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Abstract
Over the last two decades, there has been an extensive effort to devise and analyze £nite elements
schemes for the approximation of the Reissner–Mindlin plate equations which avoidlocking, numeri-
cal overstiffness resulting in a loss of accuracy when the plate is thin. There are now many triangular and
rectangular £nite elements, for which a mathematical analysis exists to certify them as free of locking.
Generally speaking, the analysis for rectangular elements extends to the case of parallograms, which are
de£ned by af£ne mappings of rectangles. However, for more general convex quadrilaterals, de£ned by
bilinear mappings of rectangles, the analysis is more complicated. Recent results by the authors on the
approximation properties of quadrilateral £nite elements shed some light on the problems encountered. In
particular, they show that for some £nite element methods for the approximation of the Reissner-Mindlin
plate, the obvious generalization of rectangular elements to general quadrilateral meshes produce meth-
ods which lose accuracy. In this paper, we present an overview of this situation.
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1 Introduction

Research over the past twenty years has led to considerable success in obtaining and analyzing £nite
elements schemes for the approximation of the Reissner–Mindlin plate equations which avoidlocking, a
phenomenon which results in a loss of accuracy when the plate is thin. The £nite element schemes for
which a mathematical analysis exists to certify them as free of locking are largely restricted to either
triangular meshes or rectangular meshes, although the latter are sometimes extended to include the case
of parallelogram meshes. While an arbitrary polygon can be “triangulated” by general quadrilaterals,
the limitation to rectangles or even parallelograms greatly restricts the type of domains for which such
a mesh can be used. Thus, it is important to understand whether the schemes designed for rectangular
meshes also work well for more general quadrilateral meshes. As we shall see in this paper, there can be
a loss of accuracy when successful £nite element methods for approximating the Reissner–Mindlin plate
equations are extended in the obvious way to quadrilateral meshes.

We recall that the Reissner–Mindlin plate model determines functionsθ andω, which are de£ned on the
middle surfaceΩ of the plate and approximate the rotation vector and transverse displacement, respec-
tively, as the minimizers of the energy functional

J(θ, ω) =
1
2

∫
Ω

C E θ : E θ +
λt−2

2

∫
Ω
|θ − gradω|2 −

∫
Ω

gω

overH̊1(Ω)×H̊1(Ω) (for simplicity we have assumed clamped boundary conditions). HereE θ denotes
the symmetric part of the gradient ofθ, g the scaled transverse loading function,t the plate thickness,
andλ = Ek/2(1 + ν) with E Young’s modulus,ν the Poisson ratio, andk the shear correction factor.
For all 2 × 2 symmetric matricesJ , CJ = {E/[12(1 − ν2)]}[(1 − ν)J + ν tr(J )I], whereI is the
2 × 2 identity matrix.

Many of the £nite element schemes which have been proposed to overcome locking take the follow-
ing form. The approximate solution(θh, ωh) is determined in a £nite element spaceΘh × Wh as the
minimizer of a modi£ed energy functional

Jh(θ, ω) =
1
2

∫
Ω

C E θ : E θ +
λt−2

2

∫
Ω
|Rh θ − gradω|2 −

∫
Ω

gω. (1.1)

The modi£cation consists of the incorporation of areduction operatorRh : Θh → Γh, whereΓh is
an auxiliary £nite element space andRh is typically either an interpolation operator or anL2-projection
operator. The £nite element spacesΘh andWh may be either conforming or nonconforming. In the latter
case, the differential operators in (1.1) must be applied element-by-element. All the schemes discussed
in this paper will be of this form. Thus, to specify a particular scheme we need to specify the spacesΘh,
Wh, andΓh, and the reduction operatorRh.

Although the results we obtain can be applied more generally to standard families of elements developed
for the approximation of the Reissner-Mindlin plate equations, for ease of exposition we concentrate
here on the low order elements of a number of these families. These are described in the next section,
£rst considering the case of triangular £nite elements and then discussing rectangular and quadrilateral
elements.

As we shall see, a main dif£culty in extending rectangular (or even parallelogram elements) to quadri-
lateral elements is the possible loss of approximation accuracy due to the replacement of the af£ne map
from the reference element (unit square) to a general rectangle (or parallelogram) by the bilinear map
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which takes the reference square to a more general quadrilateral. This problem is most easily described
in the case of scalar £nite elements. Quadrilateral £nite elements are usually constructed by starting with
a £nite dimensional spacêV of shape functions (usually polynomials) given on a reference elementK̂.
If K denotes a typical element in the quadrilateral mesh andF denotes the bilinear mapping takinĝK to
K, then we constuct a space of functionsVF (K) on the image elementK as the composition of functions
in V̂ with F−1, i.e., forv̂ ∈ V̂ , de£nev ∈ VF (K) by v(x) = v(F (x̂)) = v̂(x̂). Now supposeτh denotes
a family of meshes of quadrilaterals of a domainΩ indexed by the maximum mesh sizeh, and consider
the spaceV τh of functions whose restriction to the elementK belong toVF (K). It is well known that in
the case when the mappingF is af£ne (giving only parallelograms), a necessary and suf£cient condition
for approximation of orderr+1 in L2(Ω) of smooth functions by functions inV τh is that the spacêV of
functions on the reference elementK̂ contain all polynomial functions of total degreer. However, it was
shown in [1] that in the case of more general bilinear maps, a necessary condition for approximation of
orderr + 1 in L2(Ω) is that the spacêV of functions on the reference elementK̂ contain all polynomial
functions of separate degreer. This condition was already known to be suf£cient.

One can also examine what is needed for approximation of orderr + 1 in L2(Ω) in the case of vector-
valued functions de£ned on a arbitrary quadrilateral by mapping from a reference element using a rotated
version of the Piola transform. As we shall explain, such elements enter in a natural way in many of
the successful approximation schemes for the Reissner-Mindlin plate. After stating results on necessary
conditions for optimal order convergence of these type of approximations, we shall examine their im-
plications for the convergence of the extension to quadrilateral meshes of several well-known elements
which have been analyzed for rectangular meshes.

The outline of the paper is as follows. In the next section, we recall some low order £nite element schemes
for the approximation of the Reissner-Mindlin plate problem using triangular and rectangular elements
and discuss their extension to the case of quadrilateral meshes. In Section 3, we state a result which can
be used to derive error estimates for such schemes by relating the error in the method to questions in
approximation theory. In the following section, we summarize some new results on approximation by
quadrilateral £nite elements which have implications for the rate of convergence that can be achieved by
the quadrilateral £nite element schemes. These implications are then discussed in detail in Section 5.

2 Finite element schemes for the Reissner–Mindlin plate

In this section, we recall a variety of £nite element schemes for the Reissner–Mindlin plate which have
been proposed and analyzed for triangular and rectangular meshes. We then describe their extension to
quadrilateral meshes. To describe each scheme, we need only de£ne the £nite element spacesΘh, Wh,
and Γh and the reduction operatorRh.

To simplify the description of the elements, we £rst introduce some basic notation. LetΩ be a polygonal
domain and let{τh}0<h<1 be a subdivision ofΩ into either triangles, rectangles, or quadrilaterals, where
the subscripth refers to the diameter of the largest element in the subdivision. For any setK, de£ne
Pk(K) as the set of restrictions toK of polynomials of degree at mostk, Pk1,k2(K) as the set of restric-
tions toK of polynomials of degree at mostk1 in x1 and at mostk2 in x2, andQk(K) = Pk,k(K) as the
set of restrictions of polynomials of degree at mostk in each variable,

We begin with the case of triangular elements. Although we consider only low order elements, many of
these elements have well-known extensions to families of elements of arbitrary order.
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Durán–Liberman element:
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Here Θh is the set of continuous, piecewise linear vectors plus the span ofλ2λ3 τ 1, λ3λ1 τ 2, λ1λ2 τ 3,
whereλi are the barycentric coordinates of the triangle andτ i are the unit tangent vectors on the triangle
sides.Wh is chosen as the space of continuous, piecewise linear functions andΓh as the rotation of the
lowest order Raviart-Thomas space, i.e., on each triangle, functions inΓh have the form(a−by, c+bx).
The reduction operatorRh is de£ned by the three edge conditions

∫
e Rh γ · τ =

∫
e γ · τ .

Arnold–Falk element:
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Here Θh is the space of continuous, piecewise linear vectors plus the cubic bubble functions (de£ned on
each triangle byλ1λ2λ3). Wh is the space of nonconforming, piecewise linear functions, i.e., piecewise
linear functions which are continuous at midpoints of edges.Γh is the space of piecewise constant
vectors, andRh is de£ned on each triangleT by the condition

∫
T Rh φ =

∫
T φ.

Falk–Tu element:
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Here Θh is the space of continuous, piecewise linear functions plus quartic bubble functions, (i.e.,
λ1λ2λ3(aλ1 + bλ2 + cλ3), Wh the space of continuous, piecewise quadratic functions, andΓh the
space of discontinuous piecewise linear vectors. The operatorRh is L2 projection intoΓh.

MITC7 element:

Θh Wh Γh
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Here Θh is the space of continuous, piecewise quadratic vectors plus cubic bubble functions,Wh is the
space of continuous, piecewise quadratic functions, andΓh is the rotation of the second lowest order
Raviart-Thomas space, i.e., on each triangle elements ofΓh have the form(a+bx+cy−dxy−ey2, f +
gx + hy + exy + dx2). The operatorRh is the standard interpolation operator intoΓh de£ned by the
conditions:

∫
e Rh γ · τ p1 =

∫
e γ · τ p1,∀p1 ∈ P1(e),

∫
T Rh γ =

∫
T γ.

A slightly simpler variation of this element can be constructed using the rotated version of the Brezzi-
Douglas-Marini elements to approximateΓh. Such an element is mentioned in [4]. We label this the
MITC6 element.
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MITC6 element:

Θh Wh Γh
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Here Θh is the space of continuous, piecewise quadratic vectors,Wh is the space of continuous, piece-
wise quadratic functions, andΓh is the rotation of the spaceBDM1, consisting on each triangle of
vectors with components inP1. The operatorRh is the standard interpolation operator intoΓh de£ned
by the edge conditions:

∫
e Rh γ · τ p1 =

∫
e γ · τ p1,∀p1 ∈ P1(e).

We next consider rectangular elements.

MITC4 element:

Θh Wh Γh

r r

r r

b b

b b

-

¾

6
?

Here Θh is the space of continuous, piecewise bilinear vectors,Wh is the space of continuous piece-
wise bilinear functions, andΓh is the rotation of the lowest order Raviart-Thomas space, i.e., on each
rectangle, elements ofΓh have the form(a + by, c + dx). The operatorRh is the standard interpolation
operator intoΓh de£ned by the edge conditions

∫
e Rh γ · τ =

∫
e γ · τ .

Durán–Liberman element:

Θh Wh Γh

r r

r r
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6
?

b b

b b
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Here Θh is the set of continuous, piecewise bilinear vectors plus the span of the edge bubbles, de£ned
on the unit square bŷx(1 − x̂)(1 − ŷ) τ 1, x̂ŷ(1 − ŷ) τ 2, x̂(1 − x̂)ŷ τ 3, and(1 − x̂)ŷ(1 − ŷ) τ 4, where
τ i are the unit tangent vectors(1, 0), (0, 1), (−1, 0), and(0,−1) on the sides of the unit square.Wh is
chosen as the space of continuous, piecewise bilinear functions andΓh is the rotation of the lowest order
Raviart-Thomas space. Note that the only difference between this method and MITC4 is the choice of
the space for the rotation vector.

Ye element:
Θh Wh Γh

r r

r r

r

r
r rr

b

b
b b S

Here Θh is the set of continuous, piecewise biquadratic vectors.Wh is the space of nonconforming (i.e.,
continuous average values across rectangle edges) rotated bilinear elements de£ned on the unit square
as the span of{1, x̂, ŷ, x̂2 − ŷ2}. Note that the usual bilinear elements are not uniquely de£ned by their
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average values on the sides of the unit square, since the bilinear function(x̂ − 1/2)(ŷ − 1/2) has zero
average value on the four sides. The spaceΓh is chosen to be discontinuous vectors, which on each
rectangle have the form(b + dx, c − dy).

MITC8 element:

Θh Wh Γh
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Here Θh is the space of continuous, piecewise serendipity quadratic vectors,Wh is the space
of serendipity quadratics, (i.e., continuous functions which on each rectangle are the span of
(1, x, y, xy, x2, y2, x2y, xy2), and Γh is the rotation ofBDM1, the space of Brezzi-Douglas–Marini
elements. On each rectangle, elements ofΓh have the form(a1 + b1x + c1y + 2dxy + ey2, a2 + b2x +
c2y + dx2 + 2exy). The operatorRh is the standard interpolation operator intoΓh de£ned by the edge
conditions

∫
e Rh γ · τ p1 =

∫
e γ · τ p1,∀p1 ∈ P1(e).

MITC9 element:

Θh Wh Γh
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Here Θh is the space of continuous, piecewise biquadratic vectors,Wh is the space of serendipity
quadratics, andΓh is the rotation ofBDFM2, the space of Brezzi-Douglas-Fortin-Marini elements. On
each rectangle, elements ofΓh have the form(a1+b1x+c1y+d1xy+e1y

2, a2+b2x+c2y+d2xy+e2x
2).

The operatorRh is the standard interpolation operator intoΓh de£ned by the conditions
∫
e Rh γ · τ p1 =∫

e γ · τ p1,∀p1 ∈ P1(e),
∫
K γ =

∫
K Rh γ.

There is also an analogue of MITC9 based on the rotated version of the Raviart-Thomas (RT ) elements,
which we label MITC12.

MITC12 element:

Θh Wh Γh
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Here Θh is the space of continuous, piecewise biquadratic vectors plus the bicubic bubble functions,
which on each rectangle have the form(1−x)x(1− y)y(ax+ by + cxy). Wh is the space of continuous
biquadratics, andΓh is the rotation ofRT 1, the second lowest space of Raviart-Thomas elements. On
each rectangle, elements ofΓh have the formP1,2 × P2,1. The operatorRh is the standard interpolation
operator intoΓh de£ned by the conditions

∫
e Rh γ · τ p1 =

∫
e γ · τ p1,∀p1 ∈ P1(e),

∫
K γ · q =∫

K Rh γ · q ∀q ∈ P1,0 × P0,1.

We now consider the extension of these elements to the case of quadrilaterals. We letF be an invertible
bilinear mapping from the reference elementK̂ = [0, 1] × [0, 1] to a convex quadrilateralK. For scalar
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functions, ifv̂(x̂) is function de£ned on̂K, we de£nev(x) onK by v = v̂ ◦ F −1. Then, forV̂ a set of
shape functions given on̂K, we de£ne

VF (K) = {v : v = v̂ ◦ F−1, v̂ ∈ V̂ }.

For all the examples given previously, the spaceWh may be de£ned in this way, beginning with the shape
functions denoted in the £gures. This preserves the appropriate interelement continuity when the usual
degrees of freedom are chosen. The same mapping, applied to each component, can be used with minor
exceptions to de£ne the spaceΘh. One exception occurs for the Durán-Liberman element, where one
adds to the mapped bilinear vectors a set of four edge bubbles{p1, p2, p3, p4} de£ned byp1(F (x̂)) =
(x̂)(1− x̂)(1− ŷ) τ 1, where nowτ 1 denotes the unit tangent on the edge ofK corresponding to the side
ŷ = 0 on the reference square, with analogous de£nitions for the otherpi. There is also the possibility
of using a different mapping to de£ne the interior degrees of freedom for the spaceΘh, since this will
not affect the interelement continuity.

To de£ne the spaceΓh, we use a rotated version of the Piola transform. LettingDF denote the Jacobian
matrix of the transformationF , if η̂ is a vector function de£ned on̂K, we de£neη onK by

η(x) = η(F (x̂)) = [DF (x̂)]−t η̂(x̂),

whereA−t denotes the transpose of the inverse of the matrixA. Then if V̂ is a set of vector shape
functions given onK̂, we de£ne

VF (K) = {η : η = [DF ]−t η̂ ◦ F−1, η̂ ∈ V̂ }.

For ω ∈ Wh, gradω = DF−t ˆgrad ω̂. Hence, if on the reference squarêgrad ω̂ ⊆ V̂ , we will also
havegradω ⊆ Γh, a condition that is needed to guarantee uniqueness of solutions.

Although the extensions to quadrilaterals are in most cases straightforward to de£ne, the question is
whether the method retains the same order of approximation as in the rectangular case. To understand
this situation, we look in the next section at a method of error analysis originally proposed by Durán and
Liberman [11].

3 Error Analysis

In this section, we consider one method of analysis for deriving order of convergence estimates for
approximation schemes for the Reissner-Mindlin plate. As is standard in £nite element analysis, the aim
is £rst to relate the error in the method to how well the true solution can be approximated by functions
in the £nite element subspace. The following result is a generalization of a theorem in [11] and can be
found in [12].

Theorem: SupposegradWh ⊂ Γh and letωI ∈ Wh and φI ∈ Θh. De£ne

γ = t−2(gradω − φ), γh = t−2(gradωh − Rh φh), γI = t−2(gradωI − Rh φI).

Suppose fors ≥ 1, ‖γ − Rh γ‖0 ≤ Ch‖γ‖1. Then

‖φ − φh‖1 + t‖γ − γh‖0 ≤ C
(‖φ − φI‖1 + t‖γ − γI‖0 + h‖γ‖0

)
.
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Suppose in addition that fors ≥ 2, (γ − Rh γ, η) = 0 ∀η ∈ Ps−2, wherePk denotes discontinuous
piecewise polynomials vectors of degree≤ k. Then, lettingΠ denoteL2 projection intoPs−2,

‖φ − φh‖1 + t‖γ − γh‖0 ≤ C
(‖φ − φI‖1 + t‖γ − γI‖0 + h‖γ − Πγ‖0

)
.

To apply this result, £nd approximationsωI and φI which satisfy:

gradωI − Rh φI = Rh gradω − Rh φ

and
‖φ − φI‖0 + h‖φ − φI‖1 ≤ Chs+1‖φ‖s+1, ‖γ − Rh γ‖0 ≤ Chs‖γ‖s.

If so, then
γI = t−2(gradωI − Rh φI) = t−2Rh(gradω − φ) = Rh γ.

Hence, we obtain fors ≥ 1

‖φ − φh‖1 + t‖γ − γh‖0 ≤ Chs
(‖φ‖s+1 + ‖γ‖s−1 + t‖γ‖s

)
,

where the constantC is independent ofh andt. Note, however, that the norms on the right hand side of
the estimate are NOT independent oft for s ≥ 3/2.

Leaving aside the question of how we construct such special interpolants, we concentrate on what such
an estimate tells us about the best possible order of convergence that is achievable. Although this theorem
only provides an upper bound on the error, it indicates that the error in the approximation of the rotation
φ and the shear stressγ depend on the simultaneous approximation of both these variables. A typical
error estimate for the approximation ofω indicates that this error depends on the approimation properties
of Θh and Γh, as well asWh. So a natural question to ask is what is known about such approximations
on quadrilaterals.

4 Approximation Theory

We look £rst at the case of scalar approximation on rectangular meshes, Given a subspaceŜ of L2(K̂),
we de£ne the associated subspace on an arbitrary squareK by

S(K) = {u : K → R | ûK ∈ Ŝ }.
Forn = 1, 2, . . ., let τh be the uniform mesh of the unit squareΩ into n2 subsquares whenh = 1/n, and
de£ne

Sh = {u : Ω → R |u|K ∈ S(K) for all K ∈ τh }.
Then the following well-known result gives a set of equivalent conditions for optimal order convergence
(e.g., see [1]).

Theorem 4.1 Let Ŝ be a £nite dimensional subspace ofL2(K̂), r a non-negative integer. The following
conditions are equivalent:

There is a constantC such that inf
v∈Sh

‖u − v‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω) for all u ∈ Hr+1(Ω). (4.1)

inf
v∈Sh

‖u − v‖L2(Ω) = o(hr) for all u ∈ Pr(Ω). (4.2)

Pr(K̂) ⊂ Ŝ. (4.3)

8
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Hence, for optimal order approximation, one needs to havePr(K̂) ⊂ Ŝ. For optimal order approximation
on quadrilaterals, however, a stronger condition is needed. To state the result, we recall that a familyτh

of decompositions ofΩ into quadrilateralsK is called shape-regular (cf. [9]) if all the quadrilaterals are
convex and there exist constantsσ ≥ 1 and0 < ρ < 1 independent ofh such that

hK/h
′
K ≤ σ, | cos θiK | ≤ ρ, i = 1, 2, 3, 4, ∀K ∈ τh,

wherehK , h
′
K , andθiK are the diameter ofK, the smallest length of the sides ofK, and the angles of

K, respectively.

The following result is established in [1].

Theorem 4.2 Let τh denote a shape-regular sequence of quadrilateral meshes of a two-dimensional
domainΩ, whereh denotes the maximum diameter of the elementsK ∈ τh. Let V τh denote the space
of functions onΩ which belong toVFK

(K) when restricted to a generic quadrilateralK ∈ τh. Then a
necessary condition for the estimate(4.2) to hold is thatQr ⊆ V̂ .

Recall that the natural way to preserve the conditiongradWh ⊆ Γh is to de£neΓh by mapping
spaces de£ned on the reference square to the general quadrilateral using the rotated version of the Piola
transform. To state the analogue of Theorem 4.2 for such spaces, we introduce the following notation.
Denote byRT r the span of the spacêV associated to the rotated Raviart–Thomas space of orderr

de£ned on the reference element. We recall thatRT r = Pr,r+1 × Pr+1,r. In particular, the Raviart–
Thomas shape functions on the reference element are the span of the vectors(x̂iŷj , 0), 0 ≤ i ≤ r,
0 ≤ j ≤ r + 1 and(0, x̂iŷj), 0 ≤ i ≤ r + 1, 0 ≤ j ≤ r. We then de£ne the spaceSr to be the span
of the vectors given above, but where the vectors(x̂rŷr+1, 0) and(0, x̂r+1ŷr) are replaced by the single
vector(x̂rŷr+1, x̂r+1ŷr). Thus,RT r is equal to the span ofSr and the vector(x̂rŷr+1,−x̂r+1ŷr). For
r = 1, 2, . . . , we also de£neRr to be the span of the monomialsx̂iŷj , i, j = 0, . . . r, but omitting the
monomialx̂rŷr.

Theorem 4.3 Let τh denote a shape-regular sequence of quadrilateral meshes of a two-dimensional
domainΩ, whereh denotes the maximum diameter of the elementsK ∈ τh. LetV τh denote the space of
vector£elds onΩ which belong toVFK

(K) when restricted to a generic quadrilateralK ∈ τh. Then a
necessary condition for the estimate

inf
η∈V τh

‖γ − η‖L2(Ω) = o(hr) for all γ ∈ Pr(Ω, R2)

to hold is thatSr ⊆ V̂ and a necessary condition for the estimate

inf
η∈V τh

‖rot[γ − η]‖L2(Ω) = o(hr) for all γ withrot γ ∈ Pr(Ω)

to hold is thatRr+1 ⊆ ˆrot V̂ .

A proof of the analogue of this result for £nite element subpaces ofH(div) can be found in [2].

A key ingredient in establishing Theorem 4.2 is to £rst show that forPr(K) to belong toVF (K), we
must haveQr(K̂) ∈ V̂ . Analogously, a key ingredient in establishing Theorem 4.3 is to £rst show that
for Pr(K, R2) to belong toVF (K), we must haveSr ∈ V̂ .
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5 Implications for quadrilateral Reissner-Mindlin elements

The MITC4 and Duŕan-Liberman elements both use the fullQ1 space to approximate bothθ andω and
the full RT 0 space to approximateγ. SinceRT 0 ⊆ S0, we do not expect degradation of convergence
rate in going from a rectangular mesh to a shape-regular quadrilateral mesh. Both of these methods have
been analyed in a recent paper [10]. The quadrilateral version of the Durán-Liberman scheme is shown to
converge with optimal orderO(h) on shape-regular meshes, while for the MITC4 method, this result is
only obtained for asymptotically parallelogram meshes. However, numerical experiments do not indicate
any degradation of convergence rates, even for more general shape-regular quadrilateral meshes.

The nonconforming element of Ye approximatesω by a space for whicĥV does not contain all ofQ1

(cf. [13] for further discussion of this space). Thus, we would expect to see a degradation of convergence
rate in the approximation ofω. One possible remedy for this is to add the nonconforming bubble(x̂ −
1/2)(ŷ − 1/2) to the set of basis functions on the reference element for the spaceWh and the gradient
of this function to the reference element for the spaceΓh. However, when this is done, certain key
properties which hold for the case of rectangles no longer hold for quadrilaterals, so the extension of the
analysis to the quadrilateral case is not clear.

The MITC8 element approximates bothθ andω by spaces obtained from mappings of the quadratic
serentipity space. Since this space does not contain all ofQ2, (i.e, it is missing the basis functionx2y2),
we expect to see onlyO(h) convergence. The spaceΓh is obtained by mapping theBDM1 space.
Since this space does not containS1, we also expect this to be a cause of degradation of convergence.

The MITC9 element uses the fullQ2 approximation forθ, but the use of theQ2 serendipity space
to approximateω and theBDFM2 space (which does not containS1) to approximateγ will cause
degradation in the convergence rate.

On the other hand, we expect the space MITC12 to suffer no degradation of convergence on shape-regular
quadrilateral meshes as a result of suboptimal approximation by the subspaces. Of course, the analysis
of such methods is quite delicate, so optimal order approximation by the £nite element subspaces is not
the only issue in establishing optimal order convergence rates.

Finally, we remark that the degradation of convergence rates noted above for approximation on general
quadrilateral meshes by certain families of £nite elements does not occur for meshes of parallelograms
or even for meshes whose elements are suf£ciently close to parallelograms. In particular, if we begin
with any mesh of convex quadrilaterals, and continually re£ne it by dividing each quadrilateral in four
by connecting the midpoints of the opposite edges, the resulting sequence of meshes is asymptotically
parallelogram and shape-regular. It was shown in [1] that for such meshes in the case of scalar £nite
element approximation, if the reference space contains onlyPr(K̂), rather thanQr(K̂), one still has
optimalO(hr+1) convergence inL2. Since such meshes occur commonly in practice, this may explain
why the degradation of convergence rate is not observed more often.
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