(hr+1) L2 approximation, require V̂ ⊇ Ŝr.

Now d̂iv Ŝr = Q̂r/x̂rŷr.

Need to have Q̂r+1/x̂r+1ŷr+1.

Achieved for space V̂ = Pr+2,r × Pr,r+2.

For r = 0, this is RT 0 plus two degrees of freedom:

(x̂(1 − x̂),0), (0, ŷ(1 − ŷ))
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Hexahedral finite elements in 3D

Element K constructed by mapping reference
unit cube K̂ using trilinear mapping F given by:

a1+b1x̂+c1ŷ+d1ẑ+e1x̂ŷ+f1ŷẑ+g1ẑx̂+h1x̂ŷẑ,

a2+b2x̂+c2ŷ+d2ẑ+e2x̂ŷ+f2ŷẑ+g2ẑx̂+h2x̂ŷẑ,

a3+b3x̂+c3ŷ+d3ẑ+e3x̂ŷ+f3ŷẑ+g3ẑx̂+h3x̂ŷẑ.

In general, faces of resulting solid are hyperboloids –
not flat.

Results for scalar elements analogous to those in 2D.

Results for H(div,Ω) elements considerably more
complicated.

To define subspaces of H(div,Ω), again use
Piola transform PF associated to map F
defined by:

q(x) = PF q̂(x̂) = J−1
F (x̂)DF (x̂)q̂(x̂).

Inverting this relationship, get

q̂(x̂) = JF (x̂)DF−1(x̂)q(F (x̂)).

20



Determine set of functions V̂ on K̂ such that
PF (V̂ ) ⊇ Pr. Insures approximation of order hr+1.

Consider only case r = 0.

Choose q = (1,0,0), (0,1,0), (0,0,1).

Find that q̂(x̂) has general form

A1 + (D3 − C2)x̂ + C1ŷ + D1ẑ + G1x̂2

+(E2 −G2)x̂ŷ +(E3 −G3)x̂ẑ + H3x̂2ŷ + H2x̂2ẑ,

A2 + B2x̂ + (B1 − D3)ŷ + D2ẑ + G2ŷ2

+(E1 − G1)ŷx̂ − (E3 + G3)ŷẑ − H3x̂ŷ2 + H1ŷ2ẑ,

A3 + B3x̂ + C3ŷ + (C2 − B1)ẑ + G3ẑ2

−(E1 + G1)ẑx̂ − (E2 + G2)ẑŷ − H2x̂ẑ2 − H1ŷẑ2.

21 dimensional subspace of RT 1 (dimension = 36)
on K̂ insures mapped space contains all constant
vectors. Recall: dim RT 0 = 6.

Coefficients not all independent, so lower dimensional
space may suffice (these 21 coefficients are functions
of only 14 parameters).
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Note q · n is polynomial of degree ≤ 1 on each face
and div q = 0. To insure continuity of q · n, specify 3
degrees of freedom on each face, i.e.,

∫
F
(q · n) p ds, p ∈ P1(F ).

If q = 0 at these degrees of freedom, then q will have
form:

q1 = x̂(1 − x̂)[−H3(ŷ − 1/2) − H2(ẑ − 1/2)],

q2 = ŷ(1 − ŷ)[H3(x̂ − 1/2) − H1(ẑ − 1/2)],

q3 = ẑ(1 − ẑ)[H2(x̂ − 1/2) + H1(ŷ − 1/2)].

Defining vectors

r1 := (1/2 − ŷ, x − 1/2,0),

r2 := (1/2 − ẑ,0, x̂ − 1/2),

r3 := (0,1/2 − ẑ, ŷ − 1/2),

final 3 degrees of freedom can be defined by:
∫
K

q · ri dx, i = 1, · · · ,3.
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Next consider simpler situation:

Require both boundary faces and secondary faces
(corresponding to mappings of planes x̂ = 1/2,
ŷ = 1/2, and ẑ = 1/2) to be flat.

To simplify, write F = A ◦ B, where A is an affine
map and B(x̂) is given by

x̄ = B1 = x̂ + E1ŷẑ + F1x̂ẑ + G1x̂ŷ + H1x̂ŷẑ,

ȳ = B2 = ŷ + E2ŷẑ + F2x̂ẑ + G2x̂ŷ + H2x̂ŷẑ,

z̄ = B3 = ẑ + E3ŷẑ + F3x̂ẑ + G3x̂ŷ + H3x̂ŷẑ.

B has property that it maps points (0,0,0), (1,0,0),
(0,1,0), and (0,0,1) to themselves. Composing
with general affine map A, maps these points
arbitrarily.

Since PF = PA ◦ PB, and PA is constant, the space
P−1

F applied to constant vectors is same as space
P−1

B applied to constant vectors. Hence, sufficient to
consider B instead of more general F .
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Plane x̂ = 0 maps to:

x̄ = E1ŷẑ, ȳ = ŷ + E2ŷẑ, z̄ = ẑ + E3ŷẑ

These points lie in a plane if there exists constants
α, β, γ, and δ, not all zero, such that

αx̄ + βȳ + γz̄ = δ.

This requires:

β = 0, γ = 0, αE1 + βE2 + γE3 = 0.

Hence E1 = 0.

Similarly, plane ŷ = 0 maps to a plane if F2 = 0 and
plane ẑ = 0 maps to a plane if G3 = 0.

Plane x̂ = 1 maps to:

x̄ = 1 + F1ẑ + G1ŷ + H1ŷẑ,

ȳ = ŷ + E2ŷẑ + G2ŷ + H2ŷẑ,

z̄ = ẑ + E3ŷẑ + F3ẑ + H3ŷẑ.
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Result is a plane if:

H1(G2 + 1)(F3 + 1) − G1(H2 + E2)(F3 + 1)

−F1(G2 + 1)(H3 + E3) = 0.

Get similar nonlinear conditions on the coefficients to
ensure ŷ = 1, ẑ = 1, and x̂ = 1/2, ŷ = 1/2,
ẑ = 1/2 all map to planes.

Can show if:

G1E2F3(1 + G1)(1 + G1/2)

·(1 + E2)(1 + E2/2)(1 + F3)(1 + F3/2)

+F1G2E3(1 + F1)(1 + F1/2)

·(1 + G2)(1 + G2/2)(1 + E3)(1 + E3/2) 6= 0

then

H1 = F1G1, H2 = E2G2, H3 = E3F3.
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Mapping B then simplifies to:

x̄ = x̂(1 + G1ŷ)(1 + F1ẑ),

ȳ = ŷ(1 + G2x̂)(1 + E2ẑ),

z̄ = ẑ(1 + F3x̂)(1 + E3ŷ).

where remaining coefficients satisfy:

E3F1 + E2G1 − F1G1 = 0,

E2F3 + F1G2 − E2G2 = 0,

G1F3 + G2E3 − E3F3 = 0.

In this case, find that to produce any constant vector
(α, β, γ) for any constrained choices of coefficients
(E2, E3, F1, F3, G1, G2), shape functions on K̂ must
contain:
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(1 + E3ŷ + E2ẑ) · [α(1 + G2x̂)(1 + F3x̂)

− β1x̂(1 + F3x̂) − γF1x̂(1 + G2x̂)],

(1 + F1ẑ + F3x̂) · [−αG2ŷ(1 + E3ŷ)

+ β(1 + G1ŷ)(1 + E3ŷ) − γE2ŷ(1 + G1ŷ)],

(1 + G2x̂ + G1ŷ) · [−αF3ẑ(1 + E2ẑ)

− βE3ẑ(1 + F1ẑ) + γ(1 + F1ẑ)(1 + E2ẑ)]

9 parameters subject to 3 constraints.

Not so easy to see how to choose basis functions
independent of coefficients.

Work of Russell et al: chooses a local space of
dimension 6, but basis functions depend on particular
mapping F to physical element K.
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H(curl,Ω) Finite Elements

These elements are defined using the transformation:

u(F (x̂)) = (DF )−T (x̂)û(x̂).

Inverting this relation, have

û = DF Tu

Using this formula, easily determine space V̂ on K̂

so that corresponding VF (K) contains all constant
vectors.

Span of:

(1,0,0), (0,1,0), (0,0,1), (ŷ, x̂,0),

(ẑ,0, x̂), (0, ẑ, ŷ), (ŷẑ, x̂ẑ, x̂ŷ)

Note that lowest order Nédélec space

N0 = P0,1,1 × P1,0,1 × P1,1,0

contains necessary functions so is first order accurate
on elements obtained by trilinear mapping.
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Can also show that Nédélec space

P1,2,2 × P2,1,2 × P2,2,1

is second order convergent in L2.

For approximation of Maxwell’s equations, also want
first order approximation of curlu. Now

ˆcurlû = J(DF )−1 curlu.

Hence ˆcurlV̂ must contain J(DF )−1P0.

Precisely same calculation made for H(div,Ω)

(21 dimensional space in general case).

But curlN0 is span of:

(1,0,0), (0,1,0), (0,0,1), (x,−y,0), (−x,0, z).

So many more degrees of freedom must be added for
hexahedrons.
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