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Finite element approximation on quadrilateral meshes
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SUMMARY

Quadrilateral 7nite elements are generally constructed by starting from a given 7nite dimensional space
of polynomials V̂ on the unit reference square K̂ . The elements of V̂ are then transformed by using the
bilinear isomorphisms FK which map K̂ to each convex quadrilateral element K . It has been recently
proven that a necessary and su2cient condition for approximation of order r + 1 in L2 and r in H 1 is
that V̂ contains the space Qr of all polynomial functions of degree r separately in each variable. In this
paper several numerical experiments are presented which con7rm the theory. The tests are taken from
various examples of applications: the Laplace operator, the Stokes problem and an eigenvalue problem
arising in ?uid-structure interaction modelling. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: quadrilateral 7nite elements; Laplace operator; Stokes problem; ?uid-structure interaction;
approximation; serendipity; mixed 7nite element

1. APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS

We report in this section on some results presented in Reference [1]. Let K̂ be the unit square
]0; 1[×]0; 1[; we denote by FK a bilinear isomorphism mapping K̂ onto a generic quadrilateral
K . Given a reference space V̂ (which typically consists of polynomials), we de7ne the 7nite
element space on K as

VF(K)= {u :K→R | ûF ∈ V̂} (1)

where ûF(x̂)= u(FK(x̂)). We observe that in the general quadrilateral case if V̂ consists of
polynomials, then the functions of VF(K) need not be polynomials unless FK is a2ne, in
which case K is a parallelogram.
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Figure 1. Meshes of self-similar trapezoids.

Given a quadrilateral mesh T of a two-dimensional domain P, we denote by VT the space
consisting of functions on the domain which when restricted to an element K ∈T belong to
VF(K). The following theorem holds true.

Theorem 1. On a general sequence of quadrilateral meshes Th; a necessary and su2cient
condition for the validity of the following estimates:

inf
v∈VTh

||u− v||L2(P)6Chr+1|u|r+1 for all u∈H r+1(P) (2)

inf
v∈VTh

||∇h(u− v)||L2(P)6Chr|u|r+1 for all u∈H r+1(P) (3)

is that V̂ ⊇Qr(K̂); where Qr(K̂) is the space of polynomials of degree less than or equal to
r in each variable; separately and ∇h denotes the element-by-element gradient.

The su2cient part of the theorem has been proven, for instance, in References [2; 3]. The
necessary part is more recent. In Reference [1] a special sequence of meshes of the unit
square has been introduced. We partition the unit square K̂ into four trapezoids. DiQerent
meshes can then be composed of translated dilates of this partition as shown in Figure 1.
An important characteristic of these meshes is that all their elements are similar to each
other.
In Reference [1] it has been proved that if Qr(K̂)* V̂ , then neither of the estimates

inf
v∈V (Th)

||u− v||L2(P) = o(hr)

nor

inf
v∈V (Th)

||∇(u− v)||L2(P) = o(hr−1)

holds, even for u polynomial.
Theorem 1 shows in particular that several commonly used 7nite element spaces pro-

vide suboptimal approximation properties on general quadrilateral meshes. Among these, we
quote in particular the serendipity (or trunk) space families Q′

r , or the mapped (or lo-
cal) polynomial spaces Pr . We shall comment on these spaces later on in the following
sections.
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Figure 2. Three diQerent sequences of meshes.

2. NUMERICAL RESULTS, PART 1: THE LAPLACE OPERATOR

In this section we report some of the numerical results presented in Reference [1]. We consider
the following Dirichlet problem for the Laplace operator in the unit square P= ]0; 1[×]0; 1[

−Ru=f in P

u= g on @P
(4)

The data f and g are chosen such that the exact solution is the polynomial u(x; y)= x3 +
5y2 − 10y3 + y4. We consider three sequences of meshes: a uniform mesh of squares; the
mesh of self-similar trapezoids introduced in the previous section; an asymptotically a0ne
mesh, i.e., a sequence of meshes where the elements tend to become parallelograms (see
Figure 2) as h goes to zero. For each sequence of meshes we approximate problem (4) by
biquadratic elements Q2(P) 7rst and then by quadratic serendipity elements Q′

2(P). We recall
that the space Q′

2(P) has eight degrees of freedom and is obtained from Q2(P) by dropping
the term x̂2ŷ2.
Figure 3(a) reports on the L2(P)-error for the Q2 approximation: the x-axis and the

y-axis represent the logarithm of 1=h and of the error, respectively. The results con7rm the
su2cient part of Theorem 1: a clear third-order of convergence is observed. In this case we
did not plot the error for the asymptotically a2ne mesh, since no signi7cant diQerence can
be observed with respect to the other two cases. On the other hand, the graph of the error
for the serendipity space, plotted in Figure 3(b), clearly shows a suboptimal convergence in
the case of the mesh of trapezoids: the slope of the curve is close to 3 for h large, but as h
decreases the rate of convergence seems to tend to 2. The results for the asymptotically a2ne
sequence of meshes are in perfect agreement with the theory presented in Reference [1]: no
loss of accuracy is present in this case.

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:805–812
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Figure 3. L2 convergence rates: (a) for the space Q2; (b) for the serendipity space.

3. NUMERICAL RESULTS, PART 2: THE Q2 −P1 STOKES ELEMENT

In this section we consider the approximation of the solution (u; p) to the Stokes problem

−Ru+ gradp=f in P

div u=0 in P

u=0 on @P

where P is the unit square ]0; 1[×]0; 1[. The source term f is chosen such that the exact
solution is given by u(x; y)= (−2x2y(1− x)2(1− 3y + 2y2); 2xy2(1− y)2(1− 3x + 2x2)) and
p(x; y)= cos(�x) cos(�y).
We use the Q2−P1 scheme, one of the most popular Stokes elements. This method presents

two possible versions (see, for instance, References [4; 5]). The 7rst choice consists in a local
(or ‘mapped’)-pressure approximation, i.e., the discrete pressures are de7ned on the reference
square as linear functions and mapped onto the generic quadrilateral as described in (1).
This choice, according to the theory presented in the previous section, cannot provide optimal
convergence order on general quadrilateral meshes, since the reference space does not contain
all of Q1. The second possibility is to de7ne the discrete pressures p such that the restriction
p|K is a linear function for any quadrilateral K of the considered mesh. For this de7nition
we did not make use of the bilinear mappings FK . This second choice is known as global
(or ‘unmapped’)-pressure approximation. The terminology global=local refers to the choice of
the co-ordinate system: with the local approach one can de7ne the discrete pressures via a
local co-ordinate system, while with the global one the pressures are built as piecewise linear
polynomials with respect to the global co-ordinate system.
According to Reference [6], the Q2 −P1 element has been introduced during a conference

in 1979. The analysis for the global approach can be found, for instance, in References [7–9]
and for the local approach in Reference [5].
For our computations we shall make use of the same sequences of meshes as in the previous

section (see Figure 2). The results for the pressures (plot of the L2 error) are presented

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:805–812
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Figure 4. L2 pressure error estimate: (a) local approach; (b) global approach.
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Figure 5. L2 velocity error estimate: (a) local pressure approach; (b) global pressure approach.

in Figure 4. As expected, the global approach provides optimal second-order convergence
for all possible meshes, while the local-pressure approximation is only 7rst-order accurate
on the distorted trapezoids mesh. Both methods are second-order convergent (indeed they
are equivalent) with the mesh of squares and second-order convergence also holds for the
asymptotically a2ne mesh.
Figure 5 reports the L2 errors of the velocities. We remark that both methods use the same

approximating space for the velocity, namely the space of continuous piecewise biquadratic
functions Q2 for each component. In particular, this space should provide the optimal third-
order of convergence in L2. However, the results turn out to be suboptimal in the case
of the local-pressure approximation on the distorted mesh. This is due to the fact that the
error estimates of mixed methods link together the approximation properties of velocities and
pressures. Hence, in the local approach, a bad approximation of the pressures produces a
negative eQect for the approximation of the velocities too.

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:805–812
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4. NUMERICAL RESULTS, PART 3: AN EIGENVALUE PROBLEM

In this last section we report the results of our computation for the approximation of the
eigenmodes (u; �) of the following problem:

−grad div u+ s curl rot u= �u in P

u · n=0 on @P
(5)

Here P is still the unit square ]0; 1[×]0; 1[, @P its boundary, and n denotes the outward
oriented normal unit vector. The positive number s is a penalization parameter. For a dis-
cussion on how to choose this parameter we refer, for instance, to Reference [10]. In our
numerical tests we will take s=10. This problem has been intensively studied in the literature
[11–14]. It arises, for instance, as a part of a ?uid-structure interaction problem. Interchanging
the role of the curl with the grad and of the rot with the div it can also been viewed as a
penalty method for the computation of the Maxwell’s cavity eigenvalues [10].
To our best knowledge, at the present time no e2cient numerical method has been proposed

yet for the approximation of problem (5). Among the known schemes we test the Q2−P1−P1

three-7eld method proposed by Bathe et al. in Reference [11]. For a presentation of the method
and a partial analysis of it, we refer to the original paper [11] and to Reference [10]. In this
scheme, the eigenfunctions u are approximated by means of continuous piecewise biquadratic
vector 7elds and two auxiliary variables (representing div u and rot u) are approximated by
piecewise linear functions.
As in the previous section, we have two diQerent choices for the de7nition of the linear

spaces: either a local (or ‘mapped’) approach or a global (or ‘unmapped’) approximation. In
Figures 6 and 7 we show the convergence history of the 7rst two eigenvalues using the two
schemes and two diQerent sequence of meshes: the mesh of squares and the mesh of self-
similar trapezoids (see Figure 2). While the 7rst eigenvalue is well approximated in all the
considered cases, this is not the case for the second one. Using the local approach there is no
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Figure 6. First eigenvalue computed using: (a) the local approach; (b) the global approach.
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Figure 7. Second eigenvalue computed using: (a) the local approach; (b) the global approach.
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Figure 8. The computed eigenfunctions.

convergence on the mesh of trapezoids (the solution seems to be stable but not convergent)
and using the mesh of squares the convergence is only suboptimal.
The interpretation of these results is unclear. The diQerence between the local and the

global approach seems to be due to the diQerent approximation properties, as shown for the

Copyright ? 2001 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2001; 17:805–812
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Stokes problem in the previous section. On the other hand, even in the better case the results
are not satisfactory and this phenomenon needs to be further investigated.
We conclude this section by showing in Figure 8 the corresponding computed

eigenfunctions. It is apparent that the anisotropy of the mesh makes the diQerence between the
approximation of the 7rst and the second eigenmode.

5. CONCLUSIONS

In this paper, we presented some numerical experiments related to the theory illustrated in
Reference [1]. The 7rst example concerns the approximation of the Laplace operator with
biquadratic or serendipity elements. The numerical experiments show that on general quadri-
lateral meshes the optimal convergence rate is achieved only with full biquadratics.
The second and third examples deal with the discontinuous piecewise linear element. On

general quadrilaterals, a local or a global approach can be used. According to the theory of
Reference [1], only the global approach can provide optimal approximation properties if the
mesh is far from being a2ne. In one case (Q2 − P1 Stokes element) the numerical results
clearly con7rm the theory; while in the last example (Q2−P1−P1 element for an eigenvalue
problem) the results are unsatisfactory and need further investigation.
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