
SIAM J. NUMER. ANAL.
Vol. 13, No. 5, October 1976

A PENALTY AND EXTRAPOLATION
METHOD FOR THE STATIONARY STOKES EQUATIONS*

RICHARD S. FALKt AND J. THOMAS KINGS

Abstract. A penalty-extrapolation procedure is analyzed for avoiding the problem of the
construction of trial functions satisfying divv=0 and v=0 on 0f in the approximation of the
stationary Stokes equations.

1. Introduction. In using finite element methods to approximate the solu-
tion of Stokes equations, a major difficulty is the construction of trial functions
satisfying div v 0, or some other condition which approximates it. This problem
is compounded by the fact that the trial functions must also vanish on the
boundary.

In this paper we analyze a "penalty method" for avoiding both these
problems and show how extrapolation can be used to improve the order of
accuracy of the approximate solution while using matrices with lower condition
numbers than arise in the simple penalty method.

The idea is based on a paper of J.T. King [7], where extrapolation procedures
are used to achieve optimal accuracy in the Aubin-Babu,ka penalty method for
the approximation of elliptic boundary value problems with Dirichlet type
boundary condition.

In this paper we consider the approximation of the stationary Stokes equa-
tions, i.e.,

Problem (P). Find u= (ul, , uN) and p defined on f such that

vAu+ grad p f in [2,

divu=0 inf,,

u=0 on

where u is the fluid velocity, p is the pressure, f is the body force per unit mass and
u > 0 is the dynamic viscosity.

The literature on the theory and numerical analysis of the Navier-Stokes
equations is immense. We mention the recent work of Crouzeix and Raviart [4] on
.a finite element method for the problem we consider here and also the work of
Temam [10] which contains results we use in this paper and also an excellent
bibliography. In Falk [6] another type of "penalty method" is used to obtain
optimal error estimates for this problem, and in Falk [5] the techniques we will use
in this paper were exploited to obtain results for this problem in the case where the
trial functions do satisfy the botmdary conditions.

An outline of the paper is as follows. In 2 we describe the notation to be
used in the remainder of the paper. Section 3 contains the description of the
approximate problem and the derivation of error estimates. Finally, in 4, we
make some comments about the method.
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STATIONARY STOKES EQUATIONS 815

2. Notation. Let f be a bounded domain in N with "smooth" boundary,
0f. For fl=>0 let H(2) and Ht(O2) denote the Sobolev spaces of order/3 on 1
and 012, respectively, with associated norms [[. I1 and l. I, respectively. For
definitions and characterizations of these spaces, the conventions of [9] are
adopted.

For L2(O) and L2(0O) we will denote the inner products by

(u, v)= Ia uv dx

and

(u, v)= Ioa uv dF,

respectively.
We will also need the spaces H() for/3 < O. For q C(1) and/3 < O, we

define

sup

Then Ha(2), for/3 < 0 is defined as the completion of C(fi) with respect to the
above norm.

We now define corresponding spaces for vector-valued functions v=
(Vl," ", vN). Let [HE (f)]N be the space of vwith components vi in H(f) and let

i=1

The scalar product in [L()] is given by

(u, v)= u" v dx Z uivi dx.
i=1

The spaces [H(0O)]u are defined in a similar fashion.
Finally for convenience we introduce the bilinear form

f 3u

= OXl Oxt
defined on [H(O)]u x [Ha(O)]u and the corresponding seminorm

3. Approximate problem and error estimates. We begin our discussion with
a description of the class of finite-dimensional spaces we will use in the
approximation of Problem (P):

Let h, 0< h < 1, be a parameter and r_>-2 an integer. Let S/, be any one
parameter family of finite-dimensional subspaces of H() having the following
approximation property:
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816 RICHARD S. FALK AND J. THOMAS KING

(I) For any u Ht(12), /3 _-> 1, there exists ti S, such that

Ilu all0 + hllu -/i[11 ChSllull,
where s min(/3, r) and C is a constant independent of h and u. Many examples of
subspaces satisfying (I), for various choices of r, may be found in the literature. We
refer the reader to the list cited in [1, Chap. 4].

The approximate problem we will consider for the approximation of Problem
(P) is given by:

Problem (Ph). Find I1h [S]N such that for every Vh e [S],
a(llh, Vh) + 3"h-l(div uh, div vh) + 3"h-cr2(llh, Yh) ([, Yh),

where 3’ > 0, trl _>- 0, tr2 _-> 0 are constants.
We now turn our attention to the derivation of estimates which relate the

quantities Uh and u. These will immediately give error estimates for the penalty
method (Ph) and also will serve as the crucial preliminary result for the derivation
of the error estimates for extrapolation applied to Problem (Ph).

To obtain these results we need to make use of a regularity result for the
solution of the generalized Stokes problem and also some well-known results
from partial differential equations. We state these results without proof for the
convenience of the reader. Following that, we prove two lemmas which we will
need to establish our main results.

LEMMA 1 (see Temam [10]). Let f be an open bounded set of class C3, fl >-2
an integer, and let e [H-2(2)]u, g e H-I(o), andd [H-(I/2)(OfD]I, where.

Iagdx=I *’dF,

1 unit outward normal.
Then there exists unique [unctions u and p (p is unique up to a constant) which

are solutions of the generalized Stokes problem:

-vAu+gradp=t in

div u g in

u dO on

with [H(fD]u, p H-(O) and satisfy the estimate

Ilull. + Ilpll-,)/. -< Co{lltll.-2 + Ilgll-, +14, I-<,
where Co is a constant depending only on ,, and 1) and

Ilpll (-)/= inf lip + c11-1.c

LZMMA 2 (cf. [9]). Let u Ht(12), >1/2. Then there exists’ a trace of the
function u on O and

where C is a constant independent of u.
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STATIONARY STOKES EQUATIONS 817

LEMMA 3 (cf. [9]). Let u Ho(), >. Then there exists a trace Ou/Orl on Oil
and

Ou

t3-(3/2)

where C is a constant independent of u, and OulOrl denotes the normal derivative of

LEMMA 4 (cf. [7]). For u [HI()]N, there exists a constant Cindependent of u,
such that

I1,,11--< C{a(, ) +
We remark that C will be used to denote a positive constant not necessarily

the same in any two places.
LEMMA 5 (cf. [3]). For u HI(f) and e >0, there is a constant C independent

of u and e such that

lulg -<- llullg + c-’ll ull,.
LEMMA 6. Let u [Ht (f)]N, fl => 1. Then there exists a v e [S]rv such that

I1 -,11. + [Yh-o-’](1/2)lldiv (n-,)llo + [3,h-q(’/z)l-
1/2hS-l-0-,/2 T1 s-1<-C[hs ’+V + /2h

where s min (, r) and C is a constant independent of h and u.

Pro@ The lemma follows from the approximability assumption (I), Lemma 5
h-1with e and the fact that

Ildiv 11o--< CI1111.
10"2--0"LEMMA 7. Let I[H-2(12)]N, /3 >2 and let (um, p")=(z’+ n w

Qm + h0"z--0"aqm), 1 <= m <-- - 1, where (zm, Ore) and (w", qm) are the respective
solutions of the following generalized Stokes problems:

(A)

’AZ + grad Q" 0 in fL
div z __pro-1 in f,

zm= [(1 Ia m--, ]oa) -P ax , on 01).

-yAw +grad qm =0 in fL

(B)

and

(D)

div w p -u’ dF
(a) a on

oIIm--1
w P 1,11 V on 0,

.(oa) -Pm-ldx h(0-2-0-,) 110 (m-l=p "1) dF,
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8[8 RICHARD S. FALK AND J. THOMAS KING

where tx(f) and tx(Of) denote the N- and (N- 1)-dimensional measures of and
OFt, respectively, and (u, pO)= (u, p). Then

m=l,...,fl-1,

and

for some constant C independent of h and f C will depend on m).
Proof. We first note that by Lemma 1, 0 and qm and hence pm are

determined uniquely up to a constant. This constant is then specified by condition
(D). It will also be necessary to make use of solutions of problems (A) and (B) with
different normalizations. We denote by Q, and q, the respective solutions of
problems (A) and (B) with the normalizations

I Ia Odx =0, aq* dx =0, m_-> 1.

0"2--’0"Let p, 0, + h q,, m
_

1, and define constants D" by

p =p,+D

For m 0, let p* denote the solution of Problem (P) such that IaP* dx 0, and p
the solution of Problem (P) satisfying condition (D).

Then using condition (D), it is easily seen that for m _-> 1,

Dm-1
/x(f____)

__
h 2(0"2-0",)

.n)dr

Hence

(3.1)
IO ( m--1 ollm--1

p,

.<_- C([)h2(o-2--0.’) Oil
m-1

m--1p, -v .
_<= C(ft)h:(:--l)[llp’-’li, + II, m-’ll ]

1) dF

(using Lemmas 2 and 3).
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STATIONARY STOKES EQUATIONS 819

By Lemma 1, (zm, Om) [Ht-"+ (-)]N X H]-m(1) and

II"mll-m+ +llOll-m

[ 1 ja m--1 ]Co Ilpm-lll_m + -p dx I[-m+(/2)

(3.2) Co[lip;-1 II-m + llo-llo+ .(a) ]

CoC()[]lp2-’ ]- + hZ(=-’)(llp2- II
where we have used (3.1).

Also by Lemma 1, (w, qm)[H-m()]NXH--() and we have the
estimate

_-<Co
(a)

(3.3)

, 1/2r(_( ,))_
-’-’L

I0 (p,-a aura-1
-v "q)dF

n Or/
+pm-1

-p dx h 2(’1--0"2)

<= CoC(a)[lDm-’lh2(0’’-0.2) -+-IIp-lll- + ]vm-ll -}-I]m-lll-+l]

(using Lemmas 2 and 3)

<--_ CoC(1)[[[p-l[[a / [[m-l[[2 +llp-lllt_m
Hence for /3--> m + 1,

m--1(3.4) <---- CoC(a)[llp, II- +11,:-’11-+, + h2(o.2-o’’)(llp,’’-llll

It easily follows from (3.2) and (3.4) that

Ilzmll-m+a / IIoI]-m <-[CoC(tl)]m[lIp,ll-a /llulIA
--< filmily-2 (by Lemma 1)

and from (3.3) and (3.4) that

--< cIlll-2
a,gain by Lemma 1.
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820 RICHARD S. FALK AND J. THOMAS KING

THEOREM 1. Let (u, p) be the solution of Problem (P) witht [H(O)]N and
Uh the solution of Problem (Ph)- Let (u", p’), m _--> 1, be as defined in Lemma 7.
en Uh minimizes over [S]s the functional (in )

T(u, 0, +)= {a(+-u-,,

+ vh-+-n- -[V-h,]+au+l}a/2
where k N -2.

Pro@ Integrating by parts, we easily see that the exact solution (u, p) satisfies

a(n,v)-(p, div v)+ p-u v =(t,v) Vve[H(a)]
0’

along with div 0 in and 0 on 0. The approximate solution Uh satisfies

2a(nh, Vh) + yh-(div Uh, div Vh) + yh (nh, Vh)

(, h) h e [S]N.
Hence

a(nh --, Vh) + yh-(diV(h -), div Vh) + yh-(h --, Vh)

+(p, divvh)-- p--P Vh =0 ih_kOhj

Letting e Uh--, we may rewrite the above as

a(e, Vh)+Th-(div e+T- h p, divvh)

+Th- e-T h ’--v/,Vh =0.

It follows easily from the definitions of (zm, Ore), (, qm) that

a(zm,v)-(Om divv)+ O- v =0
0’

and

a (’t"m, ) (q div v) + q 1- v v 0
Or/’

for all v e [HI(’)]N. Hence from the definition of (11m, pm) we have

a(u ,v)(p divv)+(p’l /] V 0"
Or/’

Using the definitions of z and wm, we get

a (um, r) + (div Zm+1, div v) + (wm+, v) 0
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STATIONARY STOKES EQUATIONS 821

and hence that
a(u, v) + (div u+x, div v) + hl-(u+, v)

h-(divw+a, div v)- hl-(z+, v) O.
If we use the divergence theorem and condition (D) on p"*, the last two terms
cancel, and we are left with

a(u, v) + (div um+a, div v) + h-(um+, v) 0

for all v [H1(1-)]N.
Multiplying the above equation by IT-h’] and summing from m 1,

k- 1, we obtain

a ’. [’y-lhrxJmum, v +yh-’ div ’. [T-lh divv
m=l m=l

-I-3h-’ [/-lh]m+um+l, =0

or

(3.6)

Now

a E [’Y- hO’l]muttl, V +h-rl div [-1h’’]mum, div v
m---1 m=l

/’yh-’2( [,y- h’]mum, v) a ([,y- h rl]kuk, v) (div u1, divv)
m=l

hl-2(ul, V) 0.

-a([T-1h’]ku, v)- (div U1, div v)- h1-2(u1, v)
(3.7) /h-’(div[/-lh’]k+lu+l, div v)

+ 3’h-([- h]k+ + }+ (p, div ) p

(using the definitions of (, p) and condition (D)).

Set # 2= [-h]-en it follows easily from (3.5), (3.6) and (3.7)
that

a(e-, h)+ h-(div(e #-[-h]++), div h)

+ h-(e_Ok __[-1 hl]k+luk+l, Vh 0

for all vh [S]S. is implies that Uh minimizes over [S] the functional (in &)

Tk(U, gk, {b)= {a(b--u--, {b--u--,)

+ ,,/h-,,[ldiv(b u_g [,.y-1 h],,/d/,)llg
+ vh-=l&-u-, -[,-hl]k+luk+ll}l/2"

THEOREM 2. Let (um, pm), m 0, 1,..., k / 1, and gSk be as defined in the
proof of Theorem 1. Suppose t [Ht3-2()]N, 2 < , 2 -- r and 1 <= k <- - 2. Then
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822 RICHARD S. FALK AND J. THOMAS KING

for 0"2 1 + 0"1 (the "optimal" choice),

(3.8) IIh --e, ll, ----< Ch"’llll-=,
where

/z (o-a)- min Is- 1- 0"1/2, 0"1(k + 1), s- 0"a/2 +(0"1-1)(k + 1)],

s min fl, r) and Cis a constant independent ofh and t (but dependenton and k).
Proofi By the triangle inequality and Lemma 4, we have

From Theorem 1, we have that

for all [S;,]u.
Now

T,(., Ok, +)-<11+---*11
+[h-’]’/lldiv( e -[-’h’]+’’ +’)11o
+ [h-q’/l+--, -[-’h,]+’+’ [o"

Set + b+Y.=+) {X + h-’} where 60, Xi, i [S/.]N. Using the norm

][Ivl]lv I]v]l + [yh-’]a/21]div V]lo + [yh-a]l/21Vlo,
the triangle inequality and Theorem 1, we obtain

II----,ll,--< c{lll+-,,lll
+[v-,h=,]+,(ll.+,ll + i.+’1o)

(3.9)
+ X [v-’h’Y[lllx-,/lll + h-’lllg;-wlll}.

Using Lemmas 1, 2 and 6, we obtain from (3.9)

I1-, -.,11. <={[Chs- + CY /2hs-’-’/2 + CY /2hs- /2-/2]
-[- C[,y-lh o1]k+l
k+l

+ , [’y-h"]i([Chs-i+c,yl/2hs-i-l/2
=1

._[_ c,yl/2h S-j+ l/2-o-2/2

+ h2-,[ChS-J-1 + C,y1/Zh s-j-l-l/2

(3.10) + cvl/2hS-j-1/2-o-2/2])}llfll3_2
<={c’yl/2hS-l-"/2[1 -Jr" h-(1/2)[-a-r’-l]] -ff C[/-1hr]k+l

+ Cy/ZhS-,/2[1 + h-(/2)[--,-]][1 + h[r2-r,-1]]
k+l

Z [-1h(’-l)]j} 1111-2.
=1
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STATIONARY STOKES EQUATIONS 823

Now for 0-2- 0-1-1 -> 0, the right-hand side of (3.10) is bounded by

C{3/1/2hs-l-crl/2-(1/2)(2-l-1)-JI- [3/-1hl]k+l
k+l

-[- 3/1/2hS-1/2-1/2[2-1-1] Z [3/-1h,-,];}lltll_.
j=l

Hence the best choice of 0"2 is as small as possible, i.e., 0"2 1 + 0"1. Now for
0"2-0"1-1 _-< 0 we have

+1llUh --< c{3/1/2hS-1-"/2-t-[3/- h’]
k+l

4r- 3/1/2hS-1/2+(2-1-1) E
j=l

Hence the bes.t choice of 0"2 is as large as possible, i.e., O" "]" 1.
In either case then, the best choice is 0-2 0-1 + 1, for which we obtain-

Theorem 2 follows immediately.
Remark. One easily sees that Theorems 1 and 2 hold also when k 0 with the

interpretation that qk 0. Hence with 0-2 1 -[-0-1, we obtain

where - min [s 1 0"1/2, 0"1]
(s- 1) for which we obtain

(s min (/3, r)). The best choice for 0"1 is 0"1

Thus this special case of our theorem gives an order of convergence estimate for
the "penalty method" without extrapolation.

Using Theorem 2, we can now show how extrapolation can be used to obtain
approximate solutions with higher order of accuracy than given above.

Let yo,’" ", 3/m be distinct and choose ao," ", a. so that

(3.11)
Z ai =1,
i=0

X ai/- O,
i=0

l<__]<-m.
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824 RICHARD S. FALK AND J. THOMAS KING

We define um)==o aUCh)(Y) where u)(y) is the solution of Problem (P) with
--o’boundary weights 7h yh We remark that the coefficients a exist and are

unique as the system (3.11) is a Vandermonde.
In the case that 2iT for some > 0, we can give an explicit definition of

the ruth extrapolate, u).
Define

U)(T) 2_1 ]1.

We can then prove the following:
THEOREM 3. Assume the hypotheses of Theorem 2 hold. Then

where

/d, (O’1) max min Is- 1-o’1/2, 0"1(k -t- 1), s-0"1/2 --I-(0"1-1)(k + 1)]
0_<--k <=min(m, /3-2)

and C is a constant independent of o’l, h and t (but dependent on rn and ,). We have
assumed 0"2 1 + 0"1.

Proof. For 0_< k<_min (m, fl-2), we have from (3.11) that

k

E a, (u Uh)(2i3’) + Z [2-iT-lh]iui)llx
i=o

i=0

using (3.8). Hence

where

/x (0-a) max ]A,k (0-1).
O<-k =<min(m, /3-2)

COROLLARY 3.1. For 0_--<min(m,/3-2)=<s-2 the optimal choice of 0"1 in
Theorem 3 is given by

for which we obtain

where

s-1
0"1= k+3/2

/z (s-1)(k + 1)/(k +),
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STATIONARY STOKES EQUATIONS 825

k rain(m,/3-2), s min(/3, r) and C is a constant independent of h and f (but
dependent on m and 7).

For s- 1 _-< min(m, /3 2) the optimal choice of 0-i in Theorem 3 is given by
0-1 (S- 1)/$ for which we obtain

I1,,- -<-
where

(s-1)(2s-1)
2s

(Note that this second case can only occur when/3_-> r + 1.)
Proof. From Theorem 3, we have that

Ilu- u’)(,)lll __< Ch’,)llll_2.

Let

We first observe that

max/xk (0-1).
0-10

tXk --<_max min [s- 1 -o-1/2, 0-1(k + 1)].
o-1__>0

Since s-l-0-1/2 decreases as 0-1 increases and 0-1(k 4-1) increases when 0-1
increases, we have that

max min [s- 1-0-1/2, 0-1(k + 1)]= (s- 1)(k + 1)/(k +);
0-1_-->0

that is, the maximum occurs when s- 1-(0-1/2) 0-1(k + 1), i.e.,

Hence

s-1
0-1-- k+g

s-1
/Xk < 3 (k + 1).=k+

We now show/Xk achieves this value for 0-1 (S 1)/(k +) for all 0 _-< k _-< s 2. To
do so we need only establish that

S 0-1/2 + (or1-- 1)(k + 1) -
for 0-1 (S- 1)/(k +). This will imply that

(s- 1)(k+ 1)

3 (k+l).]A’k
"1- k +
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826 RICHARD S. FALK AND J. THOMAS KING

Now for 0 =< k =< s , we have s 1 -> k + 1/2 and hence

(s 1)(k + 1) => (k + 1/2)(k + 1) -> k(k

so that

Now

(s-1)(k+l)>k"
k +-

s trl/2 +((7" 1)(k - 1)= (s- 1- rl/2) + crl(k + 1)- k

=2[(s-1)(k+l)]k+ -k
:>
(s- 1)(k + 1) by the above.

Let/z maxo__<k__<min(m,/3-2)/-tk- Clearly/Zk increases with increasing k. Hence for
0 <- min(m, fl- 2) <_- s 2, the optimal choice is

s-1 s-1
trl=-k+ and =k/(k+l),

where k min(m,/3- 2).
Now for s 1 _-< k _-</3- 2 we have s 1 k _-< 0 so that 1/2oh _-> s 1 k and

hence Ol(k+l)>-s-l-k+O’l(k+1/2). Hence /zk (trl) minis 1 trl/2,
s-o"l/2+(oh-1)(k+l)]. This minimum occurs when s-1--rl/2=
s o"1/2 +(trl- 1)(k + 1), i.e., trl k/(k + 1) for which we obtain

(k) k
/k k+l =s-l-2(k+l)"

Since/ decreases with increasing k in this range, to determine/ and the optimal
cry, when s- 1 min(m, fl-2), we need only compare the two choices k s- 2,
rl (s- 1)/(k +),/z =[(s- 1)/(k +)](k + 1) and k s- 1, rl k/(k + 1),/
s-l-k/(2(k+l)). The first choice of k gives o-l=(s-1)/(s-1/2), 04,

[(s 1)/(s -1/2)](s- 1). The second choice gives o- (s- 1)/s, P,k

S 1 --(S 1)/2S. Now 2s2- 2s _<-- 2s2- 2s + 1/2 so that 2s(s 1) =< (s -1/2)(2s 1) and
hence (s-1)(s-1)/(s-1/2)<=(s-1)(2s-1)/2s=(s-1)-(s-1)/2s. Hence for
s- 1 min(m, fl-2), the optimal choice of rl is (s- 1)/s with the corresponding
t (s-1)(2s-1)/2s.

From Corollary 3.1, one observes that the optimal choice of o’1 depends on
the regularity of the solution. We now examine the question of whether the
convergence of the method is affected if one incorrectly assumes too high a degree
of regularity for the solution and bases the choice of rl on that assumption.

Suppose then, that u6[H/3()], 2/3, but we assume incorrectly that
u[HO()], p >/. Further suppose we do m extrapolations, choosing the
optimal rl for our mistaken regularity assumption; i.e., for 0min(m, p-2)
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STATIONARY STOKES EQUATIONS 827

min(p, r)- 2, we choose

(3.12) o"1
min (p, r)- 1

min (m, p 2) +’
and for r 1 -< min (m, p 2), we choose

(3.13)

By Theorem 3,

where/x(o’l) maxo_k-2/zk(o’l) and

]d,k(O’l) =min Is- 1-r/2, rl(k + 1), s-o’l/2 + (o’1 1)(k + 1)], s min (/3, r),

We first note that for/3 >- r -> 2, it follows easily that using the o’1 described above,
tz0(r) and hence tz(rl)>0. The troublesome case occurs for 2-</3 < r. In this
case, tzg(crl)=min [/3-1-r/2, r(k +1),/3-r/2+(rf-1)(k + 1)]. Since/3-
o-1/2+(o-1-1)(k + 1)=/3- k- 1 +O’l(k +1/2) and 0<=k-</3-2, tz(o-1)will be>0
if/3-1-(rl/2) >0, i.e., if o"1 <2(/3-1).

If rl is chosen equal to (r- 1)/r (the case where r- 1 -<min (m, p- 2)), then
clearly rl < 1 _-< 2(/3-1).

For 0 <_-min (m, p- 2)-<min (p, r)-2, we had

Hence we require

min(p, r)- 1
O"

min (m, p-2)+"

min (p, r)- 1
min m, p 2) +

< 2(/3 1 ).

Here the worst case occurs when m-<r-2=<p-2. We then require
(r-1)/(m+)<-2(-l). For /-2 this will be assured if m+>(r-.1)/2, i.e.,
m>(r-4)/2.

An example of the problem discussed above occurs when/3 2, but p r 4;
i.e., we are using piecewise cubics and mistakenly assuming u [H4(f)]N instead
of the correct regularity [H2(O)]N. If we plan to do no extrapolations, then
choosing rl by (3.12), we would have rl 2, and hence would not be guaranteed
convergence of the method since s 1 rl/2 0. However, if we had decided to
do one extrapolation and again chose o’1 by (3.12), then we would have rl 5

6- and
convergence would be guaranteed.

Summing up, we are guaranteed convergence as long as

0" < 2[min (/3, r)- 1].
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828 RICHARD S. FAt,K AND J. THOMAS KING

Since/3 -> 2 and r ->_ 2, choosing 0-1 < 2 will be sufficient. If 0-1 is chosen according to
the optimal formulas (3.12) and (3.13) based on the regularity and number of
extrapolations performed, then no matter what regularity we incorrectly assume
for the solution, we are guaranteed convergence provided we base the choice of 0-1
on doing more than (r-4)/2 extrapolations.

Examples for Corollary 3.1 are given by the following.
For /3 4 and using a subspace of type [S]N (e.g., piecewise cubics) we

obtain for k =0, 1 and 2 and the corresponding optimal choices of 0-1, the
following error bounds for Ilu- U(h)()lll of the form Ch"llfll-2.

k 0-1 ill,

0 2 2
6 12

6 182 ff 7

For/3 _--> 5 one additional extrapolate gives improvement

3 21k=3, 0-1=, Ix=.

Thus extrapolation gives an improvement in the order of accuracy and also,
since O’a is decreasing, in the condition number of the matrix used to compute the
approximate solution. (Using standard techniques it is easy to show that the
condition number is O(h-2-1) for 0-2 1 + 0-a.)

We also remark that it is shown in Falk [5] that if the trial functions satisfy the
boundary conditions, then additional extrapolations can be used to further
increase the order of accuracy and further lower the condition number.

Using a variant of the Nitsche duality argument, we can derive error
estimates in lower norms for the extrapolated penalty method.

THEOREM 4. Suppose f 6 [Ht-2()]N, 2 <-- fl, 2 <-- r, and 0 <- <- fl 2. Thenfor
0"2 14-01, Ol >-2,

Ilu uL C[h x,+x, 4- h rl (t+ l]llfll_2,

whe.re At rain [s 1-(0-1/2), 0-1(t + 1), s-(0-1/2)+(o1-1)(t+ 1)], s =min (r,/3)
and h =min [min (a, r)- l-(0-1/2), 0-1(/+1), min (a, r)-(0-1/2)+(0-1-1).
(l+l)],O<-_l<-a-2.

Proof. The proof follows in a manner analogous to that of Theorem 2 by
introducing a sequence of auxiliary generalized Stokes problems and using the
orthogonality conditions derived in Theorem 1. We omit the technical details.

Remark. For 0<_-k <_-s- 2, if 0" "--(S- 1)/(k +), (the optimal choice for the
11" [[1 norm estimate) then there will be no improvement in accuracy in lower norms
unless > k.

As an example, let us consider the error in the L2-norm (a 2) using a
subspace of type [S]N (e.g., cubic splines). Choosing 0"1 as the optimal choice for
1-norm error estimates, we get the following error bounds for [[u-u,(3)[[0 of the

D
ow

nl
oa

de
d 

04
/1

9/
24

 to
 4

7.
18

.1
02

.1
88

 b
y 

R
ic

ha
rd

 F
al

k 
(f

al
k@

m
at

h.
ru

tg
er

s.
ed

u)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



STATIONARY STOKES EQUATIONS 829

form Ch ll ll _2.
k rl 6

0 _->4 0 2 2
6 121 _->4 1

2 _->4 2 6
7 7
33 _->5 3 3
33 _->6 4 3

2 _->5 3 7 7

4. Comments. The extrapolated penalty method presented here for obtain-
ing approximations to the stationary Stokes equations has the following features:

(i) The trial functions are not required to satisfy any auxiliary conditions such
as div v 0 or v 0 on 0fl.

(ii) By using extrapolation, one can achieve higher accuracy using matrices
with lower condition numbers than arise in the "simple" penalty method.

(iii) Although several linear systems must be solved to obtain the extrapo-
lated approximate solution, no other inner products need be computed than the
ones already required in the "simple" penalty method.
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