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A major difficulty in the finite element method
for approximating Stokes equations is the treatment of
the incompressibility condition div ¥ = 0. In this
paper we use a penalty method approach to eliminate
this problem and then show how extrapolation can be
used to compute approximate sclutions with higher order
of accuracy using matrices with lower condition numbers
than arise in the simple penalty method.

Introduction

In using finite element methods to approximate the
solution of Stokes equations, a major difficulty is the
construction of trial functions satisfying div v = 0,
or some other condition which approximates it.

In this paper we analyze a "penalty method" for
avoiding this problem and show how extrapolation can be
used to improve the order of accuracy of the
approximate solution.

The idea is based on a paper of J.T. King", where
extrapolation procedures are used to achieve optimal
accuracy in the Aubin-Babufka penalty method for the
approximation of elliptic boundary value problems with
Dirichlet type boundary conditions.

In this paper we consider the approximation of the
stationary Stokes equations, i.e.

Problem (P): Find U = (u5..5u) and p defined on
2 such that

.

VvAU+gradp=f in Q
divi=0 in ®
=0 on a0

yhere U is the fluid velocity, p is the pressure,
f are the body forces per unit mass and v>0 1is the
dynamic viscosity.

The literature on the theory and numerical
analysis of the Navier-Stokes equations is immense. We
mention only the recent work of Crouzeix and Raviart
on a finite element method for the problem we consider
here and also the work of Temamf which contains results
that we use in this paper and also an excellent
bibliography.

An outline of the paper is as follows. In Section
2 we describe the notation to be used in the remainder
of the paper. Section 3 contains the description of
the approximate problem and the derivation of the error
estimates. Finally, in Section 4, we make some brief
comments about the method.

Notation

Let & be a bounded domain in RN. Denote by
(u,v) the 1L2(Q) inner product.

Inu(x)v(x)dx, and by

1
vl the norm (v,v)?. let m be a non-nega-
tive integer and let C*({]) denote the set of infi-.
nitely differentiable functions on_ {. Then HI(Q)
will denote the completion of C®({}) in the norm

vl = €T 1] .

Now let c§(9> be the set of infinitely differentiabl
functions with compact support in § and denote the
completion of C{(f) 1in the above norm by Hg(Q).

For m a negative integer we define HWYQ) as
the completion of C®(Q) with respect to the norm

sup (v,w)

IIV"m T wel™(@) TTw o

We now define»corresponding spaces for vector
valued functions Vv = (Vviseoesvy). Le (L2 pe
the space of V with components v;iel“(Q). The
scalar product in [L2(a) N ig given by

N
(@9 = [ W) -vxax = [T u; (v, (x)dx.
Q Q 4i=1 ~
Let [HY®T be the space of v with components

vieH(@) and let |[3]] = ('Zl v, 11255
1=

Finally, for convenience we introduce the
bilinear form

(o8]
o5

o

N N U, v
SESIE N
k=1 2=1 @ 3 2

dx

|

e8]

N
defined on [Hé(Q)JNXEHé(Q)JN, and the corresponding

norm [[G[[E = a(Q,n).

Approximate Problem and Error Estimates

We begin our discussion with a statement of a
regularity result for the solution of Problem (P) and
an approximability assumption on the subspaces we will
use in its approximation.

lemma 1 (see Tenﬁmk). Let § Dbe an open set of class
CS, 822, and let 1 e [HS-2@)IN and g e HS-1()
be given with [, gdx = 0. Then there exist unique
functions U and p (p is unique up to a constant)
which are solutions of the generalized Stokes problem

3

v AT+ grad p = f in Q
div U = g in @
=0 on a0
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and satisfy U e [HS(Q)]N, pE HS~1(Q) and the esti-
3 -
mates | |ullg + [Ipll 5 < Co UIIEN L, * el q}
s>1 where C_ 1is a constant depending only on v,
s, and Q.
_inf
(I[pHS—l/]R - ceR. l[p+cHS_1)

The approximability assumption on the approx-
imating subspaces we allow can be described as follows.
Let h, O0<h<l be a parameter and Sﬁ & any one
parameter family of finite dimensional subspaces of

(Q) satisfying

(*) For any u e HS(Q)n H (@), 2<s<r there exists

® T such that I!u—ul[l < C hs” = 1|u||

Sy

UE

References for the construction of such subspaces can
be found in (1).

The approximate problem we will consider for the
approximation of Problem (P) is given by:

X . > O r N <
PI?PI?T (Ph)._OFlné %b € FSh_§ Sbcﬁ}that
alu,w) + vh ~ (div w, div w) = (?,vh)
v Q; € [Sﬁ N here y>0, and o¢>0 are constants.

We now turn our attention to the d@ylvatlon of
estimates which relate the quantities w, and u.
These will immediately give error estimates for the
penalty method (Fy) and also will serve as the
crucial preliminary result for the derivation of the
error estimates for extrapolation applied to Problem
(P ).

h

Let (G,p) be the solution of Problem (P)
and j, the solution of Problem (P).

Theorem 1.

Define

@ ,P™) m21 as solutions of the generalized Stckes
problem (see Lemma 1)
a5
VAU +grad Pt =0 in @
div U™ = —pm_l in Q

f pl(x)dx =

Q

o

u =0 on 3Q, where

(u D ) = (u P.

Then

P s s P ory

||uh—u—wk(y)l\E < T (Gow (¥)36) ¥ ¢ e [§ ]
where ﬁ;(Y) = % [y i ™™ ana
m=1

T (5,m38) = {a(@-0-, §-0-0)
+ 00 |Jaiv G040 - [y o 7RI |2y
Procf. The exact solution (z,p) satisfies
a@,®) + (2&d p,) = (5,0 ¥V e E@WN and
div U = 0. The approximate solution ﬁ% satisfies

ally,,w) + vh™9 (div G, div w.) = (f,%)
1 5Vh th “h ol

4 &; € [Sﬁ "N Hence:

a(y,-8,7,) + yh™(div (-0, div v}) - (GRd p,%) = 0

Vo, e [Sﬁ "N, Since -(grdd p, Q;) = (p, div 0;)
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v v% € [SS TN e have
a(e ) + yh 0 (div & # Y Lhop, div v ) =0
Vvhs[Sh where e~\%—3.

By the definition of o ", a(™, v +
(grad p™v) = 0 V¥ ve [Hé(Q)JN so that

or
=0 vve i@

Multiplying the above equatlon by [y hoI" and
suming from m=1, ,k-1, we obtain:

a(@™,v) - (P, div ) = 0

sCER + @ T, o B

a( z [y o™, ¥)
m=1
e . k-1 -1 g-mtl-o-m+l .o
+vn7% (aiv ) [y o L iy W) =
m=1
k 1 5
so that a( ) [y~ hO]mﬁm, )
m=1
k 1 N
+ vh 9 (div ) Iy W I, div W
m=1
—a([Y ]k*k, ) - Yh_O(Y_lhO div ﬁl, div v)=0

Y s [Hé(Q)JN.

>k +
u

Now a(@,¥) = (5, div ¥) = (-div &%, div ¥) and

div ul = -p¥ = -p. Abbreviating Qi(y) = ) [Y_lhglmﬁm
. m=1

by %, we may rewrite the above as

aG, ) + yh0 (div #, div ¥) + [y 1m0 aiv ¥ aiv 9

+ v (v, div) =0 ¥V e [HO(Q)]N.

Subtracting this from the equation for g, we obtain:

-1ho]k+l+k+l
u
T

(div [e-w-Ly 1, diviy) = 0
v &; € [Sﬁ

< w3 > or
This implies that uy minimizes over [Sy "]

a(géz,Q%) +vh ™0

the
functional (in $) T (U,w38) = (a(3-T,w, $-u-w)
[Y—lh0]k+l+k+l)|[2 %

= [a(e—w,
v ¢ €

- . >
+ vh 0||d1v (¢-G—§ -
> > > >

- 1%
(s 1“JN.

Hence we have that ]|g-§||E
(u ;s uh) < T (&8
5
m=0,...,k+1 and w(y) be
7 “2cqy N
Suppose f e [H374(2) 1Y,

0<l. Then
o

5
Let (um,pm),
as defined in Theorem 1.
28szr, and hg

for all hshy and  y2ves

Theorem 2.
and vy, satisfy Coyo_lh

—0-k% - s
|16 () | | <Gyt Iy T Loy TP TN 5],

where C2 is independent of o, h, G, and k.

Proof. Again using the abbreviation Qi(y) = we

have from Theorem 1,

1,80 | < T, @)

Now T (G,%;g)

O

%

¥ %75 [ r]N.

= {a(@-0-, 3-3-9)
+ 70 [laiv G-0-3 + [y
% . !
< 13558 | gD T% faiv (38 + [y "nC)

_lhc ]k+l§<+l) ‘ | 2}7/2
R



k+1 ..
Choose 3 = $O + 7 [Y_lhc]]$]
j=1
where $O,...,$k+l £ [Sg r]N are to be determined.

> > >

Then |]uh_u_w1’E
: _% [y ho7’ llaj_ngIE ¥ [y Lo etl 1Wkﬂll

J=0 1gos T &
[y™h%1 ||div (uj—$])|[0.

k+1
+ [y 017 ]
3=0
Using the easily established inequality
[laiv 2|1y < /E7V |2l

and the triangle inequality
R+l K+l »k+1 o+l
HE g < TR 1+ 113 )

we obtain

g, kAL ot s
a+Enr Y ey 182811
Vv :]'—_O
-1 k+1 >+l
L)L

+ [y ho

By Lemma 1, ("p™ e @ x 8572@) ¥mo> 1
-1

and |||+ [19M]; < Co 1P|l so that

g+ 1™ Iy = & 118l 1oy < CHL | 7],

(again using Lemma 1).

i k+1 k+1
Similarly, |[0™ |l < ve ) Jlpll,

k+2

4
<v P IE| < v P Ell,, (2.

L] .
Hence, for appropriate choices of the $3, we
have by our approximability assumption (%), that

e e
831 < vep® (13,

< vele P pt 1TEl ., 320, .. k+1.

We therefore obtain the estimate
] - e
13,848 |pse, vty 4R ™79 ¥ ey nophme L +
-1, oqk+1, 2 -
R NS e TTEA TI

Since Cy—'h %<1 we have ¥ h<h_ and y>y
5 o 4 N P A S
| 13,00 | geC L+ Iyn™ T Hn ey 1) MIEH -

5
Corollary 2.1. ||d;—ﬁ-ﬁ;(y)|[E < C3hx ][f[|s_2 where
A=min (s-1-0/2, o(k+1)) and C; 1is a constant

independent of h and G, but dependent on y and
k. (When useful we will write C3:C3(y,k)).

Remark 1. One easily sees that Theorems 1 and_>2 hold
also when k=0 wi;h+the interpreta;ion that  wp(y)=0.
Hence we have ||un-U|[g S C3 hB [[f]|g_p where
g=min (s-1-0/2, ¢). We achieve optimality when
0=2(s51)/3, for which we obtain

| lup-ul |g £ €3 h2(s-1)/3 [[f[[S_Q. Thus this special
case of our theorem gives an ordér of convergence
estimate for the "penalty method" without
extrapolation.

Using Theorem 2 and Corollary 2.1, we can now show
how extrapolation can be used to obtain approximate
solutions with higher order of accuracy than given
above.

let y.5...,y, be distinct and choose a S § gl
0 k 0 j
so that
k
Z ai =1
i=0
k =
}oa vyl =0 1<j<k
. i ==
1=0
We defi *‘“()—}fa*(“(> here  02(y)
e define wuy ¥Y) = iy " (vg) where ui(y

: 1=0 ; ;
the solution of Problem (PF,) with weight vh™9. We
remark that the coefficients a; exists and are uniqu

as the above system is a Vandermonde. N

In the case that y-ZQly for some >0 we can
1

give an explicit definition of the kt extrapolate,
Gﬁk)(y). Define
ok «»(k—l)( ) -*(k—l)( )
> (k) th -y Y
SN (y) = k>1.

]

We can then prove the following:

Assume the hypotheses of Theorem 2 hold.
69) A2
Then !IG_Gh (Y)|’E < C,(v;h Hf[]s_2 where

A=min (s-1-0/2, o(k+1)) and Cy
independent of h and u,

Theorem 3.

is a constant
but dependent on y and

k.
Proof. From the definition of the a;, we have that
> ok
. ,{u-uh(Y)[|E .
=11 ) e @GP0+ [2‘iy'1h°]jﬁj)1|E
i=0 321
X > o(0), iy L a1
< 7 la; | I’u—uh (27 +w (2] |g
i=0
k .
< iZU {ai| Cgh ][fHS_2 (using Corollary 2.1)
A .
< C v,k h |ff|15_2
where A=min (s-1-0/2, o(k+1)).
Remark 2. For fixed k, the optimal choice of o

occurs when
s-1-0/2 = o(k+1), i.e

0 = (s=1)/(k+3/2)
for which we obtain
> (k) =
o w1 < ¢ ()0 b e,

where p=(s-1)(k+1)/(k+3/2).

Remark 3. From the previous remark, one observes that
the optimal choice of ¢ depends on the regularity of
the solution and the number of extrapolations to be
performed. A natural question then is whether the
convergence of the method is affected if one over-
estimates the regularity of the solution. From Theorem
3 one has that the method will converge if s-1-0/2>0.
If one mistakenly assumes additional regularity for

the solution, then using the criterion of Remark 2 and
the approximability assumption (%), one may choose o
as large as (r-1)/(k+3/2). If s 1is known to be at
least 2, then for convergence we require (r-1)/(2k+3Xx1,
l.e. k>(r-4)/2. Using piecewise cubics, for example,
one extrapolation will guarantee convergence.



For k=0,1,2, and 3 and the corresponding optimal

hoices of o, we get the following error bounds for
.u£k>(Y)||E of the form Cn".

k o A
2 2

0 § (s-1) § (s=-1)

1 2 (s-1) 2 (s-1)
5 5
2 6

2 7—(5—1) 7»(5—1)
2 8

8 9— (s-1) 9— (s-1)

Thus extrapolation gives an improvement in the
«rder of accuracy and also, since ¢ 1s decreasing,
1 the condition number of the matrix used to compute
(Using standard techrlques
it 1s easy to show the condition number is 0(h=2-9),
r example, when s=4 (i.e. using plecerse cubics)
re obtains 0(h?) for k=0 and 0(h8/3) for k=3.
(ilie best possible is O(h3)) The condition number
improved from 0(h™) to 0(h=8/3).

t

e approximate solution.

“emark 4. From the analysis presented, it may at first
ppear that at least theoretically, a very small o
and large k may be desirable to achieve a low
ondition nunber and high accuracy. Putting aside the
jractical difficulties of using a large value for k,
t must be remembered that the constant Cy depends

k and in fact can be shown to approach infinity

it a rate >0[vV2)"].

Hence some numerical experiments will be needed
to find what choices of k are reasonable to use in
practice.

Using a variant of the Nitsche duality argument,
we can derive the following error estimate in lower
orms for the extrapolated penalty method.

%
- _ > §-2, 0N
%; corem 4. Suppose f e [H ()] 2<s<r and hy
E . 1.0 o
: andy, satisfy Co Yo hy” < 1. Then for all h<hs
- yxy, and a>2,
-To
- »(t) B *
[] (Y)||2_a < Ce(y,t,c)h I!f!'S_Q

sy

vhere  B=min (a-1-0/2 + and

o, =ndn (s-1-0/2, o(t+l)).

At, o (t+1))

(the optimal choice for
then there will be no

nprovement in accuracy in lower norms unless t>k.

. _ s-1
sepmark 5.0 If o = 377 0

the ||-||E norm estimate),

ar Tk, Ay = 8- -1-0/2 which implies that
RIS 1E
Yoo 2 s-2
Jere  §=min (sta-2-0, o(t+l)).
) -1 sk+2-5/2
For example, if o = — <2 and t > ——
‘ > >(t) K37 e, T
then |[u—uh (y)l[O & G HI0 [1f|{ ,» vhile
. -
g < o, nSTE 2R
Y 3 s=2
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Comments

As remarked earlier, the advantage of using the
extrapolated penalty method is that one can achieve
higher accuracy while using matrices with lower
condition numbers.

Although several linear systems must be solved to
obtain the extrapolated approximate solution, no other
inner products need be computed than the ones already
required in the usual penalty method.

Finally, we remark again that since what we have
presented here is an asymptotic error analysis,
numerical studies would be useful to determine what
choices of y and k are reasonable to use in
practice.
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