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Preconditioning Discrete
Approximations of the
Reissner–Mindlin Plate Model
Douglas N. Arnold 1, Richard S. Falk 2 and Ragnar

Winther3 4

Abstract. We consider iterative methods for the solution of linear systems of
equations arising from mixed finite element discretization of the Reissner–Mindlin
plate model. We show how to construct symmetric positive definite block diagonal
preconditioners for these indefinite systems such that the resulting systems have
spectral condition numbers independent of both the mesh size h and the plate thickness
t.

1.1 Introduction

The purpose of this paper is to summarize the work of [AFW97]. We consider
iterative methods for the solution of indefinite linear systems of equations arising
from discretizations of the Reissner–Mindlin plate model.

Like the biharmonic plate model, the Reissner–Mindlin model is a two-dimensional
plate model which approximates the behavior of a thin linearly elastic three-
dimensional body using unknowns and equations defined only on the middle surface,
Ω, of the plate. The basic variables of the model are the transverse displacement ω
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and the rotation vector φ which solve the system of partial differential equations

−div CEφ+ λt−2(φ− gradω) = 0,
λt−2(−∆ω + divφ) = g,

(1.1)

on Ω together with suitable boundary conditions. For the hard clamped plate, which
we consider throughout this paper, these are ω = 0, φ = 0. In (1.1), g is the scaled
transverse loading function, t is the plate thickness, Eφ is the symmetric part of the
gradient of φ, and the scalar constant λ and constant tensor C depend on the material
properties of the body.

A variational formulation of this system states that the solution (φ, ω) minimizes
the total energy of the plate, which is given by

E(φ, ω) =
1
2

∫
Ω

{(CEφ) : (Eφ) + λt−2|φ− gradω|2}dx−
∫

Ω

gωdx (1.2)

over H1
0(Ω)×H1

0 (Ω) = H1
0 ×H1

0 . Here H1 ⊂ L2 = L2(Ω) denotes the Sobolev space
of functions with first derivatives in L2, while H1

0 is the subspace of functions which
vanish on the boundary. Boldface symbols are used to denote 2–vector valued functions
and function spaces.

An advantage of the Reissner–Mindlin model over the biharmonic plate model is
that the energy involves only first derivatives of the unknowns and so conforming
finite element approximations require the use of merely continuous finite element
spaces rather than the C1 spaces required for the biharmonic model. However, for
many choices of finite element spaces, severe difficulties arise due to the presence
of the small parameter t. If the finite element subspaces are not properly related,
the phenomenon of “locking” occurs, causing a deterioration in the approximation as
the plate thickness t approaches zero. A key step in understanding and overcoming
locking is passage to a mixed formulation of the Reissner–Mindlin model. The mixed
formulation may be derived from the alternative system of differential equations

−div CEφ− ζ = 0,
− div ζ = g,

−φ+ gradω − λ−1t2ζ = 0,
(1.3)

arising from (1.1) through the introduction of the shear stress ζ = −λt−2(φ−gradω).
This mixed system also makes sense for t = 0. In this case the system corresponds to
a constrained minimization problem.

1.2 Mapping properties

The system (1.3) can be written in the form

At

φω
ζ

 =

0
g
0

 , (1.4)
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where the coefficient operator, At, is given by

At =

−div CE 0 −I
0 0 − div
−I grad −λ−1t2I

 .

The mapping properties of the coefficient operator of the continuous system are key to
the design of preconditioners for discrete approximations of the system. The indefinite
operator At is L2–symmetric, and, for any t > 0 is an isomorphism fromH1

0×H1
0×L2

to the L2–dual H−1×H−1×L2. However, in order to obtain bounds on the operator
norms which are independent of the thickness t, we are forced to introduce t–dependent
norms. Let

H0(rot) = {η ∈ L2 : rotη ∈ L2,η · s = 0 on ∂Ω},

with the natural norm. Here s is the unit tangent to ∂Ω and rotη = ∂η1/∂y−∂η2/∂x.
It can be shown that the dual space ofH0(rot) with respect to the L2–inner product

is given by

H−1(div) = {η ∈H−1 : div η ∈ L2}.

Using sums and intersections of Hilbert spaces (cf. [BL76]) we now define

Xt = H1
0 ×H1

0 × [H−1(div) ∩ t · L2]

and its L2–dual

X∗t = H−1 ×H−1 × [H0(rot) + t−1 · L2].

In particular,

X0 = H1
0 ×H1

0 ×H−1(div) and X∗0 = H−1 ×H−1 ×H0(rot).

Using these spaces, it is then possible to establish the following result.

Theorem 1.1 The operator At is an isomorphism from Xt to X∗t . Furthermore, the
associated operator norms ||At||L(Xt,X∗t ) and ||A−1

t ||L(X∗t ,Xt)
are independent of t.

1.3 Preconditioning

Before turning to the description of discretizations schemes, we will discuss
preconditioning for the continuous system (1.4). Our aim is to replace the system
(1.4) by an equivalent system of the form

BtAt

φω
ζ

 = Bt

0
g
0

 , (1.5)

which is more easily solved by iterative methods. The operator Bt will be symmetric
positive definite and hence the indefinite operator BtAt will be symmetric with respect
to the inner product (B−1

t · , · ) on Xt.
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Let Dt denote the operator

Dt = I + (1− t2) curl(I − t2∆)−1 rot,

where

curl =
(
−∂/∂y
∂/∂x

)
.

When t = 0, this is a differential operator which is an isomorphism from H0(rot)
into H−1(div). In general, it can be shown that that Dt is an isomorphism from
H0(rot) + t−1 · L2 to H−1(div) ∩ t · L2, with the operator norms of Dt and D−1

t

independent of t. An immediate consequence of this is that the block diagonal operator

Bt =

−∆−1 0 0
0 −∆−1 0
0 0 Dt


is an isomorphism mapping X∗t to Xt with the norms ||Bt||L(X∗t ,Xt)

and ||B−1
t ||L(Xt,X∗t )

independent of t. From Theorem 1.1, we conclude that the block diagonal positive
definite operator Bt has the same mapping property as A−1

t . Hence, the composition
BtAt,

Xt
At−→ X∗t

Bt−→ Xt,

is an isomorphism from Xt to Xt with operator norms

||BtAt||L(Xt,Xt) and ||(BtAt)−1||L(Xt,Xt)

independent of t. Therefore, BtAt is a bounded operator on Xt with bounded inverse,
and as a consequence, the spectral condition number

κ(BtAt) =
sup |σ(BtAt)|
inf |σ(BtAt)|

is finite and independent of t.
A preconditioned differential system of the form (1.5) can be solved by a Krylov

space method like MINRES or CGN (conjugate gradients applied to the normal
equations). These methods are well defined as long as the coefficient operator BtAt
maps Xt into itself, and convergence in the norm of Xt is guaranteed as long as the
spectral condition number of BtAt is finite. Therefore, we obtain the following result.

Theorem 1.2 Assume that MINRES or CGN is applied to the preconditioned system
(1.5). Then the sequence of approximations converges to the solution in Xt, with a
convergence rate independent of t.

1.4 Stable discretizations

The continuous theory presented above may serve as a guideline for the problem of
real interest, i.e., how to construct effective preconditioners for the discrete systems
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arising from finite element approximations of the differential system (1.3). Here, we
shall just give a brief outline of the discrete theory. For full details and proofs we refer
to the original paper [AFW97].

A finite element approximation of the system (1.3) (or (1.4)) will typically give rise
to a discrete system of the form

At,h

φhωh
ζh

 =

 0
gh
0

 ,

where At,h is an indefinite, L2–symmetric operator mapping a finite dimensional space
Xh = V h×Wh×Γh into itself. Here h > 0 is a discretization parameter. Examples of
stable and locking free finite element discretizations have been proposed by Arnold and
Falk [AF89], Brezzi, Fortin and Stenberg [BFS91], Duran and Liberman [DL92], and
others. The main purpose of this work is to construct preconditioners Bt,h for these
systems such that the spectral condition number of Bt,hAt,h is independent of the
thickness t and the discretization parameter h. The construction of Dt,h is analogous
to that of Dt in the continuous case.

For the locking free methods, it is possible to establish a discrete version of Theorem
1.1 above, i.e., to prove that the operator norms

||At,h||L(Xt,h,X∗t,h) and ||A−1
t,h||L(X∗t,h,Xt,h)

are bounded uniformly in t and h. Here the spaces Xt,h and X∗t,h coincide with Xh

as a set, but are endowed with norms which resemble the norms in Xt and X∗t . As in
the continuous case, this property of At,h suggests a symmetric, positive definite and
block diagonal preconditioner such that

||Bt||L(X∗t,h,Xt,h) and ||B−1
t ||L(Xt,h,X∗t,h)

are independent of t and h. As a consequence, the spectral condition number of Bt,hAt,h
is independent of t and h.

The preconditioner Bt,h will be of the form

Bt =

Lh 0 0
0 Mh 0
0 0 N t,h

 ,

where Lh and Mh are chosen spectrally equivalent to approximations of the inverse
of the negative Laplace operator on V h and Wh, respectively, while N t,h is a discrete
analog of Dt.

1.5 Numerical examples

In the examples presented below, the domain Ω is taken to be the unit square. A
triangulation of Ω is obtained by first dividing Ω into squares of size h × h, and
then dividing each square into two triangles using the positively sloped diagonal. All
the computations are done with the method of Arnold and Falk [AF89]. Hence, the
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space V h consists of continuous piecewise linear functions plus cubic bubbles on each
triangle, Wh is the nonconforming piecewise linear space, with continuity requirements
only at the midpoint of each edge, and Γh is the space of piecewise constants with
respect to the triangulation.

The operators Lh and Mh are essentially constructed from a standard V–
cycle multigrid operator with a Gauss–Seidel smoother. These operators are fixed
throughout all the experiments. For the method considered here, the proper discrete
analog of the operator Dt is of the form

I + (1− t2) curlh(I − t2∆h)−1 roth

mapping Γh into itself. If Qh ⊂ H1 is the space of continuous piecewise linear functions
with respect to the triangulation, then curlh : Qh 7→ Γh is defined by restricting the
ordinary curl–operator to Qh. Furthermore, roth : Γh 7→ Qh is the adjoint operator,
while ∆h : Qh 7→ Qh is the standard finite element approximation of the Laplace
operator generated by the space Qh.

By replacing (I − t2∆h)−1 by a spectrally equivalent (with respect to t and h)
preconditioner Φt,h, again derived from a V–cycle multigrid algorithm, we obtain a
computational feasible operator

Dt,h = I + (1− t2) curlh Φt,h roth .

We observe that the operator Dt,h simplifies when t = 0, by taking Φ0,h = I, and for
t = 1, since D1,h = I.

In the examples below, the preconditioned system is solved either by MINRES
or CGN. The work estimate for one iteration of CGN corresponds roughly to two
MINRES iterations. We therefore compare the number of iterations for MINRES
(NMR) with twice the number of iterations for CGN (NCGN ). The condition number
κ(Bt,hAt,h), which is estimated from the conjugate gradient iteration using a standard
Matlab routine, will also be given. The iterations are terminated when the error,
measured in the norm associated with the inner product (B−1

t,h · , · ), is reduced by a
factor of at least 5 · 104.

The two extreme cases t = 0 and t = 1 are considered in Tables 1.1 and 1.2.

Table 1.1 t = 0, N t,h = Dt,h = D0,h

h 2−3 2−4 2−5 2−6 2−7

NMR 41 41 35 29 24
NCGN 48 50 48 40 34

κ(Bt,hAt,h) 8.17 10.7 11.1 10.6 9.62

The results clearly seem to confirm the boundedness of κ(Bt,hAt,h) with respect
to h for these values of t. Observe also the substantial difference in the behavior of
MINRES and CGN in the case t = 1.

Our theory predicts that if N t,h is chosen to be Dt,h, then the condition numbers
κ(Bt,hAt,h) (and hence NMR and NCGN) are bounded independently of t and h.
Furthermore, if t is sufficiently small compared to h (t = O(h)) then the simpler
choice N t,h = D0,h is a good one as well. In Table 1.3, we compare the condition
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Table 1.2 t = 1, N t,h = Dt,h = I

h 2−3 2−4 2−5 2−6 2−7

NMR 22 22 20 20 20
NCGN 102 104 106 104 102

κ(Bt,hAt,h) 17.5 18.4 19.0 19.0 18.9

Table 1.3 κ(Bt,hAt,h) for t = 0.01

h 2−3 2−4 2−5 2−6 2−7

N t,h = D0,h 8.15 10.7 11.4 32.9 113
N t,h = Dt,h 8.15 10.7 11.2 11.1 9.68

numbers κ(Bt,hAt,h) for t = 0.01 and N t,h = Dt,h or N t,h = D0,h. As expected, the
choice N t,h = D0,h works well when h is large, but deteriorates when h becomes too
small. In contrast, the condition numbers for the choice N t,h = Dt,h appear to be
bounded uniformly with respect to h.

For any fixed t > 0 the choice N t,h = D1,h = I leads to condition numbers
κ(Bt,hAt,h) which are independent of h, but which may increase with decreasing values
of t. The effect of this is illustrated in Table 1.4. These results confirm the uniformity

Table 1.4 κ(Bt,hAt,h) for t = 0.1

h 2−3 2−4 2−5 2−6 2−7

N t,h = I 90.2 78.5 72.7 70.1 70.7
N t,h = Dt,h 8.64 10.8 11.1 11.2 11.1

with respect to h for the simple choice N t,h = I, but the experiments also clearly
indicate that this is not a good choice for t sufficiently small.
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