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REMARKS ON MIXED FINITE ELEMENT METHODS
FOR PROBLEMS WITH ROUGH COEFFICIENTS

RICHARD S. FALK AND JOHN E. OSBORN

Abstract. This paper considers the finite element approximation of elliptic

boundary value problems in divergence form with rough coefficients. The so-

lution of such problems will, in general, be rough, and it is well known that

the usual (Ritz or displacement) finite element method will be inaccurate in

general. The purpose of the paper is to help clarify the issue of whether the use

of mixed variational principles leads to finite element schemes, i.e., to mixed

methods, that are more accurate than the Ritz or displacement method for such

problems. For one-dimensional problems, it is well known that certain mixed

methods are more accurate and robust than the Ritz method for problems with

rough coefficients. Our results for two-dimensional problems are mostly of a

negative character. Through an examination of examples, we show that certain

standard mixed methods fail to provide accurate approximations for problems

with rough coefficients except in some special situations.

1. Introduction

This paper is concerned with the finite element approximation of elliptic

boundary value problems in divergence form with rough coefficients. The solu-

tions of such problems will in general be rough, and it is well known that the

usual (Ritz or displacement) finite element method based on piecewise linear

approximating functions is inaccurate in general. The purpose of the paper

is to help clarify the issue of whether the use of mixed variational principles
leads to finite element schemes, i.e., to mixed methods, that are more accurate
than the Ritz or displacement method for such problems. Mixed variational

principles arise naturally in the mathematical formulation of many physical

problems. For example, the laws of linear elasticity may be described in terms

of a displacement variational formulation, involving only displacements, or in

terms of a mixed variational formulation, involving both stresses and displace-

ments, whose equations express the stress-strain relation and the balance of

forces. In purely mathematical terms, one can obtain a mixed formulation

from a displacement formulation by introducing new variables for some of the

derivatives or certain linear combinations of derivatives of the unknown func-

tion.  A mixed approximation method is obtained by basing a finite element
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2 R. S. FALK AND J. E. OSBORN

method on the mixed variational formulation incorporating both the original

and new variables. A difficulty in making precise and incisive statements about

whether such methods are more accurate is that one can construct a variety of

reasonable mixed methods.

For the one-dimensional problem, it is well known that certain mixed meth-

ods are more accurate and robust than the Ritz method for problems with rough

coefficients (cf. Babuska and Osborn [2]). In the case of two dimensions, rig-

orous results of this type do not exist except in special cases, and generally the

situation is much less clear. Despite this fact, one-dimensional results are some-

times used to justify the use of mixed methods for two-dimensional problems

with rough coefficients.

The results of this paper are mostly of a negative nature. Through an ex-

amination of examples, we show that certain standard mixed methods fail to

give good approximations for problems with rough coefficients, unless the new

mixed variable has some added regularity over what might be expected from

merely differentiating the original variable. Unlike the situation for the one-

dimensional problem, this will not generally be the case in two dimensions.

When this added regularity does occur, we are able to show that certain mixed

methods do provide accurate and robust approximations. Thus, our analysis

shows the importance of regularity in assessing when a mixed method will be

effective.
To make our discussion precise, we consider a model boundary value problem

and several specific mixed methods that have been discussed in the literature.

The description of the boundary value problem is presented in §2 along with an

abstract error estimate and a regularity result due to Bernstein that will play a

key role in the subsequent discussion. In §3, we present a brief review of what
has been established about mixed methods for problems with rough coefficients

in the one-dimensional case. In §4, the main section of the paper, we describe

the mixed methods we will consider and then show that for two-dimensional

problems, the use of mixed methods cannot be expected to provide improved

accuracy for problems with rough coefficients except in some special circum-

stances. In §5, we make some comments about the use of special finite element

methods, i.e., finite element methods using special approximating functions that

depend on the coefficients, in the context of mixed methods.

In the course of our discussion, we shall also consider the relation of mixed

methods to generalized displacement methods and whether the use of the piece-

wise harmonic average of the coefficients leads to improved accuracy (as com-

pared to the use of the ordinary piecewise average) in the approximation of

two-dimensional problems.

For a comprehensive discussion of mixed finite element methods, the reader

is advised to consult the book of Brezzi and Fortin [5].

2. Preliminaries

We shall consider in this paper the approximation of the model problem

(2.1) - div A grad u = f   in £2,

(2.2) h = 0   on<9Q,

where Q is a bounded domain in M2  and A = (a¡j(x, y))  is a symmetric
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matrix with entries 6 L°°(Q) that satisfies

2 2 2

(2.3) ^ £tf < £ Oij(x, y)i¿j </*£{?,    V(xj)Efí,V(e R2.
1=1 i,j=l 1=1

The class of mixed finite element formulations we shall consider are based

on variational formulations of (2.1)—(2.2) that fit into the following abstract

framework. Let V, W, and H be three real Hubert spaces with norms || • ||k ,

|| • ||jy , and || • \\h , respectively, and assume V c H with \\x\\H < K\\x\\v for
all x £ V . Let a(-, •) and b(-, •) be continuous bilinear forms on H x H and

V x W, respectively:

|a(o-,T)|<N|||oi//||T||/v   for all a, xeH,

\b(a, u)\< ||¿>||||<r|MHk   for all a £ V, u £ W.

We then consider the following variational problem:

Problem P. Given / £ W', find (a, u) £ V x W satsifying

(2.4) a(a,x) + b(x,u) = 0   forallreF,

(2.5) b(a, v) = f(v) for all v £ W.

In order to obtain a mixed finite element method for (2.4)-(2.5), we suppose

we are given finite element spaces Vh c V and Wh c W, and then consider

the following approximate problem:

Problem P h. Find (ah, un) £ Vh x Wh satisfying

a(ah , t) + b(x, uh) = 0   for all t £ Vh,

b(ah , v) = f(v) for all v £ Wh.

As will be seen from the examples in the following sections, many standard

mixed finite element methods for the approximation of (2.1 )-(2.2) fit this frame-

work. Although many of our results will be of a negative nature, there are some

cases in which positive results for the approximation of problems with rough co-
efficients can be obtained. In these cases, our error analysis will require several

additional assumptions, which we now state. For all h ,

(2.6) Zh<ZZ,

where

Z = {t e V : b(r, v) = 0 for all v e W),

Zh = {x £ Vh : b(x, v) = 0 for all v £ Wh).

There is a constant a > 0, independent of h , such that

(2.7) a(x, x) > a\\x\\2H   for all x £ Zh.

There is a constant ß > 0, independent of h , such that for all v £ Wh,

(2.8) sup ̂ prV^ >/JHk.
r<EVh     \\T\\V

We note that if (2.8) holds (cf.  [6, Proposition 1]), then there is an operator

Tif, : V ^ Vh satisfying

(2.9) b(x-nhx, v) = 0   forallre V, v £ Wh.
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4 R. S. FALK AND J. E. OSBORN

If in addition, (2.6) holds (cf.   [6, Proposition 3]), then there is an operator

X/, : W —> Wf, satisfying

(2.10) b(x,v-Ihv) = 0   forallre Vh, v e W.

The following abstract error estimates follow easily when all the above as-

sumptions are valid. The results are special cases of a more general theory to

be found in [5] and [6].

Theorem 2.1. If (a, u) and (ah, uh) are the solutions of Problems P and P h ,

respectively, and hypotheses (2.6), (2.1), and (2.8) hold, then

(2.11) \\o-ah\\H< U + \\?pj\\o-nha\\H,

(2.12) ^LkU-UlA\w<^M\\„-ai\\Ht

where ith and Zh are any operators satisfying (2.9) and (2.10), respectively.

Proof. It follows easily from the definitions that for all x £ Vh ,

a(nha - ah , x) = a(nha - a, x) + b(x,uh-u),

and letting x = nha - ah , we get

a(nha - ah , nha - ah) = a(nna - a , nha - ah) + b(nho - a¡¡, u¡,- u).

Also,

b(nha -ah,uh-u) = b(%ha -ah,uh- Ihu) = b(a -ah,uh- ¿Zhu) = 0,

and so

67.(7^(7 - ah, nha - ah) = a(nha - a, nha - ah).

Estimate (2.11) now follows from (2.7) and the triangle inequality. To obtain

the second result, we apply (2.8) to get

\b(x, lhu - uh)\
ß\\Lhu-uh\\w < sup

r€Vh ||T||k

It again follows easily from the definitions and our assumptions that

\b(x,2Zhu-uh)\ = \b(x, u-uh)\ = \a(oh - <r, x)\ < \\a\\\\a-ah\\H\\T\\H.

Estimate (2.12) now follows immediately.   D

Note that although (2.12) is a somewhat crude estimate for general problems,

it will enable us to obtain error estimates for some special classes of problems

with rough coefficients. Also observe that to obtain positive rates of convergence

from this theorem, we will need to know that a is smoother than implied by

inclusion in the function space H.

Since smoothness of the solution will play a key role in our discussion of the

effectiveness of mixed methods for the approximation of problems with rough

coefficients, we shall frequently rely on the following theorem of Bernstein [4],

[8, §3.17] on the regularity of solutions of elliptic equations in nondivergence

form in two dimensions. We now state this theorem, which will be used in §4

in our discussion of mixed methods.
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Consider the problem

(2.13) -aii(x,y)^2-2an(x,y)-^^--a22(x,y)—2=f   inft,

(2.14) u = 0   onôQ,

where Q is a bounded, convex domain in K2 with a piecewise C2 boundary

dÇl, and where the functions a¡j £ L°°(Q.) satisfy

2 2 2

(2.15) v £e, < Y,  atj(x, y)Uj <ßzZtf   V(x, y) £ ß, V£ £ K2,
1=1 ¡J=\ 1=1

with Û2i =ûi2, and where v and p are positive constants.

Theorem 2.2 (Bernstein). For each f £ L2(Q.), Problem (2.13)-(2.14) has a
unique solution u £ H2(Q.) n H¿(Q.). Furthermore, there is a constant C =

C(v, p), depending on v and p but independent of f, such that

IMI//2(fi) < C||/||L2(ii).

Our hypothesis on Q. is not identical to the one in [8]. To prove that the

result is valid for a domain of the type we are considering, one can use the a

priori estimates in [7, §3.1]. The Bernstein Theorem says that nondivergence

form equations have solutions in H2(Q.) even though the coefficients are very

rough.

3.  A SURVEY OF RESULTS FOR THE ONE-DIMENSIONAL PROBLEM

In this section we discuss the application of mixed methods to the approxi-

mate solution of the one-dimensional version of problem (2.1)—(2.2), namely

(3.1) -(a(x)u'(x))' = f(x),       0 < jc < 1,

(3.2) k(0) = 0,        u(l) = 0,

where a(x) £ Z,°°(0, 1) and satisfies 0 < v < a(x) < p .

We shall consider three variational formulations of (3.1)—(3.2) that fit the

abstract framework of the previous section. These are:

I. Find a £ L2(0, 1), u£H¿(0, 1) satisfying

- /   aav'dx = -      fvdx   for all v £ H0X(0, 1),
Jo Jo

/  aaxdx - \  au'xdx = 0   for all x £ L2(0, 1).
Jo Jo

II. Find a £ L2(0, 1), «6^(0, 1) satisfying

- I ov'dx = - I fvdx   for all v £ H0X(0, 1),
Jo Jo

f — dx- [ u'rdx = 0   for all t g L2(0, 1).
./o   a Jo
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III. Find oeHx(0, 1), u£ L2(0, 1) satisfying

-1 /•!

/ o'vdx = - [ fv dx   for all v £ L2(Q),
Jo Jo

[  —dx + [ ux' dx = 0   for all teHx(0,1).
Jo   a Jo/0     u JO

These are standard mixed formulations, which arise by introducing the new

variable a = u' (in I) or a = au' (in II and III).

We then consider certain simple natural finite element discretizations of these

problems. Let ¿7~h = {0 = xq < Xi < ■•• < xn = 1} be a mesh on / = [0, 1]

satisfying x¡ - x¡-\ < h for j = \, ... ,n, and let I¡ = (x¡-\, x¡) and h¡ =

Xj - Xj-i. We discretize formulations I and II by choosing

Vh = {t : r \ij = constant for j = 1,...,«},

Wh = {u £ H0X(0, 1) : u \ij = linear for j = I, ... , n}.

This leads to the approximate problems:

I h. Find Of, £ Vh, Uf, £ Wh satisfying

- /   aof,v' dx = -      fv dx   for all v £ Wh ,
Jo Jo

I   aohx dx - j   au'hx dx = 0   for all x £ Vh.
Jo Jo

II h . Find ah£Vh, uh£ Wh satisfying

- I   Of,v' dx = - I   fv dx   for all v £ Wh ,
Jo Jo

[  ^ dx - f u'hx dx = 0   for all x £ Vh.
Jo    a Jo

We discretize formulation III by choosing

Vh = {x e Hx(0, 1) : x I/, = linear for j = 1, ... , n),

Wf, = {v £ L2(0, 1) : v \ij = constant for j = 1,..., n}.

This leads to the approximate problem:

III f,. Find Of, £ Vh , u £ Wf, satisfying

/   o'hv dx = - j   fv dx       for all v £ Wh ,
Jo Jo

\   —i/x+/   uhx'dx = 0       for all t e Vh.
Jo    a J0

To analyze the approximation I h, we observe from the second equation that

Of, = u'h.

Substituting u'h for oh in the first equation, we find that uh £ Wh satisfies

(3.3) f au'hv' dx= [ fv dx   for all v £ Wh.
Jo Jo
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Thus, Uf, is the usual Ritz approximation to u using continuous piecewise

linear approximating functions. As mentioned in the Introduction, the Ritz

method does not in general provide good approximations when a(x) is rough,

and hence (oh , Uf,) is not a good approximation to (a, u). We will comment

further on this point below. For later use, let us note that (3.3) can be written

as

/   ahu'hv'dx = /   fv dx   for all v £ Wh ,
Jo Jo

where ah(x) is the piecewise average of a(x), i.e.,

ah I,, =hTl I adx.\h *k
To analyze approximation II h, we may use Theorem 2.1 with  V = II =

L2(Q), W = HX(Q),

a(a, x) —       -oxdx,        b(o,v) = -l   ov'dx,
Jo  a Jo

and Vf, and Wh as defined above. We obtain

(3-4) \\a - oh\\Li{o, i) < C{y, p)\\o - nho\\Ll(QA),

(3.5) II(Za"-"a)'IIl2(0,1) < C(v,p)\\o-Oh\\Li(0A),

where v and p are the lower and upper bounds for a(x). The key ingredients

in the application of Theorem 2.1 are to show that Zf, = Z is the set of global

constants and that (2.7) and (2.8) are satisfied. We also see that we may take

%f, to be the L2 projection and £/, to be the piecewise linear interpolant.

Recall that a = au', so a' = -f, showing that o is smoother than implied

by a £H = L2(Q). Thus, from (3.4) we have

(3.6) \\a - <TÄ||L2(0, i) < C(v , p)h\\f\\L2(o,\y

Since u $ H2(0, 1) we cannot use the triangle inequality, (3.5), and (3.6) to

get an 0(h) estimate for ||m - «aN//"(o, i) • However, since

Pa"-"aIIz.î(0,d < C*||(2:am — Ma)'||¿2(0, l) ,

it easily follows from the triangle inequality and (3.6) that

(3.7) II«-m*IIl»(o.1)<C(i/, ^ÄH/Il^o.i).

Estimates (3.6) and (3.7) show that method 11/, is accurate and robust for one-

dimensional problems with rough coefficients.

By eliminating oh from Problem I h , we saw that uh was the Ritz approxi-

mation to u and Of, = u'h. In a similar way, we can eliminate ah from Problem

II f,. Using the second equation, we find that

and substituting this in the first equation, we find that Uf, £ Wh satisfies

(3.8) /  ahu'hv' dx= j   fv dx   for all v £ Wh,
Jo Jo
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8 R. S. FALK. AND J. E. OSBORN

where a/,(x) is the piecewise harmonic average of a(x), i.e.,

a^ = (lj liWj ■
Problem (3.8) is called a Generalized Displacement Method (for the determi-

nation of Uf, ) (cf. [2]).

As mentioned above, we will now comment further on the fact that the Ritz

approximation is inaccurate. Let N be a large even integer and suppose

/  n     f 2,    k-^<x<±,  k=l,3,...,N-l,
a(x) = < ,   , ,

\ 1,    ^<x<±,  k = 2,4,...,N,

and consider Problem (3.1)—(3.2) with this a(x). Let (oh , Uf,) be the approx-

imate solution defined by Problem 11/, and temporarily let (öf,, üf,) be the

approximate solution defined by Problem I ¡,. We know that u¡, is character-

ized by (3.8) and Of, = af,u'h , and that üf, is characterized by (3.3) (and is thus

the Ritz approximation to u ) and of, = u'h. Suppose h is an even multiple

of TV-1 . Then ah(x) = 3/2 and ah(x) = 4/3. Thus üf, is also the Ritz

approximation to the problem:

_2tü" = /,        0<x<l,        0(0) = 0,        t»(l) = 0,

and Uf, is the Ritz approximation to the problem

-   w» = f,        0 < x < 1,        w(0) = 0,        u;(l) = 0.

Now we know from (3.7) that u¡, is a very accurate approximation to u, and

from standard error estimates for the Ritz method that üf, is a very accurate ap-

proximation to w and that « is a very accurate approximation to w . However,

it is easy to see that w is not close to w (since they solve different differential
equations). Hence, we conclude that ü¡, is not a good approximation to u. In

fact üf, stays away from u (and close to w ) as long as h is an even multiple of
N~x . As soon as h is a fraction of N~x (i.e., h = N~lk~x, k = 1, 2, ... ),

the Ritz approximation üf, gets close to u. However, if N is very large, we

may not be able to take h as small as N- ' in practical computations.

To analyze the approximation III /,, we may again apply Theorem 2.1, ob-

taining

Ik - OhWmo, i) < C^. ß)h\\f\\v-(o, i).

II» - «aIL^O, 1)  ̂   C(V ' /0A||/||jr2(0, 1).

Standard inverse estimates then imply for quasi-uniform meshes that

\W-Oh\\w[Q,\) <C(v,p)\\f\\L2(o,i).

The key ingredients in the proof are again to show that Zh = Z is the set

of global constants, and that we may now take nh to be the piecewise linear

interpolant and Z/, to be the L2 projection. Once again, hypotheses (2.7) and

(2.8) are easily verified.
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4. Two-dimensional results

We begin this section by considering a variational formulation of Problem

(2.1)—(2.2) that is the two-dimensional analogue of formulation I of §3, and

which arises by letting a = grad u .

I. Find a £ L2(Q.), u £ H0X(Q.) satisfying

- / Aa • grad vdxdy = - / fv dx dy   for all v £ H¿ (Q),
Jq Jq

/ Aa • x dx dy - I A grad u • x dx dy = 0   for all x £ L2(Q).
Jq Jq

To obtain a simple finite element discretization, we let ^, 0 < h < 1, be a

triangulation of f2 with triangles T of diameter less than or equal to h , and

assume that {^} satisfies the minimal-angle condition. We then discretize

Problem I according to the framework described in §2 by choosing

Vh = {x£ L2(Q) : x |r = constant for all T £ tf,},

Wh = {v£ H0X(Q.) :u\T= linear for all T £ S¡,}.

This leads to the approximate problem:

I h. Find ah £ Vf,, Uf, £ Wh satisfying

- / Aah • grad v dxdy = - \ fv dx dy   for all v £ Wh,
Jn Ja

/ Aah -xdxdy - I A grad uh • x dxdy = 0   for all t £ Vh.
Jq. Jn

As in the one-dimensional case, we immediately see that «/, e Wh satisfies

/ Ah grad uh • grad v dxdy = / fv dx dy   for all v £ Wh ,
Jq. Jq

and
oh = grad uh ,

where Ah is the piecewise average of A , i.e.,

j^- [ A dxdy   for all le^.
' I Jt\T\

Thus, Uf, is the usual Ritz approximation to u based on continuous, piecewise

linear approximating functions.

As mentioned above, and as elaborated on for the one-dimensional case in

§3, the Ritz method does not in general provide good approximations to prob-

lems with rough coefficients. Thus, method I ¡, cannot generally be expected to

provide good approximations for problems with rough coeficients. However,

this does not mean that it works poorly on all problems with rough coefficients.

To see this, consider the application of method I h to the boundary value

problem

d2u     „       d2u ,  ,d2u
]o^-2ax2dx^-y-ail{x)W2

(4.2) w = 0   onöQ,

(4.1)    -aii(y)^-2ai2l^-a22(x)^-2=f   in £2 = (0, 1) x (0, 1),
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10 R. s. falk and j. e. osborn

where an depends only on y, aI2 is constant, a22 depends only on x,and

a¡j satisfies (2.3) (or (2.15)). Although the equation (4.1) is in nondivergence

form (so we can apply the Bernstein Theorem), in this special case it can also

be written in the divergence form of equation (2.1 ). Hence, method I h and the

Ritz method, are applicable. Using the Bernstein result and the usual analysis

of the Ritz method, we find that

(4.3) \\u - ii*||£i(0) + A||w - «a||t/'(íí) < C/z2||/||L2(íi),

where C depends only on v and p in (2.3). In the context of the mixed

method I/,, (4.3) becomes

II" - "Allffi(O) + Ik - <*h\\ma) < Ch\\f\\L2(a).

Hence, we have an example of a mixed method that provides accurate approx-

imations for some problems with rough coefficients, but not others. Of course,

our mixed method is equivalent to a displacement method that provides similar

approximations.

Next, consider the two-dimensional analogue of formulation II of §3, which

arises by letting a = A grad u.

II. Find a e L2(Q), u £ Hi (SI) satisfying

- / a ■ grad v dxdy = - \ fv dx dy   for all v £ H0X (Q),
Jq Jq

/ A~xo • xdxdy - / gradu • xdx dy = 0   for all x £ L2(Q).
Jq Ja

Choosing Vf, and Wf, as in method I /, leads to the approximate problem:

II h. Find ah £ Vh , uh £ Wh satisfying

-     ah • 8rad v dxdy = - / fv dx dy   for all v £ Wh ,
Ja Ja

/ A~lah -xdxdy - / grad u¡, • x dx dy = 0   for all x £ Vf,.
Jq Jq

In §3, we saw that this method is accurate and robust for problems with rough

coefficients in one dimension. We will now see that the situation is very different

in the two-dimensional case. We first note that, as in the one-dimensional case,

uh £ Wh satisfies

(4.4) / Ah grad uh • grad v dxdy = / fv dx dy   for all v £ Wh ,
Ja Jq

and

oh = Ah grad uh,

where Ah is the piecewise harmonic average of A , i.e.,

Ak \T =(-!-[ A~x dxdy)        for all T £ Fh.

As mentioned in §3, (4.4) is referred to as a Generalized Displacement Method.
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Consider the application of method II /, to the boundary value problem

(«>    "Sí («*>£)-aHS)-'   taO-(0.1)x(p.l),
(4.6) w = 0   ondft,

where a = a(x) is a function of x only. In variational formulation II, a =

/Igrad«, so in the case of (4.5), we see that a = a (x) grad«. We now show

that a cannot be smooth if a(x) is rough.

Toward this end, we introduce the change of variables

= /   -ds,
Jo  a

y = y.

If we set u(x, y) = u(x, y), the boundary value problem (4.5)-(4.6) becomes

(4.7)

(4.8)

a~
,d¿üd2ü

dx2    " dy2

ü = 0   on dÙ,

af   in Q.,

where Ù = (0, J0 a~xds) x (0, 1). Since (4.7) is in nondivergence form, it

follows from the Bernstein result that U(x, y) £ H2(Ù) and hence that üx =

aux, Uy = uy £ Hx(il). Thus, auy and hence a = (aux, auy) cannot be

smooth. A specific example illustrating this is obtained by letting

f(x,y)
a(x)

y(y- \)-2a(x)
Jo   a    Jo   a     Jq

■x ds_

a

With this /,

and we see that

a = a grad u =

—-fMf/i-Ly(i-y),

Jo    a        J0

x ds
di\y('-y).

) r—í /'—- r—
C Jo    a    Jq   a     J0    a

(l-2y)

In particular, o2 cannot be smooth if a(x) is rough.

The importance of showing that a is not smooth is that this implies that

it cannot be accurately approximated by piecewise constant functions. Hence,

\\a - <i/,||L2(£i) cannot have a good rate of convergence. Since the difference

between this approximation scheme and the previous one amounts to the re-

placement of the piecewise average of the coefficient by the piecewise harmonic

average, we also see that unlike the situation in one dimension, the use of the

harmonic average in two dimensions is not sufficient to give accurate and robust

approximations to problems with rough coefficients.

We now turn to a two-dimensional analogue of formulation III of §3.
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12 R. S. falk and j. E. OSBORN

III. Find a £ H (div, Q), u £ L2(Q.) satisfying

/ div av dxdy = - / fv dx dy   for all v £ L2(Q.),
Jq Jq

/ A'1 a -xdxdy+ / udivxdxdy = 0   for all x £ H (div, Q).
Ja Jq

Choosing  Vf,  to be the space of lowest-order Raviart-Thomas elements and

Wf, to be the space of piecewise constants, we obtain method III h. First we

apply method III/,  to Problem (4.5)-(4.6).   We have (as in formulation II)
a = A grad u = a(x) grad u, and we have seen that a is not smooth if a(x) is

rough.  Since we will be approximating a by a special type of discontinuous

linear element, and this works well only if a is smooth, 07, again cannot be

expected to be an accurate approximation to a .

It is also of interest to consider the boundary value problem

d2u .d2u .
-Jx~2-a{x)W2=f   mQ'

u = 0   on ôQ,

which is a special case of (4.1 )-(4.2). From the Bernstein result, we see that u £

H2(Cl) and hence uy £ HX(Q). Thus, on the one hand the Ritz method works

well, while on the other hand, since a(x) is rough, a = A grad u = (ux, a(x)uy)

cannot be smooth. In particular, a = A grad u $ HX(Q.). A specific example

illustrating this is obtained by letting

f=2y(l-y) + 2xa(x)(l-x),        Q = (0, 1) x (0, 1).

With this /, we have u(x, y) = xy(\ - x)(\ -y). Thus,

du     du\      ...       ,.   ,       ,.     ,  ...       „   .
— , a—) = ((2x - \)y(y - 1), a(x)(2y - \)x(x - 1)),

and we see that a2 = a(x)(2y - l)x(x - 1) is clearly not smooth. Thus, we

cannot approximate a to order h by any element in the subspace, and hence

Of, cannot be an order-/z approximation to a. Thus we have a problem for

which a standard mixed method produces a worse approximation to the "stress"

variable a than the approximation obtained by the Ritz method by forming

A grad uh.

Despite these negative results, there is a situation in two dimensions in which

some mixed methods work well, and that is when a = A grad « is a smoother

variable than might be expected, i.e., when u £ HX(Q.), u £ H2(Q.), but

a £ HX(Q). In this case, we can approximate the boundary value problem

(2.1)—(2.2) by method III/,, using the lowest-order Raviart-Thomas elements,

and use Theorem 2.1 to derive the error estimates

llCT - ah\\L^(Q) < Ch\\a\\Hi{a),

II» - K*||tf(0) < Ch (ll"llff'(fl) + Ikllff'(il)) -

Note that for this method, it is well known that all our hypotheses are valid.

We have already seen how a special regularity result of this type occurs in a

one-dimensional problem, and it is not difficult to extend examples of this type

to boundary value problems, which although formally two-dimensional, have a

coefficient and a solution that depends only on a single variable. For example,
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MIXED FINITE ELEMENTS FOR ROUGH COEFFICIENTS 13

consider the boundary value problem

-¿Hfx)-¿(^)=/W   -Q,(0,l)x(0,l),
u(0,y) = u(l,y) = 0,       0<j><l,

|^(x,0) = |^(x,l) = 0,       0<x<l.
ay ay

Since a = a(x) and / = f(x) are functions of x only, u is also a function

only of x and satisfies the boundary value problem (3.1)—(3.2). Hence, the one-

dimensional regularity results apply and the variable a = (aux, auy) = (aux , 0)

will be smooth.
A somewhat more interesting class of examples can be constructed in the

following way. Consider the boundary value problem (2.1)—(2.2), where Q is

convex and A = ai. Let / be the solution of

-At = f   inQ,        t = 0   ondft.

By standard regularity results, if / e L2(Q), then t £ H2(il). Denote by

T- and T+ the minimum and maximum values of / over Ù. Let <f>(t) £

WX-°°(T-, T+)  and satisfy  0(0) = 0,   tf>'(t)  > k > 0.    For example, if
(r_ + r+)/2>0, set

(t,        T.<t<(T- + T+)/2,

^W     \2t-(T. + T+)/2,        (T. + T+)/2<t<T+.

Setting

u(x, y) = 4>(t(x, y)),       a(x,y) = \/4¡(t(x, y)),

we observe that a £ L°°(Q), u solves the boundary value problem (2.1)-(2.2),

u £ Hx(il), and u £ H2(il), but or = a grad u = gradi e Hx(Çl). A simple

special case in which all quantities can be made explicit is when Q is the unit

disk and / = 4. Then t(x, y) = 1 - x2 - y2 , 71 = 0, and T+ = 1. Note that
examples of this type are quite special, with a strong connection between the

coefficient a and the right-hand side /.

A third example for which we can prove a regularity result of this type is

obtained if we consider (2.1)—(2.2) and assume Q = (0, 1) x (0, 1) and A is a

diagonal matrix with An = ai{(x) and A22 = a22(y). We are thus considering

the boundary value problem

<4-9»      -è(«'«£)-&(*,Ö,)S1-/ iníy
du

dy

(4.10) u = 0   onÖß.

If we introduce the change of variables

}_d$ p=f_i
¡0    au(s)        ' -A)   a22(t)

and set ü(x, y) = u(x, y), then (4.9)-(4.10) becomes

(4.11) x=fX-}—ds,       y=f
Jo   0\\(s> Jo

dt.

d2U d2u -
(4.12) -ä22(y)g-2-än(x)^2=aii(x)ä22(y)f   inQ,

(4.13) U = 0   on On,
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14 R. S. FALK AND J. E. OSBORN

where Ù = (0, /0 aux ds) x (0, /0 a22 dt). Since (4.12)—(4.13) is in nondiver-

gence form, it follows directly from the Bernstein theorem that ü £ H2(Ù).

Hence,

a      a        (     ,  \du        f ^u\     (au   dü\     „i,™
a = Agradu=[au(x)-,a22(y)-j = {-, ^)eHx(Cl),

and we have the desired regularity result.

We have shown that except in very special situations, Method III/, does

not provide accurate approximations to a. It is of interest to ask whether it

provides accurate approximations to u. We will end this section by giving a

negative answer to this question by comparing \\u-uh\\lhq) and ||<r -ah\\L2,n) ■

Let g £ L2(£l) , let (yg, wg) £ V x W be the solution of Problem P with right-

hand side - Ja gv dxdy, and let (ygf,, wgf,) be the solution of P/, with this
right-hand side. Then from the definitions of Problems P and P n and of 1/,,

we obtain

/ (Uf, - u)g dxdy = b(yg , u-u¡¡)
Ja

= b(yg -Ygh,u- uh) + b(ygh ,u-uh)

= b(yg -ygh,u- lhu) + a(ah - a, ygh)

= b(yg -Vgk,u- 2Zhu) + a(ah -n,ygh- yg) + a(ah -o,yg)

(4.14)     =b(yg-ygh, u - X/,w) + a(rrh - a, ygh - yg) + b(a - ah , wg)

= a(ah -a,ygh- yg) + b(yg , u - lhu) + b(a -ah,wg- Y.hwg)

= a(ah -a,ygh- yg) + b(yg , u - Y.hu) + b(a, wg - lhwg)

= a(ah -a,ygh-yg)- / g(u - lhu) dxdy
Jq

f(wg -^hWg) dxdy.LJq/q

Letting g = f in (4.14), we have

/ (Uf, - u)f dxdy = a(ah - a, ah - a) - 2 \ f(u - Zam) dxdy
Ja Ja

>^l|o-/,-o-||22(í2)-2   I f(u-I.f,u)dxdy .

Since "Lf, can be taken to be the L2(Q)-projection onto Wh , we have

/ (uh - u)fdxdy > v\\ah - o-||22(ii) - Ch\\u\\m{n]\\f\\L2{ay

Thus,

|2ía i «    ii ii        ^ -U"* Z u)fdxdy ^ "II*7* " aWmi)
(4.15)     \\uh - u\\Lim > „ n,->-Ü-FT,-— - Ch\\u\\HHa).

WJWlhq) II/IIi,2(í2)

For the case of a rough coefficient, in which we do not expect a to have much

regularity beyond L2(Q), the inequality (4.15) essentially implies that the error

\\uh - uWma) cannot be smaller than the square of the error \\af, - o^lhq) ■ in

particular, in the case when ah converges to a , but not with any positive rate
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of convergence, then uh will converge to u, but (4.15) implies that this also

will not occur with any positive rate of convergence. On the other hand, one

can show that \\u - tt/,||/j>(o.) is essentially no bigger than o(||<t-<t/,||L2(Q)).

5. Comments on special finite element methods

Another approach to developing finite element methods that work well for

problems with rough coefficients is to use special approximating functions—

referred to as special elements—that depend on the coefficients. This idea is

most easily illustrated by considering the approximation of the one-dimensional

boundary value problem (3.1)—(3.2). For this problem, it was shown in [2] that

the method defined by:
Find üf,£Wh = {v£Hx(0,1): v\h £ span [1, ft a~x(s)ds], j = I, ... , n}

satisfying

(5.1) /  aü'hv'dx= /  fvdx   for all ii £ Wh ,
Jo Jo

is accurate and robust. Here, the variational formulation is the usual displace-

ment formulation, but the approximating functions are linear combinations of

1 and ft a~x ds .
One way to motivate the special element method (5.1) is by an appropriate

change of variables. If we let x = ft a~x ds and set ü(x) = u(x), the boundary

value problem (3.1)—(3.2) is transformed to

(5.2) -U"(x) = a(x)f(x),        0<x<d,        ü(0) = ü(d) = 0,

where d = J0 a~x ds . The solution ü of (5.2) is in H2(0, d), and thus the Ritz
method using piecewise linear approximating functions gives a good approxi-

mation. Transforming back to the x-variable, we are led to the special element

method (5.1). Note that the mesh {x,} on [0,1] is obtained by transform-

ing the mesh {x;} on [0,6?], and that the mesh parameters h and h satisfy

p~xh <h <v~xh , where v and p are lower and upper bounds on a(x). For

the remainder of this section, we will suppress the bar on h .
It is also possible to apply the technique of constructing special elements via a

change of variables in the context of mixed methods. To illustrate this, we again

consider (3.1)—(3.2) and its transformed version (5.2). Since ü £ H2(0, d), a

good mixed method for (5.2) is I/,. For (5.2), the variational formulation I is:

Find a £ L2(0, d), ü £ HQX(0, d)) satisfying

(5.3) - [ öv'dx = - f äfvdx   for all c e H¿(0,d),
Jo Jo
çd rd

(5.4) /   dxdx- ¡   ü'xdx = 0   for all x £ L2(0, d).
Jo Jo

Method I h is obtained from I by approximating a by piecewise linears and

ö = dvt/dx by piecewise constants. The result of transforming I /, is:

Find of, £ Vh = space of piecewise constants, üh £ Wh satisfying

• i h
(5.5) - /   àhv'dx = - I   fvdx   for all v £ Wh ,

Jo Jo

(5.6) /   a~xöhxdx - /   ü'hxdx = 0   for all x £ Vh
Jo Jo
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16 R. S. FALK AND J. E. OSBORN

This is a special element mixed method, and it is equivalent to the special

element displacement method (5.1). Specifically, the functions üf, produced by

the two methods are identical and

df,(x) = ah(x) = düf,(x)/dx = a(x)düf,(x)/dx.

To see this, observe that the Ritz method applied to (5.2) is equivalent to method

I/, applied to (5.3)-(5.4) and then use the change of variables.

We next show that (5.5)—(5.6) is closely related to method II/,, a standard

method using ordinary elements, which was shown in §3 to be accurate for

problems with rough coefficents. To see this, we first note that

/   df,v'dx = /   df,(v)'¡dx, \   ü'hxdx= /  (üf,)'¡xdx,
Jo Jo Jo Jo

where (v)¡  denotes the piecewise linear interpolant of v.   If we use these

relations and replace /0 fvdx by /0 f(v)¡dx  (the latter expression can be

viewed as an approximation of the former one) in (5.5), (5.6), we obtain II/,.

Now II /, turns out to be equivalent to the following modification of the

special element method (5.1) (first analyzed in [2]):

Find Wf, £ Wh satisfying

(5.7) / aw'hv' dx = í f(v)¡dx   for all v £ Wh.
Jo Jo

Specifically, if (07,, Uf,) is the solution of II/,, then an = aw'h and Uf, = (Wf,)¡.

To see this, suppose (07,, «/,) is the solution of IIh and define zh to be the

H^/,-interpolant of u¡,. (Note this implies that «/, = (zf,)¡.) Then from the

second equation in II h , we obtain

/'Jo
(oh - az'h)xdx = 0

for all piecewise constant x, which, together with the fact that az'h is a piece-

wise constant, implies Of, = az'h. Substituting az'h for 07, in the first equation

in II h, we get

/   az'hv'dx= \   az'h(v)',dx = /   f(v)¡dx   for all v £ Wh.
Jo Jo Jo

From the uniqueness of the solution of (5.7), we conclude that zh = wn, and

hence that 07, = aw'h and «/, = (Wf¡)¡.

We next consider the use of special elements for the two-dimensional model

problem (4.9)-(4.10). A special finite element method for this problem can be

obtained by making the change of variable (4.11). This leads to the boundary

value problem (4.12)-(4.13) for ü(x,y) = u(x,y). Since w £ H2(Û), the
usual Ritz method (applied in the bar variables) gives optimal results. Apply-

ing this method and transforming the equations back to the original variables,

one obtains a displacement method using special elements derived from piece-

wise linear elements using the transformation u(x, y) = ü(x, y). The special

elements are now piecewise linear combinations of

fx     1 fy     1
(5.8) 1, /   —l-^ds, /   —l—ds.

Jo   an(s) Jo  a22(s)
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Note that the triangulation of Q. is by curvilinear triangles obtained by trans-

forming a triangulation of Ù by ordinary triangles. For a further discussion of

special element displacement methods, see Babuska, Caloz, and Osborn [ 1 ] and

Babuska and Osborn [3].
As noted above for one-dimensional problems, one can apply the technique

of constructing special element methods via a change of variables in the context

of mixed methods. To illustrate this for two-dimensional problems, we again

consider (4.9)—(4.10) and its transformed version (4.12)—(4.13). Since ü £

H2(Ù), a good mixed method for (4.12)—(4.13) is I/,. For this problem, the

variational formulation I is:

Find a £ L2(Ü), ü £ H¿(Cí) satisfying

(5.9) - / So • gradvdxdy = - Í afv dx dy   for all v £ H0X (Ù),
Ja Ja

(5.10) / Ba-xdxdy- IB grada -xdxdy = 0   for all f e L2(Q),
Ja Ja

where

a22(y)       0    \

0       au(x)J-

Method If, is obtained from I by approximating Q by piecewise linears and

9 = (ttx, üy) by piecewise constants.
Now both I and I /, can be transformed back to the (x, y)-variables. Problem

I, i.e., (5.9)-(5.10) becomes:
Find a £ L2(Q.), u £ HX(Q.) satisfying

(5.11) -la- grad v dxdy = - / fvdx dy   for all v £ H¿ (Q.),
Ja Jq

(5.12) ¡A-xa-xdxdy- [ gradu-xdxdy = 0   for all x £ L2(Q),
Ja Ja

where
/an(x)       0    \

\    0       a22(y)J-

Note that (5.11 )—(5.12) is mixed formulation II applied to equations (4.9)-

(4.10). The result of transforming I/, amounts to approximating u and a in

(5.11)—(5.12) by the elements (5.8) and piecewise constant functions, respec-

tively. Using the equivalence of problems (5.11 )—(5.12) with (5.9)—(5.10) and
of (5.9)—(5.10) with (4.12)—(4.13), we immediately obtain the error estimate

II» - "aIIhi(Q) + Ik - OhWmsi) < Ch\\f\\L2{a),

where C again depends only on the lower and upper bounds for fln(x) and

a22(y).

For the one-dimensional problem, we saw that there was an equivalence be-

tween a modified special element displacement method and a standard mixed

method. A reasonable question to ask is whether a similar equivalence holds in

two dimensions. To answer this, first recall that method I /, applied to the trans-

formed problem (4.12)—(4.13) is equivalent to the usual Ritz method applied to

that problem. Transforming the Ritz method back to the original variables gives

B
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the special element displacement method described previously. Hence, this spe-

cial element method is equivalent to the special element mixed method based

on mixed formulation II described above. Specifically, the functions Uf, pro-

duced by the two methods are identical and Gf, = A grad «/,. However, unlike

the one-dimensional case, there is no simple way to replace the special elements

by ordinary elements to produce a standard mixed method. In particular, it is

no longer possible to introduce a piecewise linear function z/, such that

Lgrad(zh - Uf,) • xdx = 0   for all piecewise constant x.
la

We remark that it is also possible to formulate accurate special element meth-

ods that use ordinary rather than curvilinear triangles. In particular, if we

discretize (5.11)—(5.12) using ordinary triangles, approximate u by special el-

ements, approximate a by piecewise constants, and use piecewise linears and

piecewise constants for v and x, respectively, we get a special element mixed

method that is accurate for problems with rough coefficients. This method is

equivalent to a special element displacement method known to be accurate for

problems with rough coefficients (cf. [1] and [3]). Note that both of these

methods use different test and trial functions.
It is also illuminating to consider a similar technique applied to the approx-

imation of the boundary value problem (4.5)-(4.6), i.e.,

-e¿{aiX)ÍÍ)-*y-{aiX)Íf)=f    in"' M = °    °ndÇÎ>
where a = a(x) is a function of x only.   To obtain a good approximation

scheme for this problem, we make the change of variables

= /   -ds,
Jo   a

x=     -as,      y = y,
Jo   a

and obtain for u(X, y) = u(x, y) the boundary value problem

du       _2dü       - f r\ -      n or»
-—^-aL-—r= = aj    mil,        u = 0   ondU.,

dxl dy1

where Q = (0, /0 a~x ds) x (0, 1). Since by the Bernstein result, ü £ H2(Ù),

we again apply the Ritz method (in the bar variables) and then transform the

equations back to the original variables. We thus obtain a displacement method

whose special elements are now linear combinations of 1, ft a~x ds, and y .

In the context of mixed methods, we have

dû   dtt\        ,       ,        .       ,     /  du   du
^,^)^ü(x,y) = a(x,y)=[a-,-

Because ü £ H2(Ù), we see that ö £ HX(Ù). Thus, the smooth vector vari-

able for the boundary value problem (4.5)-(4.6) is the vector a = (aux, uy).

Again, a good mixed method for this problem is method I /,, for which the

corresponding variational formulation I is:

Find a £ L2(Q), ü £ HqX(0.) satisfying

-     Äa ■ grad v dxdy = - j afv dxdy   for all v £ H0X (Ù),
Ja Jq

/ Äa -xdxdy - j Ägradü • xdxdv = 0   for all t £ L2(Ù),
Jq Jq
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where

Mi °A
Transforming back to the (x, y) variables, we obtain the variational problem:

Find (j£L2(Çl), u£Hx(ü) satisfying

(5.13) /  (o      )o -gradv dxdy = / fvdxdy   for all v £ H0X(fí),

/(„        )o -x dxdy - /  ( „       ) grad u • x dx d y = 0
(5.14) Jn\  0     a) 7a VO   a/*

for all T 6 ¿2(Q).

The result of transforming I h leads to approximation of a by piecewise con-

stants and of u by the special elements used in the special element displacement

method derived above for this problem. Although it is clear from the derivation

that the special element displacement and mixed methods are equivalent, it is

interesting to note that (5.13)—(5.14) is a mixed formulation of the boundary

value problem that we have not previously considered, since the new variable

introduced is a = (aux ,uy). If one views the development of a good finite

element method for problems with rough coefficients as the search for an ap-

propriate variational principle combined with a good choice of approximating

functions, then this mixed method indicates that a wide variety of mixed vari-

ational principles may prove useful.
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