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(Vol 28, n° 6, 1994, p 667 a 698)

REDUCED CONTINUITY FINITE ELEMENT METHODS
FOR FIRST ORDER SCALAR HYPERBOLIC EQUATIONS (*)

by D.-M. CaI (') and R. S FaLk (})

Commumnicated by J BRAMBLE

Abstract — Two explicut finute element methods for a first order linear hyperbolic problem in
R? are proposed and analyzed These schemes are designed to produce an approximate solution
which has a certain number of conninuous moments across element edges L* error estimates of
order O (W"*'?) for both schemes are obtained This s the same convergence rate known for the
discontinuous Galerkin method, but 1s achieved with fewer computations Some numerical
results for these methods are presented and comparisons are made with other explicit finite
element methods for this problem previously studied in the literature

Résumé — On analyse deux méthodes explicites d’éléments firus pour un probleme
hyperbolique hinéaire du premier ordre Les schémas sont congus pour obtenir une solution
approchée possédant un certain nombre de moments continus a travers les faces des éléments
Des estimations d’erreur L* d’ ordre O (h"*'?) sont obtenues pour chacun des deux schémas
C’est le méme taux de convergence que pour la méthode de Galerkin discontinue, mats 1l est
obtenu avec mowns de calculs Quelques résultats numériques sont présentés et des comparai-
sons sont faites avec d’ autres méthodes explicites d’ éléments finis de la littérature appliquées au
méme probléme

1. INTRODUCTION

The finite element approximation of the first order scalar hyperbolic
equation

B-Vu+au=f m 2cR?, a.1)
u=g on I, (2), ’

has been investigated using several different approaches. Previous analysis
of this problem was done for two types of explicit approximation schemes :
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668 D.-M. CAI R. S. FALK

one which produces a piecewise polynomial approximation which is
discontinuous across the triangle edges in the finite element mesh and one
which produces a continuous piecewise polynomial approximation. The
discontinuous triangular scheme has been analyzed first by Lesaint and
Raviart [9], with improved and additional error estimates obtained by
Johnson and Pitkédranta [8]. Optimal order error estimates were also derived
in the case of semiuniform triangular meshes by Richter [11]. In the case of
the continuous scheme, Falk and Richter [3] obtained estimates for a method
initiated by Reed and Hill [10] using triangular elements. For rectangular
element approximations, Lesaint and Raviart [9] and Winther [12] developed
discontinuous and continuous finite element methods, respectively. They
both achieved the optimal order of convergence, assuming sufficient
regularity.

In this paper, we propose and analyze a class of reduced continuity finite
element schemes for this problem. These schemes produce piecewise
polynomial approximations which are continuous for a certain number of
moments across interelement edges and are devised to retain the advantages
of the previous two methods. As in the case of the previous methods, these
schemes are explicit, in that the finite element solution may be developed in
an explicit manner from element to element, and have the property that the
solution in a given layer of elements may be computed in parallel. Hence
they can be easily implemented and are economic in practice. This is quite
different from the streamline-diffusion method. The latter is an implicit
scheme originally introduced by Hughes and Brooks [6] for numericaily
solving convection dominated convection-diffusion problems and later
applied to (1.1) as their corresponding reduced problems by Johnson et al.
[7]1. Since an implicit method must solve a large linear system, its
computational cost could be large.

The previous explicit schemes using triangular elements rely on the
following unified variational formulation on each triangle T :

(,B-Vu,l+auh,v)T—J (u; —uy )vB -ndr = (f,v)

Tin(T)
for veV,,;, (1.2)

where the approximate solution u, € P, (T'), the set of polynomials on T of
degree < n and u; and uj denote the upstream and downstream limits of
uy, on I'y, (T'). The choice of the test space V, r and the boundary continuity
conditions will then determine each scheme. When V, , = P,(T) and no
boundary continuity of u, is imposed, we get the discontinuous Galerkin
method. If V, r = P, _,(T), where I denotes the number of inflow sides that
T has, and u, is enforced to be continuous globally, we then obtain a
continuous method. Analogously, in our schemes we also make use of (1.2)
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 669

and choose V, r such that it contains all polynomials in the crosswind
variable ¢ of degree =n and a suitable number of continuous boundary
moments in each case. Since the boundary continuity conditions will
decrease the degrees of freedom to be determined, thus reducing the number
of unknowns to be solved for in the approximate solution, our schemes
obviously require fewer computations per triangle than the discontinuous
Galerkin method. Employing a test function depending only on ¢, we obtain
L? error estimates of order O (4" * '/?) and other accuracy properties similar to
the discontinuous Galerkin method. This L? result is also an improvement on
the O (h"*1*) L? error estimate previously shown for the continuous method
at the cost of a little more computational effort.

We note that it is also possible to develop reduced continuity rectangular
elements for equation (1.1) which produce optimal order convergence rates
under the assumption of sufficient regularity (cf. [1]).

An outline of the paper is as follows. In the next section some basic
notation and assumptions are provided. In § 3 we describe two discrete
problems and give a characterization of these methods to show more
similarities to the continuous and discontinuous methods. The proof of
existence and uniqueness of solutions to the discrete problems is given in § 4.
In § 5, the main stability results of the proposed methods are established and
then used to derive the desired error estimates. Finally, in § 6, we provide
some results of numerical experiments for the proposed methods and
compare them with the continuous and discosntinuous methods.

2. NOTATION AND ASSUMPTIONS

For the sake of simplicity, we consider a model problem of the form

B-Vu=f in 2,
{ u=g on I,@), @D

where 3 is a constant unit vector. For the case with a variable 8 and a lower
order term a, the main results in Theorem 5.3 can still be obtained (cf. [1]).
In the above, £ is a bounded polygonal domain in R? and I'; (£2) its inflow
boundary. By the inflow boundary I',,(D) of a region D we mean
{PeI'D): B -n(P)<0}, where n(P ) is the unit outward normal to D at
P. Then we set I’y (D)= I'(D)~- I',(D).

In what follows, for a region D and a piecewise smooth curve
r, (.,.) and .||, denote the inner product and the norm on
L*(D), and || .||, , and | .|, , denote the norms on H*(D) and H*(I'),
respectively. Moreover, we shall use | . | to denote the Euclidean norm or its

vol. 28, n* 6, 1994



670 D.-M CAI R. S FALK

corresponding matrix norm and define a weighted inner product and its
induced norm on L?(I") as the following

<Wav>1~=Jva|B-n|dT and |w|,.= (w, w)}?.

Let P,(D) be the space of polynomials of degree <n on D and
Sp(v,, ..., v;)p a vector space spanned by the polynomals v,, ¢ =1, ..., 1,
over D. We take g, to be a suitable interpolant of g on I';(£2) and denote the
limit of w(P + ¢8) as & decreases to 0 by w* (P ). Let C stand for a generic
constant independent of all major variables u, f, and A, and not necessarily
the same at its various occurrences.

To describe the methods we shall analyze, let A, be a quasi-uniform
triangulation of 2 such that no maximal diameter of triangular element
T € A, is bigger than . More specifically, we assume that 4, satisfies the
following hypothesis :

H; (quasi-uniform)

hmax

pmm

=M

uniformly for all 4, when # is sufficiently small, where

hpax = max hp, hy = the diameter of T ; and
Te 4,

Pmm = Min py, pr = the radius of the inscribed circle in T .
Te A4,

Note that each triangle in 4, is either of type I (with one inflow side) or of
type II (with two inflow sides). We will sometimes consider a partition of
4, into certain layers :

Sl {TGAthm(T)CFm(ﬂ)} B
S,;1={Tea,: T,TM<TI,(2-U,_, Sy, i=1,2,...

As will be seen from the construction of the methods proposed in § 3, we can
develop the approximate solution layer by layer and simultaneously over all
elements within a layer.

We further assume that A, satisfies the following two hypotheses.

H, (nonalignment). There exists ¢, > 0 independent of 4 such that
|Bn| = g
along all inflow edges of type II triangles.
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FINITE ELLEMENT METHODS FOR HYPERBOLIC EQUATIONS 671

H, The total number of layers in 4, is O (h™').

Some remarks about the necessity and validity of these hypotheses are
given in the Appendices.
We next list some facts which will be used later in this paper.

(i) The integration by parts formula :

J(/%Vw)v:J‘ wuB-n—Jw(,B-Vv). 2.2)
T rT) T
(ii) The inverse inequalities :
|Vwll,<Ch |w|, for weP(T); (2.3)
and
Wl ray < Ch™llwll, for weP(T). (2.4)

For the sake of convenience, when i =1, 2, 3, we denote by
I', the sides of T € 4, numbered counterclockwise, by g, the opposite
vertices of I',, by n, the unit outward normals to I", and by 7, the unit
tangential vectors along I',, taken in a counterclockwise direction. We shall
always take I'; to be the inflow side of a type I triangle or the outflow side of
a type II triangle. On each T € A, of type I (II) we establish a local oblique
coordinate system (¢, s) with the origin at a; (a,) and spanned by the tangent
7 = 73(— 7,3) and the characteristic 8. Thus every point in a type I triangle
has positive s coordinate while that in a type II triangle has negative s
coordinate. This notation is illustrated in figure 1.

Typel 3 Type I1

ns

i ___l a

Ts

az

nl/\ Iy

as

Figure 1.
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672 D.-M CAIL R S FALK

The relations between this local oblique system (¢, s) and the global
orthogonal system (x, y) can be easily demonstrated via the following linear

transformation
xX—x
(‘) - (7,13)-‘( °> ,
s Y —Yo

where (x, yo) are the coordinates that the origin of the system (7, s) has
under the system (x, y).

We next observe that both I',(T') and I ,(T) can be parameterized in
terms of equations : s = 5,,(¢) and s = 5,,,(¢t) for t € [0, #7] and T can be
described by

T={@s):te[0,17],s€ [5,(), sou(t)]} .

For any function @ on T, we denote @,, = @|,. q and @, =P | Ty
Equivalentty, in terms of (¢, s) coordinates, @, (t) = D (¢, s,,(¢)) and
D)= D(t, 5,()). We also define, for convenience, a weighted inner
product and its induced norm in L*([0, z;]) as follows

(w, v) = J’Tw(t)v(z)],B ‘nz| dt and |w| = (w, w)l2.
0

With this inner product, we introduce a boundary projection P, : L*[0, ;] —
P,[0, t;r], which will be used frequently in the sequel. We also denote by
P, the standard L” interior projection into P,(T). Moreover, we define the
Extension Ev(t,s) of v(t) to be a function over T e 4, such that
0
a—va(z, s)=0 and Ev(z, 0) = v(¢), and note that w, = B - Vw.

Finally, we state a lemma containing two change of variables formulas and
an integration identity which we shall frequently use in this paper. The proof
is elementary and we omit 1t here.

LEMMA 2.1 : Any function w defined on a triangle T of either type satisfies

ir
J w|B-n|d7=J Wou|B - 13| dt , 2.5)
Iy, (@) 0
Ir
J w|B-n|d'r=J W, |B - nsf dt; (2.6)
I (@D 0
and
/‘ tr [ Soult)
| wdxdy:f f w|B -ny| dsdr. 2.7
JT 0 (3]

M2 AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 673

3. FORMULATION OF THE METHODS

Let 4, be a triangulation of (2 satisfying hypotheses H;, H,, and
H; of the previous section. Using the variational equation

(B'V“h,”)r—j (u, —up)vB -ndr = (f,v)

Ty
forall veV,;, G.D

where V, 1 is a test space to be specified, we can formulate our schemes as
follows :

Method M}, : For n= 1, find u, € L>(£2) such that u; = g; on I",,(2),
uy | r € P,(T) for any T € A, and for triangles of type I, u, satisfies (3.1) with
Vh, T = Pn—l(T) (“B Sp(tn)T and

j (uf —up)r'dr =0 for 1=0,1,....,n—1; (3.2)
Iy

while for triangles of type II, u, satisfies (3.1) with V;, r = P,(T) when
n=1orV,;=P,_»,(T)® Sp" !, 5", t"); and

J wj —up)7v'dr=0for1=0,1,...,.n—2and i =1,2 (3.3)
Fl

when »n = 2.

Method M3 : For odd n=1, find u, € L*(2) such that u; =g, on
I' (2) and for a typel triangle T, u, satisfies the same conditions as in
M} ; while for a type II triangle T, uh|T € P,(T) ® Sp(st"); satisfies (3.1)
with V, 1 =P,_, @ Sp(t"~ ', t"); and

J wf —up)r'dr=0for1=0,1,...,n—1and i =1,2. (3.4)
rl

Remark 3.1 : Note that in M} the schem : for type II triangles is in fact a
discontinuous Galerkin method when #» = 1. This reflects a common feature
of the scheme of order n for two-inflow-side triangles; they all have
2(n — 1) continuity conditions on the inflow triangle sides.

Remark 3.2 : There are some difficulties in formulating even-order
elements over an arbitrary type II triangle for Method M2. For example,
suppose (¢, s) is an orthogonal coordinate system and T is a triangle with the
vertices (1, 0), (—1,0), and (0, — 1) in (¢, s) for simplicity. Then the

vol. 28, n° 6, 1994



674 D.-M CAIL R S FALK

polynomal u, (¢, s) = s(10 2 _8s-17 ) satisfies all requirements in M% over
a type II triangle when n = 2 and ¥, = f = 0. This implies that the second-
order element of M is not unisolvent over this triangle. In fact, all even-
order elements over this triangle are not unisolvent, as can be seen from the
proof of Lemma 4.1.

We observe that the approximate solution u, has a total of o ( = (n + 1)
(n + 2)/2) or o, + 1 degrees of freedom in each triangle. For both methods
the number of the continuity conditions on the inflow boundary of a type I
triangle 1s n, leaving a total of o,_, + | degrees ot treedom to be
determined. For a type Il trniangle the degrees of freedom to be determined
are o, _, + 3 and o,_, + 2 for M} and M2, respectively, which are exactly
the dimensions of the test spaces.

4. CHARACTERIZATION AND WELL-POSEDNESS

To help expose the essential features of the discrete problems proposed in
the last section, we want to characterize their approximate solutions
u, in a fashion analogous to the continuous and discontinuous methods
discussed in [4]. Then we proceed to show that these problems are well-
formulated.

Suppose u, is a solution developed on a typel triangle for either
M;j or M;. Then it satisfies (3.1) with V, ;= P,_,(T) @ Sp(t"). Since
(u,), € P,_;(T), we have, by making use of the boundary continuity
conditions (3.2),

(uh)san—lf'

Hence for any w € P[0, t7],

Sou(t)
<uiT.m'_ul_t,m’ W> = (U _Pn—l)f’ EW)T= <f (I_Pn—l)f’ W>

0

by (3.1) and Lemma 2.1. This implies

Sout(t)
u;,m(t):u;,m(t)“}‘PtJ‘ (I_Pn—l)fds,

0

in view of uf ., u; ., € P[0, tr]. On the other hand, we see that
s

wy(t, s) = uj ,(¢) + (u3,)s ds. Therefore,
0

Sout (1) s

d—-P,_1)fds+ J P,_,fds. (41)

up(t, ) = Up (1) +PIJ
0

0

M? AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 675

To characterize u, on a type Il triangle, we first introduce a function U on
T such that U, = u;, ,, and U; = f. Then for v € V,;, 1, we find

0= ((uh - U)s, v)T + <u;l’, m Um’ U>

= - (uh - U, vs)T + <ui7,out - Uout’ U> ’

by Lemma 2.1 and after integrating by parts.

When u, is a solution of M} for n = 2 (the case n = 1 is the same as the
discontinuous scheme ; see below), we first take v = Ew in the above
identity with w € P, [0, #;]. It follows that

ui_z, out — Pt Uout . 4.2)

Observing that v,e P, _3(T)@® Sp(s" %)y for any veP, ,(T)®
Sp(t"~ ', s"~ !, t")y = V,, 1, we conclude that

Pk u,=Pf U, 4.3)

where P ¥_;is an L? interior projectionto P, _,(T) @ Sp(s"~ 2 )r. Moreover,
by the continnous moment conditions (3.3), we have

Ju; Tld7'=J Ur'dr for 1 =0,1,...,n—2and i =1,2. (4.4)
T r

1 :

Thus we have specified u, in terms of U.
Similarly, we have a characterization for an M2 solution :

u;, out — Pt Uout s 4.5)
P,,_3uh=Pn_3U, (4.6)

J ui r‘dr=f Urldr for 1 =0,1,...,n—1and i =1,2. 4.7)
I r

i 1

Later, from Lemma 4.1, we will see that on a triangle of type II, an
approximate solution is completely determined by (4.2), ..., (4.4) for
M} and by (4.5), ..., (4.7) for M2.

Let us now briefly describe the characterizations for the continuous and
discontinuous Galerkin methods developed in {4]. For the continuous
method, an approximate solution u, has the representation

A

up(t, §) = Up 1n (t)+J P,_,fds
0

vol 28, n° 6, 1994



676 D.-M. CAL R. S. FALK

on a type I triangle and satisfies

d d

—uh,out:Pt,n—IE

dt Uout and Pn—3uh=Pn—3U

on a type II triangle, where U is defined as before with U, = u, ,, and
P, ,_; denotes the L? projection into P, _,[0, t;]. For the discontinuous
method, u, is characterized as

Sout( s

)
(I—Rn—l)fds‘*‘J‘ Rn—lfds

uu(t, s) = uy ,()+ P, f
0

0

on a type I triangle with R, _, denoting the projection into P,_,(T) with
respect to the weighted L? inner product [p, ¢] = (sp, ¢); and

u;,outthUout and Pn—luthn—lU

on a type II triangle with U as defined for M} and M2 From the
characterizations given above, we can obtain a clearer view of similarities
between these four explicit schemes.

We now want to prove an existence and uniqueness result for our methods.

LEMMA 4.1 : There exist unique solutions to the discrete problems
M, and Mj.

Proof : The statement is obvious for a one-inflow-side triangle by the
representation (4.1). For a two-inflow-side triangle, we first prove the
uniqueness for each method. The existence of the numerical solution then
follows since in either case the sum of the dimension of the test space and the
number of the continuous moments on the inflow boundary is exactly the
same as the number of degrees of freedom of the finite element.

To derive uniqueness of the problem M), with n =2, let us choose the
degrees of freedom of the finite element to be the standard ones related to the
three vertices a,, the moments from O to n — 2 on each side I", and the inner
product with the polynomials of degree < n — 3 over T (when n = 2, this part
is void). The corresponding basis functions {¢,, s Mkt i=1,2,3;
j=0,1,.., n-25k=1, 2, .., 0,_3} cP,(T) satisfy

~

¢l(a1)=6”, ¢,1'md7- =O, (¢“ Wq)T::O;
v T,

¥,(a)=0, y ThAT =8,,8,,, (U, w)r=0;
v

nk(al) =0 ’ Mk "dr =0 ’ (nk’ Wq)T = 81{4
Jr,

M2 AN Modélisation mathématique et Analyse numérique
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 677

for i, =1, 2, 3; j,m=0,1,...,n—-2; k,gq=1,2, ..., 0,_3 with
{w,} a basis of P,_;(T) and & the Kronecker delta. Then we can express
u, as

n— Tn-3

3 2
u, = Zl (Ct ¢1+ Zodlj d’t}) + z € Mk
1= j=

k=1

where c¢,, d,, and e, are constants.

If u, w=f=0, then U=0 by its definition. The characterization
4.2), ..., (4.4) imply that ¢, =c, =d, = ¢,=0 for all i, j, k. Hence
u, is reduced to c3 s¢ (¢, s) with ¢ € P,_,(T) and s¢ = ¢;. Note that

J s(¢,) dsdt = J (s¢) b, dsdt = J (¢3) &, ds dt
T T T

:J ¢3¢;T’nd7_J¢3¢ttdsdt=0.
I(T) T

Since s does not change sign in T, we have ¢, = 0 in T. This implies that ¢ is
a polynomial of s.

On the other hand, J- ¢y7'dr =0, 1=0, 1, ..., n—2 implies that

Iy

¢5 is a multiple of s(s—s;) ... (s—s,_;) with 0 =sp=>5,>--->
s,_1 = e being n Gauss-Radau quadrature points on the interval [e, 0]. It
then follows that u, = c¢s(s — s;) ... (s —s,_) with ¢ some constant. From
(4.3) we see that

O0=c(s(s—5,)... (s=s,_ ) s" Dy

0 my s+ by
¢ J s(s—8)(s— 50 . (=5, ) (j dt) |B -ms| ds

e m s+ by

0
c|B -n3|(m2—ml)J s(s—s)% ... (s—s,_,)Yds,

where ¢t =m; s+ b, and t = m, s + b, are the parametric equations for

0
I'y and I',, respectively. Here we also used the fact that J s(s —87) ...

e
(s —8,_1) gn_2(s)ds = O for all polynomials g, _, of degree < n — 2. Since
my # m, and |B - n3| # 0 we conclude that ¢ = 0. Thus u, =0 in T.
We now turn to the problem M;. Again we have U=0 when
, n=f=0. Thus by (4.5), u; o = 0. Rewrite u;, as u, = s(ct" +
Pn_1(t, s)), where c is a constant and p, _, € P,_,(T). We assert that ¢ is

vol 28, n° 6, 1994



678 D.-M CAI, R S. FALK

zero. In fact, let t = m; s+ b; and t = m, s + b, again be parametric
equations for I'; and I',, respectively. Then

uy |r1 =cm}s(s" + q,_1(s)) and uj |r2 =cmys(s" +r,_,(s))

for some n — 1 degree polynomials of s: ¢,_; and r,_,, since m,,
m, # 0 by the definition of a typell triangle. Note that (4.7) for
I'| is now equivalent to

0
J cmls(s"+q,_1(s)s'ds=0, 1=0,1,...,n—-1.

€

If wetakee <s,<-:- <5, <55 = 0tobe the n + 1 Gauss-Radau quadrature
points on [e, 0], then

uy lrl cmls(s —81)... (s—s,).

Analogously,

uy |r2 =cmis(s —58;)... (s—35,).

Since uj | (€)= uj | r,(€), cm{=cmj. The fact that I'y and I', are not

parallel implies m; # m,. Thus m] % m} for odd n. This yields ¢ = 0. We
now have u, = sp,_,(, s) € P,(T) and u;} |r =0,:1=1,2. Whenn =1,

we can conclude that u, =0 in T.

When n=3, u, = A, A, A;p,_3, where A, A,, A5 are the barycentric
coordinates in T and p,_3€ P,_;(T). Taking the inner product of
u, with p, _; and applying the positivity of A, as well as P, _; u;, = 0 from
(4.6), we finally obtain p,_; = 0. This means u, =0 in 7. The proof of
uniqueness is therefore completed. ]

Remark 4.1 : In Method My, the test function s” ~ ! for type II triangles can
be replaced by any 5"~ ! ~* t* whenever 0 < k < n — 1 is even. This is easy to
see from the above proof.

One of the immediate consequences of the above lemma is the following
local stability inequality which will be used for deriving the global stability in
the next section.

LEMMA 4.2 : Let u,, be the solution of Method M} or M. Then

1
il = € {715 |, + 101} @8
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FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 679

Proof : To use a scaling argument to prove this lemma, we need to
introduce a reference triangle T with vertices a,=(@1,0), a, = (0, 1),
a; = (0, 0). For a generic triangle T € 4,, denote by F ; the invertible affine

transformation of 7 to T such that
(x) =B<{c> +as,
Y y
where B is a 2 x 2 matrix of the form
B = (a)—as, ay—az) = (|| 7y, — |Ty| 71).

Defining ¥ (%, y) = v o F ;(X, ) = v(x, y) for any function v defined on T

and
V = (a/ax) ’
a/dy
we have
ﬂ .Vuth*lB -@ﬁh,
where

B—-1= 1 (n{/lr2|)

n, .7, \nl/| |

Observe that the reference transformation F, preserves the types of
triangles. This can be seen by noting that F~-!'(B)=B '8 =

B-n B-m\!{ | .
1 < L ), A =(1,0), i, =(,—-1), and n, -7, <O
n Ty lrzl |r1l

imply that 8 -n; and B -n, have the same signs as B! B)-n; and
(B~' B) - n,, respectively.

Transforming (3.1), ..., (3.4) to T, we have

|det B|B=' B - Vi, 0)p— Y m,|T,]

Iycy

N _— R .
X [ (wy — iy YVB -n, d7 = |detB|(f, 0);, forall deV,;, (4.9)
JrI

i

where ;= un, =1 and u; = %; and the corresponding boundary con-

tinuity conditions
J (@ — ;)7 dir =0, I,cly D)
I,

and 1=0,1,..,n—-2(orn—-1). 4.10)
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Let us denote by {43 1} and {Wk} the basis functions for the trial and test
spaces on T, respectively, and U= {ljj} the coefficient set. We also set

é to be the direction of B! B and n, the unit outward normals to
My | r|B-n,
|B~! 8| detB
equivalent to the following linear algebraic system

f,. Then by the fact that =B -n,, (4.9) and (4.10) are

YiB-Ve, ¥ Y b, ¥ B -h, d%] U,
J ryelam 1,
1 T - s AL
:_——(.f’ wk)f_ M;‘l ‘Ilkﬁ'nld’r’
|B~' B r,c;nm r,

k=1,2,..,dimV, #, (4.11)
and

3 (J P, f’dv‘-) U = j a; #di, I, <I (1)

I I
and 1=0,1,...,n—-2(rn-1), 4.12)
or, in matrix form,

AU =1b, (4.13)

where A is a o, x o, or (0, + 1) x (o, + 1) matrix.

It is obvious that A is uniformly bounded over all triangles by the
hypothesis that all angles are bounded away from zero (the minimum angle
condition implied in H;). Together with Lemma 4.1 we can also infer the
uniform boundedness of A~! and the bound : |[B~! 8|~ < Ch. Hence the

solution U of the system (4.13) satisfies
IUII = |A_1| Ibl =C |b| =C {I'Z’: lgy rm(T)+ h”f”T} ’

where the last inequality can be derived by carefully observing the system
(4.11) and (4.12). When T is of type I, (B - n),, is bounded uniformly away

from O by the minimum angle condition. When T is of type II, the hypothesis
H, assures such a property. Therefore, for a triangle of either type,

"ﬁhuisc Z |U’l =C {‘ﬁ; |rm(T)+h“f“T} :

The desired inequality (4.8) nows follows by transforming from T back to T.
0
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Remark 4.2 : For a type I triangle the a priori estimate (4.8) is in fact an
immediate consequence of the representation (4.1). In this case the minimum
angle condition is not needed.

Remark 4.3 : If we select the bases for the trial spaces in such a way that all
moments appearing in the boundary conditions are included in the degrees of
freedom of the finite element, the computational cost can be reduced
significantly. More specifically, for a type I element of odd order » in
M, and an element of either type in M2, we can express u, in the form

S @) Gy + Y 0 B+ £%(@y) €) foratype (D T,
0

k=1

where {c/;,’]", ﬁ,j‘} is the dual basis of {‘/;u’ ﬁk}, a basis of P, (T satisfying

l/’xj ’i—m d‘;‘ = 611 6jm ’ (ll;[j’ 1;i]q)i' = 0’

=
3
x~
93
QU
»
Il
(=]
~
3>
T
§)
£
e
~
|
4
by

fori, I=1, 2, 3; j, m=0, 1,...,n—-1; k, g=1, 2, ..., 0,_3 with
{W,} a basis of P, _;(T); and

£ =si"—
13

HMu

n-1 . .
Z ‘/’,T(S'tn) (/IU -
1;=0

For a type II triangle in M}, we can select the basis used in the proof of the
uniqueness lemma. For an even order element of type I, it is still possible to
obtain a basis possessing the desired properties. For example, when
n = 2, we may take the average values and the first moments on the inflow
side and one of the outflow sides and only the average on the other outflow
side to be five out of six degrees of freedom required and complete them by a
quadratic polynomial which is zero at two Gauss-Legendre points on each
triangle side (see [5] or [1, Appendix A.3] for details). Under these special
bases the systems to be solved actually have size o, _; + 1 for one-inflow-
side elements and o, _, + 3 or o,_, + 2 for two-inflow-side elements.

5. STABILITY AND ERROR ESTIMATES FOR THE TRIANGULAR SCHEMES

In this section our intention is to derive some stability results for methods
M, and M? and then to obtain error estimates as their consequence. The
achievement of this goal 1s based on the employment of the a priori estimate
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(4.8) established in the last section and some test functions depending only
on z. The analysis framework constituted here will cover not only methods
M)} and M2, but also any finite element method which adopts the variational
equation (3.1) and satisfies (4.8), where the test space V, r must contain all
polynomials in the crosswind variable ¢ of order =< n. Thus the discontinuous
Galerkin method is another typical example. For other possible schemes
included in this framework, see [1, Appendix A.6].
We now proceed to establish some basic properties of u, over T.

LEMMA 5.1 : The solution u, of Method M}, or M2 satisfies the following
inequality on a triangle T of either type,
- Y -2 2
iuh, out uh,ml + |u;, m — Un, ml + h” (uh)s”T
- 2
<C{|U -P)usu|*+hIfIZ} . G.1)

Proof : Set wy, = u,, — EP,u; ,. Then (3.1), ..., (3.4) still hold with
w;, in place of u,. By Lemma 4.2 and the change of variables formula (2.6),
we have

lwall, =< € {W2| Wi | g+ BIF N} <€ {R2] A = Py i | + RIFNS} -
Therefore by the inverse estimate (2.3),

I @)l = 1wl < Cr M wyll, < C {R 2| = Pz ] + IIF N5}
and by (2.4),

|u;,out_u;,m| + Iu;z—,m"u}_z,ml
= lu;,out—'Pluij,ml + |u7x—,m—Ptu;,m| +2|(1_Pt)u;,m|
sCh—“2||uh—EP,u,;m||T+2|(1—P,)u;ln|

=C{lUd =P uyul +12|f],)} .

The desired inequality then follows from a suitable combination of the above
two results. O

The next lemma will be used, together with the previous one, to help
establish another local stability result that, unlike (4.8), can be iterated over
the entire triangulation to obtain global stability of the methods.

LEMMA 5.2 : There holds, for a triangle T of either type,
- q2 -
|uh,out| + I(I'-Pt)uh,mlz

- 2 — -
= luh,m, + (f’ EPt(uh,ouK+ uh,m))T+ Ch“f”;
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Proof : Take v(t, s) = E[w(t)] € V, r in (3.1). Then application of the
integration by parts formula (2.2) and identities (2.5) and (2.6) yields

<u;, out — u;, n» W> = (f1 EW)T . (52)

Selecting w(t) = P (uj o + 4y n)(t), We have
— 2 -2 - _
|Pt Up, out| = IPt uh, 1n| + (f9 Ept(uh, out T Up, m))T . (53)

When T is of type I, note that |u;,<,ut|2 = |P sty | + | T = Pty |’
and
|4 =Pty o] * = | = P o = i )|

_ - 2
= |uh,out_uh.m| $Ch ”f"%
by the fact that u; ,, = P, uj, ,, and Lemma 5.1. It then follows from (5.3) that
-2 - )2 — -
|uh, outl = |uh, ml + (f’ EPt(uh, out T uh,m))T+ Ch”f"%‘ .

When T is of type II, noting that |u;,m|2 = IP,u;,mlz +|d —P,)u;_m|2
and P, uj o = Uj, o, We then have

- )2 -2 -2 - -
|uh,0ut| + |(I —Pt)uh,ml = |uh, ml + (f’ EPt(uh,out+uh.ln))T- O
Before combining Lemma 5.1 and Lemma 5.2 to get the local stability

desired, we need the following identities to simplify its proof.

LEMMA 5.3 : When T is of type I, then

P (ty, oue + Up, 1) (1)

out(?) Sour(?)

(), ds — Pt J fds (5.4

=2up ou(t)—2U -P)) J
0 0

Sout ()
=2u;‘m(t)+P,J‘ fds; (5.5)
0

while when T is of type II, then

Pl(u'_l, out + u'_l, ln)(t)

0
=2 uUp ou(®)— P, fds (5.6)
sin(t)
(4]
=2up o) -2 —P)u, ,()+ P, fds. (5.7)

sn(?)
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Proof . For a triangle T of type I, by (5.2) and (2.7), we have

Sout(t)
Ptu;,om(l)=u,1m(t)+P,J‘ fds. (5.8)
0

Also it is easy to see that

Sout(t)
ul:,out(t) = u;rx,m(t)‘f' j (uh)sds'
0

Noting that (I — P,) uj; ,, = 0, the application of (I — P,) on both sides of
the above identity yields

out (t )

I —P)upon(t)= U —-P,) JS (up)s ds
0

This implies

Sout()

Ptu;,out(t): u;,out(t)_ (I _PI)J' (uh)sds'

0
Hence,
Sout(t)
P:(”Z,ouﬁuﬁ,m)(t)=2P1MZ,om(t)—Prj fds
0
Sour{t)
=2uy out) -2 —P)) J (), ds
0

Sout ()
- P, f fds.
0
Also from (5.8),

svut(’)

Pt(u;;,out+u;,m)(t)= 2ui—l,m(t)+PtJ fds.
0

These are the desired identities (5.4) and (5.5).
The identities (5.6) and (5.7) for a triangle T of type II can be obtained
directly from (5.2) upon noting that P, u; o, = U} oue a

THEOREM 5.1 : For the solution u, of Method M}, or M, there exists a

positive constant M independent of h, f and u such that for a triangle
T e 4,

Iu;, oul|2 -2 <uout’ u;. out> + M{h” (uh)s”; + |u}‘:, m u;, n |2}
= |u<;,m]2 - 2<u1m u;, m> +C {h”f”;‘ + luﬁ*(T)} ’
where u is the exact solution of the model problem (2.1).
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Proof - (i) When T is of type I, by (5.4) and (5.5),

(f: EP,(L{;, out + u;, m))T

= (us, EP (uy, oue + Uy, )1 = J UEP (U} ou + Uy, 0) B -1 dT
()

= <uouv Pt(u;, out + Uh 1n )> - <um, P,(u;, out + Up, 1n)>
Sout(f) Sout(t)
= <uou172u;,om_2(1*Pt)J- (uh)st—P,J
0 0
Sout {£)
_<um,2u;,m+P,J‘ fds>

0

f ds>

=<2 <uout’ u; out> -2 <um' ui_t, m> + 8h” (uh)S”;

+C()|ulZyg + Ch|f|I2.

Here ¢ is a positive constant to be determined and for the last inequality we
have used the following estimation based on the Schwarz inequality,
Lemma 2.1 and the arithmetic-geometric mean inequality :

Soutt)
<"ouv a-prP) J (uy,)s ds>
0

-
= Iuoull

Sout(t)
a _P’)J (uy,); ds
0

< 1ulray- CH ], = ehl| G2+ C (©)lul_ gy

and analogously,

Sout(t)
Uyt t+ Ups Pt f ds
0

Combining the above results with Lemma 5.2 yields

<C {RIFIZ+ ul%, gy + 1213 o} -

|u}_1, out|2 = Iui_z m|2 + 2<uouv u;, out) -2 <um’ u}_z, m>

+ eh| Q) |2+ C (&) |ul% g + Ch|FI|2.

Finally the desired inequality for this case 1s obtained by adding (5.1) to the
above inequality and taking ¢ = M = 1/2.
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(i) When T is of type II, by (5.6) and (5.7)
(.fs EPt(u}:, out + u;_ m))T = (u.w EPt(u; out + u;, m))T

= (Uoger P 1ty ot + Ui 10)) — (thn P (U out + Ui 1))

0 0
= \ Ugyp 2 Up out — Pt

fds> — <um, 2Pup n+ P,

S ()

= 2<uoutv u;, out) - 2<u1m u;, m) +2 <um’ (I - Pt) u;, m>

fds>

S ()

0

- <uout + U Pt fds>

Si(t)
1
= 2<uout’ u;, out> - 2<um’ ui_t, 1n> + 5 |(1 - Pt)ui_l, ml2

+C{RIFIT+ |ulFg) -

Here we have used a similar estimation to part (i). By Lemma 5.2, we then
have

_ 1 _
|u;, outl2 - 2<uout’ uh,out> + E ] (1 - Pt) u, m|2
< | | = 2 Qi i 0y + C{RIFIG+ 107y} - 5.9
From (5.1), there exists a positive constant M such that

M {h| G

|7+ i — ]}
<@ -Powal*+ 713} . 610)

Adding (5.9) and (5.10) establishes the second part of the theorem. O

In order to state the global stability results, we need some additional
notation. First let us recall that {S j} are the layers defined in Section 2. Then
we define Fronts F, as follows :

Fo=1T,42),
F] = F]_l U FO\“(SJ)_ Fm(S])a ] = 1, 2, ven o

4

Also we represent 2, = |_J§,.

k=1
THEOREM 5.2 : If u, is the solution of Method M}, or M2, then

Iu; |i,l + M {h” (uh)s “izl + Z |u;, m uh_, mli3(T)}

Tc!)l

sC{]u;Iio+h||fllf,]+ 3 |u|2r(T)} (5.11)

Tec 2,

M? AN Modélisation mathématique et Analyse numénque
Mathematical Modelling and Numerical Analysis



FINITE ELEMENT METHODS FOR HYPERBOLIC EQUATIONS 687

with M a positive constant. Furthermore

Iu; |i'om(n) + "uh ”?) + h” (uh)S "iz + Z |u; m u;y mli‘3(T)
Te 4y

— 12
<c {12+ 1A+ T luli)e 512

Ted4,

Proof : Recalling the inner product and norm notation we defined before,
we see by (2.5) and (2.6),

|t o = i |5 ye rml® = |ui |5 g
and

(Uous Uiy om) = U, uj, )me s gy Uiy = (u, uy >I'm(T)'

By summing the inequality in Theorem 5.1 over all layers S;, 1 =k =<j, we
obtain

6 15, =2+ M (R G, + 5 [0t = )
<%

=c {14 13, - 2Ge 1), + HUFNE,+ 3 Welioo)

T,

Thus

i 13, ol Gl + 3 Joi - 1|

Tcf,

i

1, -2 _
§|uh |F1+2|u|;J+C{2|uh |F0+|u|§0+h||f||3zl+ Z |”|2r(r)}

Tecf,

1, _ -

Tcl

Subtracting (1/2)|u; |i and multiplying by 2 on both sides, we then
J

establish the inequality (5.11).
From Lemma 4.2, we have

—12
lually <€ {Rlui [} +#0F13} -
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Applying (5.11), we obtain

— 12
ikl = Ch g 12, + AU, + 8 fuliay + 51713

TCRJ
—_ 12
sCh{[uh |, + 2NN, + X l"l%m] :
Ten,

Summing over all layers §,, 1 <j <N (N is the total number of the layers in
4,), and noting that N = O (h~!) by Hypothesis H;, we infer

- 12
ol = € {1 12, + HIF1 + 8 Julkn) - G13)

Ted4,

On the other hand, the application of (5.11) with F, = I',,(£2) yields

lu’—l |§‘m(n) + h" (”h)s”i, + z |u;,1n - ui—!-mlj"s(r)

Te 4,
_\2
=C {I“h e, + IFIG + X IMI}(T)} . (5.14)
Te 4,
The result (5.12) is the sum of (5.13) and (5.14). O

Our final concern in this section is to derive error estimates. In fact, they
are simply a corollary of Theorem 5.2.

Let u; be any continuous interpolant of the exact solution u such that
|, € P,(T) for any T € A, and satisfies

lu =, =< Ch** "7 Jlu] j=0,1; (5.15)
ullo, rao S Ch"* 1/2““”,,“,7 . (5.16)

One example is that u; interpolates u at o, equispaced points on 7. It is
well known that this interpolant satisfies the approximation properties given
above (refer to [2, Chap. 3] for details).

We now set e, = u, —u;. Then (3.1), ..., (3.4) remain valid when
u, and f are replaced by e, and (u — u;),, respectively. Hence we may apply
the previous results with u replaced by u — u;. By taking u;, = u; =
g; on I' (2) and inserting (5.15) and (5.16) into Theorem 5.2, we now
conclude

THEOREM 5.3 : Let u € H"* () be the solution of equation (2.1) and
w, the solution of the approximation Method M}, or M3. Then there exists a
constant C independent of u and h such that

l — wyll , < CA" 2 {u]]

18- V(- uh)“n <= Ch"||ul

n+1,T?

u —

n+1,02°

n+1, 027

172
{J (u—uh)ZdTl sC'h"+”2“"4”114,-1,!2’ for J = 1’ 2’ Tt
E,
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and

+ - 12 12 n+ 12
Y |up — uj, |me <Ch lull, .\ q-

Tedy

COROLLARY 5.1.

“V(u - uh)”n sChn-llznulln+1.{) .

This corollary can be easily derived by the inverse property. Its error
order, however, may not be the best possible we can get in these two
methods. The actual situations could be better (see Tables 6.1 and 6.2 in § 6).

6. NUMERICAL RESULTS

We now present some numerical results for our proposed schemes and
compare them with the corresponding results for the continuous and
discontinuous methods.

To generate a triangulation, we first divide the region {2 (for simplicity, we
always select {2 to be a unit square in our experiments) uniformly into
N? squares and then divide each square into four triangles. This is done by
randomly selecting a common vertex in the neighborhood of the centroid
with the property that all inflow sides of type II triangles are uniformly away
from the characteristic direction. The resulting mesh is then nonuniform (cf.
fig. 2). We shall approximate the solution of each test problem by both
quadratic and linear elements.

Example 6.1 : Let us first consider the equation

Louw 23 _4 i 0=001)x@, 1),

V5 9x * V5 3y
with the initial data chosen to make the exact solution be u = |z|*, where
z=Q2x-y) \/g is a coordinate orthogonal to the characteristic direction
and « is a positive number to be selected later. Note that |z|% €
H**+12=¢(0) for any &>0. We shall estimate errors in the L? norm
lu —us)l ,» the L? norm of the gradient |[V(u —u,)|, as well as the

L? norm of the characteristic derivative |8 -V (u — u,)|| 0

To see the rate of convergence under the regularity condition required in
the theory, we select « =2.5 for the quadratic approximation and
a = 1.5 for the linear. Table 6.1 illustrates some numerical results for our
reduced continuity (for brevity, RC) method M}, as well as for the continuous
and discontinuous methods using quadratic approximations. We observe that
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the order of L? error in u, for M} tends to be 25, while that

B Vuy, s approaching 1 0 These agree well with our theoretical predictions
and also show that our theoretical results for these two errors are best

D-M CAI R S FALK

TABLE 6 1

Figure 2. — Trangular mesh for N =4

Numerical results for Example 6 1 Quadratic approximation a =25

E = lu—ul,, Ex= ||[V@—-upl, and E5 = || B V@ —u)l,

Continacas Mcthod RC Method M} Discontinuous Method
N E, Rate E, Rate E, Rate
16| 167 (-4) 218 354 (-5) 287 361(5) 287
32| 368(-5) 218 515(-6) 278 523(-6) 279
64| 803 (-6) 219 791(-7) 270 798 (-7) 271
128 | 174 (-6) 221 127(-7) 263 128 (-7) 264
256 | 372 (-7) 222 214 (-8) 258 214(-8) 258
N E, Rate E, Rate E, Rate
16 | 744 (-3) 156 438 (-3) 187 365 (-3) 189
32| 257(-3) 153 121 (-3) 185 101 (-3) 185
64| 900 (-4) 151 337 (-4) 185 284 (-4) 183
128 | 318 (-4) 150 948 (-5) 183 812 (-5) 180
256 | 113 (-4) 149 271 (-5) 181 237(-5) 178
N E; Rate E; Rate E; Rate
16| 189 (-3) 183 260 (-3) 186 160 (-3) 187
32 521 (-4) 186 708 (-4) 188 435 ( 4) 188
64| 141(-4) 188 189 (-4) 190 116 (-4) 190
128 378 (-5) 190 504 (-5) 191 311 (-5) 191
256 | 100 (-5) 192 134 (-5) 192 824 ( 6) 192
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possible under their regularity assumptions. We also see an interesting fact :
the rate of the L? error in the gradient of u, is about 1.8, much better than our
theoretical result 1.5 in this case, which is derived from L? error estimates by
the inverse property. Similar phenomena can be observed for the linear
approximation from Table 6.2, where the RC method M? is compared with
the discontinuous Galerkin method which coincides with M} in this case :
linear, a = f = 0.

Comparing the data for the RC methods with those for the continuous and
discontinuous methods in Tables 6.1 and 6.2, we see that the rates of
convergence of the RC methods are close to their counterparts in the
discontinuous ones while the convergence rates for the continuous schemes
are slightly lower. All the experimental convergence rates match with their
corresponding theoretical results. The fact that the number of unknowns
increases as we go from the continuous to RC to discontinuous method is
generally reflected in a corresponding decrease in absolute errors.

TABLE 6.2.
Numerical results for Example 6.1. Linear approximation. a = 1.5.

E = |lu—uwl|,, E;= ||V(u—uh)||0 and E; = ||B-V(u—uh)“n,

RC Method M? Discontinuous Method
N E, Rate E, Rate
16 | 426 (-3) 1.88 1385 (-3) 1.88
32 | .124(-3) 1.78 113 (-3) 177
64 | .385(-4) 1.69 356 (-4) 1.67
128 | .127 (-4) 1.60 120 (-4) 1.57
256 | .440 (-5) 1.54 422 (-5) 1.51
N B, Rate E, Rate
16 | .356 (-1) 92 208 (-1) 86
32 | .192(-1) 89 119 (-1) .80
64 | .103(-1) 89 681 (-2) 81
128 | 561 (-2) 88 392 (-2) .80
256 .308 (-2) .87 .227 (-2) .79
N E; Rate E3 Rate
16 | .232(-1) 92 1139 (-1) 92
32 | .123(1) 92 744 (-2) .90
64 | 640 (-2) 94 1391 (-2) 93
128 | 334 (-2) 94 205 (-2) 93
256 | 174 (-2) 94 107 (-2) 94
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To see the effect of the additional differentiability 1n the exact solution, we
also performed experiments in the cases « =3 for the quadratic and
a = 2 for the linear An improvement of the rate of convergence 1s observed.
Except for the rate of L? error for the continuous method, which slightly
lagged behind, the convergence rate for the other methods approached the
optimal.

Example 6 2 The following equation is considered

1 du 2 %Jru: (1+—3—)exp(x+y) m 2 =0,1)x(@©,1)

NEEMNGES J5

Here we note that the lower order term a 1s nonzero and the exact solution
u = exp(x + y)1s a smooth function The computations (omitted here again)
show that all methods discussed 1n Example 6.1 achieve their corresponding
optimal order of convergence in this case

APPENDIX A

We shall give a counterexample to show that if Hypothesis H, 1s violated,
then the local stability inequality (4.8), which plays an important role in our
analysis, will no longer be true. For simplicity, we only consider
M}, with 7 =2 1n our example This approach can be applied to M? upon
slightly modifying the proof of Lemma 4.1 for this scheme.

Let {T,} be a sequence of umt 1soceles right trniangles of type II with
respect to the charactenistic direction By = (0, 1 Y such that the outflow side
of T, 1s 1ts hypotenuse and the angle between 8, and the left inflow side of
T, tends to zero Equivalently, we can consider the tniangle T = Aa, a, a;
with the various charactenistic directions 8, = (cos 8, sin Bk)T, k=0, 1,
2, ..., where lim 6,= 0y=#/2, a;=(1,0), a,=(0,1), and a; =

k-
(0, 0). As before, we denote I'y = a,a; and I', = asa;.

For each k=0, 1, 2, .., let u, ;, be the discrete solution of M,I‘ onT
satisfying (3.1) and (3.3) with 8 = B, u;klrl =1, and u; k|r2 =f=0

Note that T has a side I'; parallel to B and 1s therefore a type I triangle with
respect to B, by the original defimtion of the type. We can, however, assume
it has a type II structure and the proof of Lemma 4 1 1s still valid. Hence
Uy, o 18 well defined and |[|uy o, # O since ulglrl =1.

In terms of a matnix formulation, each u, , corresponds to a coefficient
vector U, which 1s the solution of the linear system

Ak Uk = bk
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in the form of (4.11) and (4.12). It is not difficult to see that A, - A, and
b, — by as k —» oo in the standard Euclidean norms. The unique existence of
uy, o implies the invertibility of A,. Hence

U =A;'b, > A5t by = U, .

We then have lim u, , = u, uniformly on T. Thus, u, ; - u, o in
k— o

L*(T). If now (4.8) remains valid for all u, y, we have

nuh,kuischf |z |? |- n] dr
r.(Tr)

=Chf |By-ny| dr =Chcos 6,.
I,

This leads to

0 +# ||uh,0||;= lim ||uh‘k||§= lim Chcos 6, =0,
k- o k >

a contradiction. Therefore, (4.8) may not be true if H, is violated.

APPENDIX B

In general, Hypothesis H; is not true even though Hypotheses H, and
H, are satisfied. The left picture in figure B.1 illustrates such a fact, where
the number in each triangle indicates the layer to which it belongs. We see
that there are about O (h~?) many layers in this mesh. Moreover, we can
easily see that most of the triangles in this mesh are obtuse triangles. This
suggests that to obtain a triangulation with only O (4~ !) many layers we may
need to pose some restrictions on these sort of triangles. In the following
lemma, we give a sufficient condition for producing a mesh satisfying
H,.

LEMMA B.1: Suppose that A, is a triangulation satisfying Hypotheses

H, and H, and that all inner angles of typell triangles are at most

%. Then A, satisfies Hs.

An example of Lemma B.1 is depicted in the right picture of figure B.1.

To prove Lemma B.1 we need some notation. Take d = 2 p_, ., Where
Pmm 1S as defined in H,. Denote 6, as the minimal inner angle in
4, implied in Hy, i.e., if 6 is an inner angle of a triangle in 4,, then

<26 .
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17 15 13

9 11 12

7 8 10
6 4 2
5 3 1

Figure B.1.

Also from H,, there exists a #, > 0 such that any acute angle between 8 and
an inflow side of a type II triangle is at least 6,. We then set

6. = min {Gmim 00} .
By a path from T, € 4, to T, € A, we mean an ordered set of 2 or more
triangles
T\ <T)<---<T,;
suchthat T, =T,, T, =T, and I',,(T, _,) N I ,(T,) is the common side of
T,_yandT,, i =2, ..., [ The size of a path is the number of triangles in that
path.

Place {2 in an orthogonal coordinate system (z, s) where the s direction is
B. Then to each T € 4, we associate a quantity s, such that

5. (T)=min {s(P):P € I',, (T)} .

We can now state and prove a lemma which will be used in the proof of
Lemma B.1.
LEMMA B.2: Under the assumptions of Lemma B.1,
() if T, < T,, then
5,(T)) =< min s(P)=<s,(T);

PeT,

(i) if T, < T, and T, is of type Il, then

s, (T))=s,T))+dsin 6y
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Gii) if Ty < T, <---<T, is a path consisting of type I triangles and

= [a]

then there exists a k(=< 1) such that

5, (Ty)=s,(T,)+dsin 6, .

Proof : (1) If T, is of type I, then s,(T,) = min s(P ). If T, is of type II, by
PeT,
the assumption on type Il triangles in Lemma B.1 and H,, we have

5,(T,) = min s(P ). Hence, for either case the following inequalities hold
PeT,

5,(T,)= min s(P)= min sP)= min sP)=ys,(T,).
PeT, P elL(Ty) P el (T))

_ (i) Let T, = 4a, a, a;, labeled counterclockwise, with the outflow side
a,a,. Suppose a,a, is the common side shared by T; and T,. For a type II
triangle, since all of its inner angles are no bigger than /2 by the
assumptions in Lemma B.1 and an acute angle between an inflow side and 8
is at least 6, by H,, this angle is also at most #/2 — 8,. If s(a;)=
s(a,), noting that |@3| =d, we then find

s(ay) = s(as;) + d cos ( %— 00) = s(a3)+dsin 6.

Thus,
5.(Ty) =s(ay)=s(a3) +dsin 8y=s5,(T;) + dsin 6.

For the case s(a,) < s(a,), a similar argument on @1 will lead to the same
conclusion.

(i) Let T; = Aa, a, a; with the inflow side a;a, and let a,a; be the
common side of T, and 7,. For the case when the common side of
T, and T, is a,a;, the following argument remains valid with a, replaced by
a.

If one of a, and a;, say a,, is the common vertex for all T,,
l=<i=/, then all T, must lie on the same side of the line passing
a, and parallel to B (see fig. B.2(a)). Since <aja,a,,,< 7 — 0, and
<a,,10,4, .,= 0, 2=<i=<I[, by H, we have

ls[ il ]
0mm
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This violates the assumption on /. Therefore, there must exist a k(=< [) such
that all 7,, 1 =i <k — 1, except T, have a common vertex. k cannot be

= 3. This is consistent with £ </ since [ > [ 7 ] = 3. Again assume that
min

the common vertex is a,.

(2) B (b) WB
| |
Q,
I+2| 1
| |
ai+1 i ax j3k+1
a4 : :
a3
as “ a2
ay
ay
Figure B.2.

_If s(az)=s(a,) (see fig. B.2(b)), since all acute angles between
aa, and B, 4=<i < k+ 1, are at most w/2 — 6,,, we have
5,(T}) = min {s(a), s(a;, )}
=s(ay)+dsin 0, =s,(T)+dsin 0, .
If s(a3) < s(ay) (see fig. B.2(c)), since s, is nondecreasing along a path,
we obtain
5,(Ty) = 5,(T) = s(a3)
=s(a;)+dsin 0, =s,T)+dsin b, .

Analogously, we can obtain these results when that common vertex is
az. The conclusion in this part is then proved. O

Proof of Lemma B.1 : Consider any path T, <T, <...<T, such that
w

e

] +2. If T, is of typell for some 2=<i <k, then s,(T,)=

s.(T, _1) + dsin 8, by (ii). Otherwise, by (iii) we have s, (T)=s5,(Tp) +
dsin 0, for some 2 < j < k. Since s, is nondecreasing along a path by (i),
we conclude that

s.T)=s.(T;)+dsin @, .
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For any path from T, to T, of size

e ([az o) ([aa =) oo

where M is the uniform upper bound for #/d as indicated in H,, consider it to

be a union of disjoint subpaths of size G ] + 2. Then the application of
min

the above discussion and (i) yields

*

5.(T,) = 5.(T;) + d sin 0,([ sinlo ] + 1)(M+ 1)

=5, T)+dM+1)=s(T))+h+d.
Since the diameter of a triangle is no bigger than &, we have

min s(P)>s,T.)—h=s,T;)+d. (B.1)

PeT,

Now consider a partition of the interval [ inf s(P), sup s(P )] :
P e Pen

inf sSP)=sg<S;<-:-<s8y= sup s(P)
Pen Pen

such that s, —s,_,=d, i=1,2,...,N—1, and sy —sy_; <d. Then
N = C/h by H,. To each subinterval [s, _,, 5,) we associate a strip subset of
{2 such that a point of 2lies in that strip if and only if its s coordinate belongs
to [s,_y, §,). Then 2 is decomposed into N strips.

Let us start with the first strip of 2 (corresponding to [sy, s;)). It can only
overlap with at most L — 1 layers. Otherwise, there exists a path from
T, to T, of size at least L such that

so=min s(P)=<s,(T,) < min s(P)=<s, .
PeT, PeT,

Hence min s(P) — 5,(T}) < s; — 5o = d. This contradicts (B.1). Therefore,

PeT,
the total number of layers is no bigger than LN =< C/h, where C depends on
0nn and 6, but not A. O
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