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Abstract

Over the last two decades, there has been an extensive effort to devise and analyze £nite elements
schemes for the approximation of the Reissner—Mindlin plate equations whichlaekidg numeri-

cal overstiffness resulting in a loss of accuracy when the plate is thin. There are now many triangular and
rectangular £nite elements, for which a mathematical analysis exists to certify them as free of locking.
Generally speaking, the analysis for rectangular elements extends to the case of parallograms, which are
de£ned by afEne mappings of rectangles. However, for more general convex quadrilaterals, deEned by
bilinear mappings of rectangles, the analysis is more complicated. Recent results by the authors on the
approximation properties of quadrilateral £nite elements shed some light on the problems encountered. In
particular, they show that for some £nite element methods for the approximation of the Reissner-Mindlin
plate, the obvious generalization of rectangular elements to general quadrilateral meshes produce meth-
ods which lose accuracy. In this paper, we present an overview of this situation.
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1 Introduction

Research over the past twenty years has led to considerable success in obtaining and analyzing £nite
elements schemes for the approximation of the Reissner—Mindlin plate equations whicloekivig a
phenomenon which results in a loss of accuracy when the plate is thin. The £nite element schemes for
which a mathematical analysis exists to certify them as free of locking are largely restricted to either
triangular meshes or rectangular meshes, although the latter are sometimes extended to include the case
of parallelogram meshes. While an arbitrary polygon can be “triangulated” by general quadrilaterals,
the limitation to rectangles or even parallelograms greatly restricts the type of domains for which such

a mesh can be used. Thus, it is important to understand whether the schemes designed for rectangular
meshes also work well for more general quadrilateral meshes. As we shall see in this paper, there can be
a loss of accuracy when successful £nite element methods for approximating the Reissner—Mindlin plate
equations are extended in the obvious way to quadrilateral meshes.

We recall that the Reissner—Mindlin plate model determines func#baisdw, which are de£ned on the
middle surface? of the plate and approximate the rotation vector and transverse displacement, respec-
tively, as the minimizers of the energy functional

)\t 2 9
J(0,w) = C50 EO+ —— |0 gradw|* —

overﬁl(Q) X fll(Q) (for simplicity we have assumed clamped boundary conditions). Elé&eenotes
the symmetric part of the gradient &, g the scaled transverse loading functiorhe plate thickness,
and\ = Ek/2(1 + v) with E Young’s modulusy the Poisson ratio, ankl the shear correction factor.
For all2 x 2 symmetric matrices7, CJ = {E/[12(1 — v*)]}[(1 — v)TJ + vtr(J)ZI], whereZ is the
2 x 2 identity matrix.

Many of the £nite element schemes which have been proposed to overcome locking take the follow-
ing form. The approximate solutiof¥,,wy,) is determined in a £nite element spa@s, x W}, as the
minimizer of a modi£ed energy functional

/CSG €9+/\— ]RhG grad w|? /gw. (1.1)
Q

The modi£cation consists of the incorporation akduction operatorR;, : ®;, — I';,, whereT'}, is

an auxiliary £nite element space aRyj, is typically either an interpolation operator or Bfprojection
operator. The £nite element spad®g and¥;, may be either conforming or nonconforming. In the latter
case, the differential operators in (1.1) must be applied element-by-element. All the schemes discussed
in this paper will be of this form. Thus, to specify a particular scheme we need to specify the &paces

Wy, and Ty, and the reduction operatdty,.

Although the results we obtain can be applied more generally to standard families of elements developed
for the approximation of the Reissner-Mindlin plate equations, for ease of exposition we concentrate
here on the low order elements of a number of these families. These are described in the next section,
£rst considering the case of triangular £nite elements and then discussing rectangular and quadrilateral
elements.

As we shall see, a main difEculty in extending rectangular (or even parallelogram elements) to quadri-
lateral elements is the possible loss of approximation accuracy due to the replacement of the afEne map
from the reference element (unit square) to a general rectangle (or parallelogram) by the bilinear map
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which takes the reference square to a more general quadrilateral. This problem is most easily described
in the case of scalar £nite elements. Quadrilateral £nite elements are usually constructed by starting with
a £nite dimensional spadé of shape functions (usually polynomials) given on a reference eleiient

If K denotes a typical element in the quadrilateral meshEudenotes the bilinear mapping takifgto

K, then we constuct a space of functidns( K ') on the image elemert as the composition of functions

inV with F~1, i.e., foro € V, defnev € Vi (K) byv(x) = v(F(&)) = 6(z). Now suppose;, denotes

a family of meshes of quadrilaterals of a dom&iimndexed by the maximum mesh sizeand consider

the spacé’™ of functions whose restriction to the elemétitoelong toV(K). It is well known that in

the case when the mappittgis afEne (giving only parallelograms), a necessary and suffcient condition
for approximation of order + 1 in L2(£2) of smooth functions by functions %™ is that the spac¥ of
functions on the reference elemdtitcontain all polynomial functions of total degreeHowever, it was

shown in [1] that in the case of more general bilinear maps, a necessary condition for approximation of
orderr + 1in L?(Q) is that the spac® of functions on the reference elemdiitcontain all polynomial
functions of separate degreeThis condition was already known to be sufEcient.

One can also examine what is needed for approximation of erdet in L?(Q) in the case of vector-

valued functions de£ned on a arbitrary quadrilateral by mapping from a reference element using a rotated
version of the Piola transform. As we shall explain, such elements enter in a natural way in many of
the successful approximation schemes for the Reissner-Mindlin plate. After stating results on necessary
conditions for optimal order convergence of these type of approximations, we shall examine their im-
plications for the convergence of the extension to quadrilateral meshes of several well-known elements
which have been analyzed for rectangular meshes.

The outline of the paper is as follows. In the next section, we recall some low order £nite element schemes
for the approximation of the Reissner-Mindlin plate problem using triangular and rectangular elements
and discuss their extension to the case of quadrilateral meshes. In Section 3, we state a result which can
be used to derive error estimates for such schemes by relating the error in the method to questions in
approximation theory. In the following section, we summarize some new results on approximation by
guadrilateral £nite elements which have implications for the rate of convergence that can be achieved by
the quadrilateral £nite element schemes. These implications are then discussed in detail in Section 5.

2 Finite element schemes for the Reissner—Mindlin plate

In this section, we recall a variety of £nite element schemes for the Reissner—Mindlin plate which have
been proposed and analyzed for triangular and rectangular meshes. We then describe their extension to
guadrilateral meshes. To describe each scheme, we need only de£ne the £nite eleme® gpéices

and I';, and the reduction operatdty,.

To simplify the description of the elements, we £rst introduce some basic notatidn.desa polygonal
domain and le{, } o<1 be a subdivision of? into either triangles, rectangles, or quadrilaterals, where
the subscript refers to the diameter of the largest element in the subdivision. For any ,sé¢£ne
P,(K) as the set of restrictions g of polynomials of degree at mokt Py, 1, (K) as the set of restric-
tions to X of polynomials of degree at mokt in z; and at mosks in 2, andQy (K) = Py, (K) as the

set of restrictions of polynomials of degree at mbst each variable,

We begin with the case of triangular elements. Although we consider only low order elements, many of
these elements have well-known extensions to families of elements of arbitrary order.
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Duran—Liberman element:

S Wi, 'y

Here ©, is the set of continuous, piecewise linear vectors plus the spapafri, A3\ 72, A1 A2 T3,
where); are the barycentric coordinates of the triangle af@re the unit tangent vectors on the triangle
sides.IW}, is chosen as the space of continuous, piecewise linear functionF aad the rotation of the
lowest order Raviart-Thomas space, i.e., on each triangle, functidig irave the form(a — by, ¢+ bx).
The reduction operatdR), is defned by the three edge conditiohsR, v - 7= [ v 7.

Arnold—Falk element:
(S 'y

Wi,
AN e /\

Here ©,, is the space of continuous, piecewise linear vectors plus the cubic bubble functions (deEned on
each triangle by\; A2 \3). W), is the space of nonconforming, piecewise linear functions, i.e., piecewise
linear functions which are continuous at midpoints of edgés.is the space of piecewise constant
vectors, andRy, is de£ned on each triangleby the condition[,. R, ¢ = [ ¢.

Falk—Tu element:
Gh Wh Fh

/\ N\ .
e o C/ \o o o

Here ©,, is the space of continuous, piecewise linear functions plus quartic bubble functions, (i.e.,
A1 A2As(aA; + by + cAs3), Wy, the space of continuous, piecewise quadratic functions, Bpndhe
space of discontinuous piecewise linear vectors. The opeRytds L2 projection intoT,.

MITC7 element:
@h Wh Fh

I\ N\
SN N

Here O, is the space of continuous, piecewise quadratic vectors plus cubic bubble funBtipissthe

space of continuous, piecewise quadratic functions, Bpds the rotation of the second lowest order
Raviart-Thomas space, i.e., on each triangle elemenks, ¢fave the forn{a 4 bx + cy — dry — ey?, f +

gr + hy + exy + dz?). The operatoRR;, is the standard interpolation operator infg def£ned by the
conditions:| R,y - 7p1 = [, v Tp1,Yp1 € Pi(e), [; Ryy = [ 7.

A slightly simpler variation of this element can be constructed using the rotated version of the Brezzi-
Douglas-Marini elements to approximail®,. Such an element is mentioned in [4]. We label this the
MITC6 element.
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MITC6 element:
(S8 Wi, 'y

AN /\
SN SN S

o > >

Here ©,, is the space of continuous, piecewise quadratic vecligsis the space of continuous, piece-
wise quadratic functions, anlf;, is the rotation of the spacB.D M, consisting on each triangle of
vectors with components iRf;. The operatoiR;, is the standard interpolation operator irfifg de£ned
by the edge conditionsf, Ry~ - 7p1 = [, v 7p1,Yp1 € Pyi(e).

We next consider rectangular elements.
MITC4 element:

O Wi, 'y

Y

Here ©,, is the space of continuous, piecewise bilinear vectidrs,is the space of continuous piece-
wise bilinear functions, and’, is the rotation of the lowest order Raviart-Thomas space, i.e., on each
rectangle, elements df, have the form(a + by, c + dx). The operatoR;, is the standard interpolation
operator intoI', de£ned by the edge conditiofsR, vy - 7= [, ~v- T.

Duran—Liberman element:

O Wi, 'y
< —_—-————
Y A
. s

Here @), is the set of continuous, piecewise bilinear vectors plus the span of the edge bubbles, de£ned
on the unit square by(1 — )(1 — 9) 71, 29(1 — ) 72, (1 — &)y T3, and(1 — 2)y(1 — §) 74, Where

T; are the unit tangent vecto(s, 0), (0, 1), (—1,0), and(0, —1) on the sides of the unit squané, is

chosen as the space of continuous, piecewise bilinear functionF aigthe rotation of the lowest order
Raviart-Thomas space. Note that the only difference between this method and MITC4 is the choice of
the space for the rotation vector.

Ye element:
O, Wh Iy,
. S

Here ©, is the set of continuous, piecewise biquadratic vecidfsis the space of nonconforming (i.e.,
continuous average values across rectangle edges) rotated bilinear elements de£ned on the unit square
as the span of1, &, 7, 22 — 4%}. Note that the usual bilinear elements are not uniquely de£ned by their
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average values on the sides of the unit square, since the bilinear fufietieri /2)(y — 1/2) has zero
average value on the four sides. The spdigeis chosen to be discontinuous vectors, which on each
rectangle have the foritb + dz, c — dy).

MITCS8 element:
O, Wi, 'y

Here ©,; is the space of continuous, piecewise serendipity quadratic vedigssjs the space

of serendipity quadratics, (i.e., continuous functions which on each rectangle are the span of
(1,2, y, zy, 22, y%, 2%y, zy*), and T';, is the rotation of BD M, the space of Brezzi-Douglas—Marini
elements. On each rectangle, element¥ghave the form{a; + byz + c1y + 2dzy + ey?, as + box +

coy + dx? + 2exy). The operatoiR;, is the standard interpolation operator irlfy de£ned by the edge
conditions|, Ry~ - 7p1 = [, v- 7p1,Yp1 € Pi(e).

MITC9 element:
CJ Wi, 'y

Here ©,, is the space of continuous, piecewise biquadratic vecldfiis,s the space of serendipity
guadratics, and’y, is the rotation ofB.D F' M , the space of Brezzi-Douglas-Fortin-Marini elements. On
each rectangle, elementsBf, have the forn{a; +b1z+c1y+dixy+e1y?, ag+box+coy+dozy+esx?).
The operatoiR?;, is the standard interpolation operator iffg de£ned by the conditiong Ry, v- 7 p1 =
[~ Tp1,¥p1 € Pi(e), [ v =[x Ru7.

There is also an analogue of MITC9 based on the rotated version of the Raviart-THR#iasléments,
which we label MITC12.

MITC12 element:;

O, Wi, Ty

. . Y 1
o L) L]

. . 1 A

Here ©, is the space of continuous, piecewise biquadratic vectors plus the bicubic bubble functions,
which on each rectangle have the fofin- x)z (1 — y)y(az + by + cxy). W), is the space of continuous
biquadratics, and™;, is the rotation ofRT'{, the second lowest space of Raviart-Thomas elements. On
each rectangle, elements D}, have the formP; » x P ;. The operato?;, is the standard interpolation
operator intoI';, def£ned by the condition$, R,y - 7p1 = [, v - Tp1,Yp1 € Pi(e), [,r v -q =

Jx Bny-q@ Yq € Pigx Py

We now consider the extension of these elements to the case of quadrilaterals FN&elan invertible
bilinear mapping from the reference elemént= [0, 1] x [0, 1] to a convex quadrilaterdl’. For scalar
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functions, ifo() is function de£ned o, we defne(x) on K by v = & o F~1. Then, forV a set of
shape functions given oif, we defne

Vi(K)={v:v=00F ' eV}

For all the examples given previously, the spaGemay be de£ned in this way, beginning with the shape
functions denoted in the £gures. This preserves the appropriate interelement continuity when the usual
degrees of freedom are chosen. The same mapping, applied to each component, can be used with minor
exceptions to de£ne the spa@®,. One exception occurs for the Can-Liberman element, where one

adds to the mapped bilinear vectors a set of four edge bulbple®,, p3, p4} defned byp, (F(z)) =
(z)(1—2)(1—1g) 71, where nowr; denotes the unit tangent on the edgdsoforresponding to the side

7 = 0 on the reference square, with analogous de£nitions for the pthdihere is also the possibility

of using a different mapping to de£ne the interior degrees of freedom for the &pgacsince this will

not affect the interelement continuity.

To de£ne the spacEj,, we use a rotated version of the Piola transform. Letfirj denote the Jacobian
matrix of the transformatiot’, if 7; is a vector function def£ned aii, we de£nen on K by

n(z) = n(F(z)) = [DF(z)]"" (@),

where A~ denotes the transpose of the inverse of the matrixhen if V' is a set of vector shape
functions given onk’, we defne

Ve(K)={n:n=[DF]"qoF ' eV}
Forw € W), gradw = DF tgrad&. Hence, if on the reference squagead @ C V/, we will also

havegrad w C T, a condition that is needed to guarantee uniqueness of solutions.

Although the extensions to quadrilaterals are in most cases straightforward to defne, the question is
whether the method retains the same order of approximation as in the rectangular case. To understand
this situation, we look in the next section at a method of error analysis originally proposed &y &nd
Liberman [11].

3 Error Analysis

In this section, we consider one method of analysis for deriving order of convergence estimates for
approximation schemes for the Reissner-Mindlin plate. As is standard in £nite element analysis, the aim
is £rst to relate the error in the method to how well the true solution can be approximated by functions
in the £nite element subspace. The following result is a generalization of a theorem in [11] and can be
found in [12].

Theorem: Supposegrad W), C T'j, and letw; € W), and ¢; € ©;,. Defne
v =t"(gradw — ¢), vy =t *(gradwy, — Ry ), v; =t*(gradws — Ry ¢).
Suppose fos > 1, || v — Ry, v|lo < Chl|v]||:- Then

¢ = nlli +tlly = vullo < C(I1 & = &rlli +tlly = villo + Al vllo)-
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Suppose in addition that far> 2, (v — R, v,n) = 0 Vn € Ps_s, whereP;, denotes discontinuous
piecewise polynomials vectors of degreek. Then, lettingIT denoteL? projection intoP;_o,

¢ — el +tlly—vullo < C(1 = drlls +tlly — villo + hlly — Tlo).

To apply this result, £nd approximatiows and ¢; which satisfy:
gradwr — Ry ¢; = Ry gradw — Ry, ¢
and
l¢— @rllo+hld— @il < O @llswr, v = Ravllo < CR°[| .
If so, then
~;=t2(gradwr — R, ¢;) =t >Ry (gradw — ¢) = Ry, .

Hence, we obtain fog > 1

1 — @nlli +tly — vallo < Ch (| Pllsr + [ VIls—1 +tllls),

where the constartt' is independent of andt¢. Note, however, that the norms on the right hand side of
the estimate are NOT independent ébr s > 3/2.

Leaving aside the question of how we construct such special interpolants, we concentrate on what such
an estimate tells us about the best possible order of convergence that is achievable. Although this theorem
only provides an upper bound on the error, it indicates that the error in the approximation of the rotation
¢ and the shear stresg depend on the simultaneous approximation of both these variables. A typical
error estimate for the approximationw@fndicates that this error depends on the approimation properties

of ®, andT';,, as well adV},. So a natural question to ask is what is known about such approximations

on quadrilaterals.

4  Approximation Theory
We look £rst at the case of scalar approximation on rectangular meshes, Given a snfbepzﬁééf( ),
we defne the associated subspace on an arbitrary sgulaye

S(K)={u:K —R|ag € S}.

Forn =1,2,..., letr, be the uniform mesh of the unit squaento n? subsquares whein= 1/n,and
defne
Sy = {’U, : Q —>R|U‘K S S(K) forall K € Th}.

Then the following well-known result gives a set of equivalent conditions for optimal order convergence
(e.g., see [1)).
Theorem 4.1 Let S be a £nite dimensional subspace[é’f(f(’), r a non-negative integer. The following

conditions are equivalent:

There is a constart’ such thatinf [ju — v]|12(q) < Ch™ M ulgrrqy forallue HH(Q). (4.1)
vESH

inéf |u— vz =o(h") forallue P.(Q). (4.2)
VESH
P.(K)cCS. (4.3)
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Hence, for optimal order approximation, one needs to Iﬁ(/éf) c S. For optimal order approximation

on quadrilaterals, however, a stronger condition is heeded. To state the result, we recall that g,family
of decompositions of? into quadrilateralds is called shape-regular (cf. [9]) if all the quadrilaterals are
convex and there exist constants> 1 and0 < p < 1 independent ok such that

hi/hy <o, |cosbix| <p, i=1,2,3,4, VK €,

wherehy, h'K, andd; i are the diameter oK', the smallest length of the sides &f, and the angles of
K, respectively.

The following result is established in [1].

Theorem 4.2 Let 7, denote a shape-regular sequence of quadrilateral meshes of a two-dimensional
domain(?, whereh denotes the maximum diameter of the eleméhts 7,. Let V"» denote the space

of functions ort2 which belong td/x, (K) when restricted to a generic quadrilater&l € 7,. Then a
necessary condition for the estim4#e2)to hold is thatQ, C V.

Recall that the natural way to preserve the condigead W, C T, is to defEnel';, by mapping
spaces def£ned on the reference square to the general quadrilateral using the rotated version of the Piola
transform. To state the analogue of Theorem 4.2 for such spaces, we introduce the following notation.
Denote byRT, the span of the spac¥ associated to the rotated Raviart—-Thomas space of erder
de£ned on the reference element. We recall R@&t, = P, ,,1 x P.y1,. In particular, the Raviart—
Thomas shape functions on the reference element are the span of the y@gjérg), 0 < i < r,
0<j<r+1and(0,2'97),0<i<r+1,0<j <r. Wethen defne the spa& to be the span

of the vectors given above but where the vectarg” !, 0) and (0, 2"+1¢") are replaced by the single
vector(z7g" 1, 27197, Thus,RT, is equal to the span &, and the vectofz"g"+!, —2"+1¢"). For
r=1,2,..., we also deEnd, to be the span of the monomiatéjy’, i,5 = 0,...r, but omitting the
monomlalAT g

Theorem 4.3 Let 7, denote a shape-regular sequence of quadrilateral meshes of a two-dimensional
domain$2, whereh denotes the maximum diameter of the elemé&nts 7;,. Let V™ denote the space of
vector£elds orf2 which belong toVy, (K) when restricted to a generic quadrilateral € 7,. Then a
necessary condition for the estimate

nf 17— mlla) = o(h7)  forall y € P (Q,R?)

to hold is thatS, C V' and a necessary condition for the estimate

1nf Hrot[*y Nllr2@) = o(h") forall v withrot v € P.(Q)
to hold is thatR,.,; C rot V.

A proof of the analogue of this result for £nite element subpacé$(dfv) can be found in [2].

A key ingredient in establishing Theorem 4.2 is to £rst show thatfdi<’) to belong toVy(K), we
must have?), (K) € V. Analogously, a key ingredient in establishing Theorem 4.3 is to £rst show that
for P,(K,R?) to belong toV(K ), we must haves, € V.
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5 Implications for quadrilateral Reissner-Mindlin elements

The MITC4 and Duan-Liberman elements both use the il space to approximate bo#handw and

the full RT, space to approximate. SinceRTy C Sy, we do not expect degradation of convergence

rate in going from a rectangular mesh to a shape-regular quadrilateral mesh. Both of these methods have
been analyed in a recent paper [10]. The quadrilateral version of tHnBEuilberman scheme is shown to
converge with optimal ordeP(h) on shape-regular meshes, while for the MITC4 method, this result is
only obtained for asymptotically parallelogram meshes. However, numerical experiments do not indicate
any degradation of convergence rates, even for more general shape-regular quadrilateral meshes.

The nonconforming element of Ye approximate®y a space for which’ does not contain all of);

(cf. [13] for further discussion of this space). Thus, we would expect to see a degradation of convergence
rate in the approximation af. One possible remedy for this is to add the nonconforming bufable

1/2)(g — 1/2) to the set of basis functions on the reference element for the $pa@nd the gradient

of this function to the reference element for the spdte However, when this is done, certain key
properties which hold for the case of rectangles no longer hold for quadrilaterals, so the extension of the
analysis to the quadrilateral case is not clear.

The MITCS8 element approximates bothandw by spaces obtained from mappings of the quadratic
serentipity space. Since this space does not contain @bpfi.e, it is missing the basis functiarty?),

we expect to see onl®(h) convergence. The spade, is obtained by mapping th8 DM space.
Since this space does not cont&n we also expect this to be a cause of degradation of convergence.

The MITC9 element uses the ful), approximation for@, but the use of th&), serendipity space
to approximatev and theBD F M space (which does not conta#y) to approximatey will cause
degradation in the convergence rate.

Onthe other hand, we expect the space MITC12 to suffer no degradation of convergence on shape-regular
guadrilateral meshes as a result of suboptimal approximation by the subspaces. Of course, the analysis
of such methods is quite delicate, so optimal order approximation by the £nite element subspaces is not
the only issue in establishing optimal order convergence rates.

Finally, we remark that the degradation of convergence rates noted above for approximation on general
guadrilateral meshes by certain families of £nite elements does not occur for meshes of parallelograms
or even for meshes whose elements are suffciently close to parallelograms. In particular, if we begin
with any mesh of convex quadrilaterals, and continually re£ne it by dividing each quadrilateral in four
by connecting the midpoints of the opposite edges, the resulting sequence of meshes is asymptotically
parallelogram and shape-regular. It was shown in [1] that for such meshes in the case of scalar £nite
element approximation, if the reference space contains Baly), rather thanQ,.(K), one still has

optimal O(h"*1) convergence ir.2. Since such meshes occur commonly in practice, this may explain
why the degradation of convergence rate is not observed more often.
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