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PRECONDITIONING DISCRETE APPROXIMATIONS
OF THE REISSNER-MINDLIN PLATE MODEL (*) (**)

by Douglas N. ARNOLD ( î ), Richard S. FALK ($) and
Ragnar WlNTHER (§)

Abstract — We consider itérative methods for the solution of the hnear system of équations
ansingfrom the mixed finite element discretization of the Reissner Mindlin plate model We show
how to construct a symmetrie positive definite block diagonal preconditioner such that the
resulting hnear system has spectral condition number independent of both the mesh sue h and
the plate thickness t We further discuss how this preconditioner may be implemented and then
apply it to efficiently solve this indefinite hnear system Although the mixed formulation of the
Reissner Mindlin problem has a saddle point structure common to other mixed vanational
problems, the présence of the small parameter t and the fact that the matrix in the upper left
corner of the partition is only positive semidefinite mtroduces new complications

Key words preconditioner, Reissner, Mmdhn, plate, finite element
AMS(MOS) subject classifications (1991 revision) 65N30, 65N22, 65F10, 73V05

Résumé — Nous considérons des méthodes itératives pour résoudre le système d'équations
linéaires résultant de la discrétisation par éléments finis mixtes du modèle de plaque de
Reissner-Mindlm Nous montrons comment construire une matrice de préconditionnement,
symétrique, positive et diagonale par blocs, de sorte que le conditionnement du système linéaire
associé soit indépendant de la taille du maillage h et aussi de Vépaisseur de la plaque t Nous
expliquons ensuite comment implémenter ce préconditionneur et appliquons cette technique pour
résoudre efficacement le système linéaire indéfini associé au modèle de plaques Bien que la
formulation mixte du problème de Reissner Mindlin ait une structure de point selle commune à
ce type de problèmes vanationnels mixtes, la présence du petit paramètre t et le fait que la
matrice soit seulement positive semi-définie dans le coin supérieur gauche de la partition, créent
de nouvelles complications

1. INTRODUCTION

The Reissner-Mindlin plate model can be formulated as a saddle point
problem and discretized by mixed finite element methods. The resulting hnear
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algebraic System is symmetrie and nonsingular, but indefinite. In this paper we
show how this System can be efficiently solved by preconditioned itérative
methods. In particular, we will establish bounds on the number of itérations
necessary to achieve any desired error réduction factor (in an appropriate
norm) with the bounds independent of both the discretization parameter h and
the plate thickness t

In order to understand our approach, consider a problem

(1.1) ^x=f

arising from the discretization of a well-posed linear boundary value problem
by a stable discretization scheme. We assume that si is self-adjoint, but not
necessarily positive definite, and defines an isomorphism from an appropriate
Banach space X to its dual X*. Note that the operator si and the space X
depend on the discretization parameters and perhaps on other parameters as
well (for example, on the thickness t in the Reissner-Mindlin model), but we
suppose that we have bounds on || si || ̂ ( x x^ and || si~ x || ̂  x* x ) which are
independent of these parameters.

In order to solve (1.1), we will use the minimum residual method or another
itérative scheme with similar properties, preconditioning with a positive
definite self-adjoint operator 0b : X* —» X. Such an itérative scheme is efficient
if the action of the operator 3$ may be computed efficiently and if the
magnitude of the eigenvalues of âSs/ can be bounded above and below by
positive constants (cf. § 5 below). It is easy to see that such spectral bounds
follow directly from the bounds on || si || ̂ ( x x#) and || si' x || ̂  x* x ) and on
bounds for || M || ̂ ( x* x ) and || SIT 11| ̂ ( x X!lt). Thus to efficiently solve (1.1),
we simply require a computable positive definite operator M for which we can
bound the norm and the norm of its inverse unifornüy in the relevant
parameters. We remark that the preconditioner « ,̂ can be constructed without
référence to the detailed structure of the operator si^ but dépends only on the
Banach space X.

In case si is associated with a differential system, as in the Reissner-
Mindlm model, the space X will be a Cartesian product X1 x —- Xn. Therefore
it is easy to construct M if computable self-adjoint positive definite operators
$l\Xl —> Xx are available; we simply set

The Mx will typically be preconditioners for simpler subproblems.
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PRECONDITIONING DISCRETE APPROXIMATIONS 519

Like the biharmonic plate model, the Reissner-Mindlin model is a two-
dimensionaî plate model which approximates the behavior of a thin linearly
elastic three-dimensional body using unknowns and équations defined only on
the middle surface, Q, of the plate. The basic variables of the model are the
trans verse displacement co and the rotation vector <J> which solve the System
of partial differential équations

(1.2) - div C<f 4> + Xt~ 2(<t> - grad co) = 0 ,

(1.3) Xt~2{- Aco + div <>) = 9 >

on Q together with suitable boundary conditions. For the hard clamped plate,
which we consider throughout this paper, these are co = 0, 4*= 0- In
(1.2)-(1.3), g is the scaled transverse loading function, t is the plate thickness,
<f 4> is the symmetrie part of the gradient of 4>, and the scalar constant X and
constant tensor C depend on the material properties of the body. Précise
définitions are given in the next section. A variational formulation of this
system states that the solution ( 4>, co ) minimizes the total energy of the plate,
which is given by

f |<|> - gradco\2dx - | gœdx
JQ JQ

over H\Q)XH\Q).

An advantage of the Reissner-Mindlin model over the biharmonic plate
model is that the energy involves only first derivatives of the unknowns and
so conforming finite element approximations require the use of merely con-
tinuous finite element spaces rather than the C1 spaces required for the
biharmonic model. However, for many choices of finite element spaces, severe
difficulties arise due to the présence of the small parameter t. If the finite
element subspaces are not properly related, the phenomenon of « locking »
occurs, causing a détérioration in the approximation as the plate thickness t
approaches zero. A key step in understanding and overcoming locking is
passage to a mixed formulation of the Reissner-Mindlin model. The mixed
formulation may be derived from the alternative system of differential équa-
tions

(1.4)

(1.5)

(1.6)

voL 31, n° 4, 1997
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arising from (1.2)-(L3) through the introduction of the shear stress
Ç = Xt~ 2(grad co — <|> )- A variational statement is that ( § , co? Ç) e
H 1 ( O ) x H1(Q) x L 2 ( O ) is a critical point of the mixed Lagrangian

This is a saddle-point principle, and consequently the linear équations arising
from its discretization are indefmite. Many finite element methods which have
been derived and analyzed for this mixed formulation can be implemented in
terms of the primitive variables <j> and m only (that is Ç can be elirninated at
the discrete level) and therefore lead to a positive definite linear system.
However, we do not know how to dérive efficient preconditioners for the
solution of these Systems (uniformly in i). In this paper, we shall propose
preconditioned itérative methods for the full indefinite mixed system.

The application of multigrid methods for the solution of discrete Reissner-
Mindlin Systems and related problems has been considered by several authors.
Braess and Blömer [3] consider the analogous problem in one-space dimen-
sion, the Timoshenko beam model, and show that if multigrid methods are
applied directly to the discrete positive definite system corresponding to
analogues of (1.2), (1.3), then the convergence rate détériorâtes as the beam
thickness tends to zero. By contrast, they formulate a multigrid W-cycle
algorithm for the mixed system, using a smoother based on the normal
équations, and show that the convergence rate is independent of the beam
thickness t and discretization parameter h. Peisker [17] formulâtes a multigrid
method for a family of discretizations of the system corresponding to (1.2),
(1.3) using polynomials of degree 2 or greater. She shows that if t is no less
than h, and if sufficiently many smoothing steps are made, then the method
converges with a rate independent of t and h. She also discusses the application
to problems with t smaller than h using an additional itération. Huang [15]
studies a different mixed formulation of the problem as a perturbed Stokes-like
system which arises from the Helmholtz décomposition of Ç, and uses this
formulation to devise and analyze a multigrid algorithm for the method
proposed in [1], More recenüy, a gênerai framework which includes the
methods of [3] and [15] is given in [8].

The approach of this paper is different from that taken in the papers
described above, since our strategy is to use symmetrie positive definite block
diagonal preconditioners for the mixed system, where the blocks correspond
to preconditioners for simpler subproblems. These simpler preconditioners
may be constructed, for example, using multigrid or domain décomposition
techniques.
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Other authors have considered the use of symmetrie positive défini te block
diagonal preconditioners for the indefinite aigebraic Systems arising from
certain saddle point problems, such as the mixed formulation of scalar second
order elliptic équations and the Stokes équations. See Bramble and Pasciak
[5], Klawonn [16], Rusten and Winther [19], [20], Silvester and Wathen [21],
and Wathen and Silvester [24]. In designing and analyzing their precondition-
ers, these authors have exploited the fact that for these problems the upper left
hand corner of the coefficient matrix, Ah, is positive definite, and so their
techniques don't apply directly to the équations arising from the Reissner-
Mindlin system. Other approaches to the design of itérative methods for
aigebraic Systems arising from saddle point problems include the inexact
Uzawa algorithms analyzed by Elman and Golub [13] and Bramble, Pasciak
and Vassilev [6], and a method based on a positive definite reformulation is
discussed by Bramble and Pasciak [4]. Again, these analyses rely on the
definiteness of the upper left hand corner of the coefficient matrix and so
would have to be modified for use with Reissner-Mindlin.

An outline of the paper is as follows. In the next section, we collect some
preliminary results about various formulations of the boundary value problem
for the Reissner-Mindlin model. Appropriate Hubert spaces are defined for the
data and solution and an isomorphism theorem is stated relating the two. This
resuit uses f-dependent norms and is, as far as we know, new. In § 3 we discuss
finite element methods for the Reissner-Mindlin model. We pose three hy-
potheses which delimit precisely the class of methods to which our results
apply, and show that methods in the literature which have been proven to be
free of locking satisfy these hypotheses. In § 4, we state and prove the
isomorphism theorem for the class of finite element schemes under consid-
ération. Using this result, we then discuss in §§ 5-7 how to precondition the
linear Systems resulting from these approximation schemes. Finally, in § 8, we
report the results of numerical experiments using some of the preconditioning
methods developed in this paper.

2. PRELIMINAIRES

We begin this section by recalling the sum and intersection construction for
Hubert spaces. If Hilbert spaces X and Y are both continuously included in
some larger Hilbert space, then the intersection X n Y and the sum X + Y are
themselves Hilbert spaces with the norms

ii 2 \ 1/2

\z\\r)
and

x + y =z

vol. 31, n° 4, 1997
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If in addition, X n Y is dense in both X and Y, then the dual spaces X* and
y* may be viewed as subspaces of (X n F)*. Moreover we have the follow-
ing resuit (see [2, § 2.7] for a proof in the Banach space context).

THEOREM 2.1. The dual space ( X n F ) * = Z * + F* and the dual norm
coïncides with the sum norm :

We next define the notation to be used. For simplicity, we assume that Q is
a polygonal domain in R2. Since the domain Q is fixed throughout the paper,
we shall adopt notation which omits explicit référence to Q. Hence, we will
use Hm to dénote the Sobolev space of functions with m derivatives in
L2(Q), while Hm dénotes the subspace obtained as the closure in Hm of
CQ(Q). The dual space of Hm with respect to the L2 inner product will be
denoted by H~ m. A space written in boldface dénotes the 2-vector-valued
analogue of the corresponding scalar-valued space. For both the scalar- and the
vector-valued Sobolev space of order w, we use || . || m to dénote the norm.
The notation ( . , . ) is used to dénote the L inner product of scalar, vector,
and matrix valued functions.

We now present the weak formulations of the Systems (1.2)-(1.3) and
(1.4)-(1.6). In these équations t > 0 is the plate thickness and the positive
constant X = Ek/2( 1 -f v) with E the Young's modulus, v the Poisson ratio,
and k the shear correction factor. For all 2 x 2 symmetrie matrices t, Cx is
the 2 x 2 symmetrie matrix defined by

Cx = 5 [ ( l v ) T + v t r (T) / ] ,
1 2 ( l - v 2 ) L } K J

where tr ( x ) dénotes the trace of x, so C defines a symmetrie positive definite
operator from the space 2 x 2 symmetrie matrices to itself. The function
g, which represents the scaled load function, is assumed to belong to H~ l. In
the interest of notational simplicity and without loss of generality, we shall set
X— 1 from this point on. (All the results which follow may be translated back
to the original case by replacing t with X" m t. )

The weak formulation of the system (1.2)-(1.3) is :
Problem (P) : Find § G H1, œ G H1, satisfying

( OSc>, ëxf ) + f 2(<> - grad co, y - grad p)

for all y e H X , ^ G H1

M2 AN Modélisation mathématique et Analyse numérique
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The existence of a unique solution to this problem is straightforward. Intro-
ducing the shear stress Ç as in (1.4)-(1.6), we obtain the mixed weak formu-
lation :

Problem (M) : Find <> G H1, co G Hl
9 Ç G L2 satisfying

= (g,iu) for ail \|/ G H\JU G H1,

Ç, Î ] ) = 0 for all T j e L 2 .

A proof of existence, uniqueness, and a priori estimâtes for this System based
on Brezzi's theory of saddle-point problems may be found in [9].

We note that Problem (M), unlike Problem (P), has a sensé when î = 0.
Indeed, for t = 0 one easily obtains that <p = grad co and
C = E[ 12( 1 - v2 ) ] " * grad /to, where co <E H2 satisfîes

gradco, <T gradju) = - (g, ju) f or all /i e H2 .

This is weak formulation of the biharmonic model for the clamped plate.
However, at this limit the regularity Ç G L2 is lost, and the proper statement
of Problem (M) places Ç and i\ in the space HT ^div). This space is defined
as the dual of

H (rot) = {i]G L2 : rot r\ G L2, r\ .s = 0 on dü} ,

where the norm in H ( rot ) is given by

Hère s is the unit tangent to dQ and rot ij = drj1 Iby ~ drj2 Idx. It can be
shown that the dual space

H" 1(div) = {t]G HT1 :divTiG H~ l} ,

and that the norm

is equivalent to the dual norm

rot)

In order to state the mixed formulation in a manner which is valid up to and
including the limit t = 0 and to describe the regularity of solutions, we define

vol. 31, n° 4, 1997
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some Hilbert spaces with norms depending on t For t > 0 the space t. L2 is
simply the space L2 except with norm multiplied by t, The space
H~ x ( div ) n f . L 2 is then defined as an intersection space. As a set it
coincides with L , but has norm given by

° - 1 2

In view of Theorem 2.1, its dual space is H (rot) + t . L , which again
coincides with L as a set, but has norm

When * = 0, these spaces become I T ^ d i v ) and H(rot), respectively.
Hence, if we replace L2 by ET l( div ) n t, L2 in Problem (M), the formulation
is valid for t 5= 0. In fact we shall consider a shghtly generalized System :

Problem (G) : Find <|> e H1, co e H1, Ç G HT ^div) n r. L2 satisfying

(Ç,v) = ( f , V ) f for all V E H1,

(Ç,grad/i) = (0 , / i ) , for all / i e H 1 ,

- (< |>-gradco, i i ) - r 2(Ç,Ti) = (j,Ti), forall r\ e IT '(div) n t. L2 ,

where f e E T 1 and j e H(rot) + f" x . L2.
Let Xt dénote the product space

Xt - H1 x H1 x i r ^div) n r. L2 .

° 1 ° 1 2

For r > 0, X, coincides with H x H x L as a set, but its norm,
,1/2

is f-dependent. Let X dénote the dual space, £T x H x H(rot)
— 1 9

+ t . L with the dual norm :

l l(v,i",T,)ii ; f i . = ( | i v i i ! 1 + i i i u | | ! 1 + i i T , i i ^ ( r o t ) + , , . L o 1 / 2 .

The following isomorphism theorem holds for Problem (G).
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THEOREM 2.2 : Let (f, g, j ) e Xt be given. Then there is a unique solution
(<j), ca, Ç) e Xr to Problem (G). Moreover there exist positive constants c1 and
c2 independent of t, f, 0, and j SWC/Ï ?/ia£ for 0 ^ t ^ 1,

Since we shall prove the discrete analogue of this theorem, which is
somewhat more complicated but follows the same framework, in § 5, we omit
the proof hère. For the remainder of the paper we shall assume, as in the
hypothesis above, that 0 ^ t ^ 1.

Before turning to the description of the discretization schemes, we motivate
our construction of preconditioners by discussing the preconditioning of the
continuous Problem (G). Let sét : Xt -^ X* be the continuous operator so that
Problem (G) can be written in the form

and Theorem 2.2 provides bounds on \\^t\\^Xtx*) anc^ W^t l W &(x\ xt)
uniform in t. Note that sé t is given by the differential operator

As discussed in the introduction, we require a self-adjoint positive definite
operator 3St: X* —» Xt for which \\$t\\&(X; xt)

 anc^ II ̂ ~t X \\&(xt xm
t)

 a r e

bounded independently of t. If L : IT l -^ H1, M\HTl -> Hl, and
Nf : H(rot) + f x. L2 -^ JT x(div) n t. L2 are self-adjoint positive definite
operators for which analogous bounds hold, then the desired preconditioner
can be taken to be

At the discrete level, the operators hh and Mh can simply be taken to be any
Standard preconditioners for second order elliptic operators. Note that the
operator Nf, in contrast to the operators L and M, decreases regularity. In

vol. 31, n° 4, 1997
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o

particular, for t = 0, No is required to be an isomorphism from H(rot) into
H~ ( div ). The natural choice for such an operator is given by
I + curl rot, where the curl operator is defined by

/ - d/dy\
curl = ( 1d/dx ) '

At the discrete level we will want N, h to be an approximation of this
differential operator (at least for t = 0).

With this motivation, in the next section we describe the discretization
scheme and establish a discrete analogue of the isomorphism theorem.

3. FINITE ELEMENT APPROXIMATION SCHEMES

We now turn to the description of approximation schemes. For t > 0 most
finite element approximations which have been proposed for the Reissner-
Mindlin system can be expressed in the form :

Problem (Pft) : Find tyh e Vh, coh e Wh, satisfying

( C<f ô,, ê\3 ) + t~2( R, ó. - grad, coh, R, \i/ - grad, u )

v * tl T y \ f% * tl o ft ft' ft T o ft i /

= ( f̂, ju ), for all \|/ ^ V. , î G Wh .

° 1 2 ° 1

Here Vrt cz H and Ŵ  c L isa finite element approximation of H which may
or may not be conforming. The réduction operator Rft maps Vft into a third
finite element space Fft c L and gradft : Wh —> Th dénotes a discrete gradient
operator which we assume to be injective on Wh (in most cases Wh is a
conforming approximation of H and gradft is the ordinary gradient). The
operator RA and the additional space Tk are introduced in order to avoid the
locking problem mentioned in the introduction. Set
Xt h = \ h x Wh x FA. As a set, this space is independent of t, but a
r-dependent norm will be defined below. Introducing
C,h - t~ 2( gradrt coh - Rft <J>rt ) and generalizing this problem to allow more
gênerai data (f̂ , gh, j f t) G Xt h, we obtain the following discrete problem.

Problem (Gft) : Find fyh eV f t, coh e Wh, C,h G Yh satisfying(3.1)

(3.2) (CfcfgradAv) = ( 0 v v ) , forall v e Wfc,

(3.3) - ( R f c ^ - g n u l f c c ö A , i | ) - / 2 ( ^ T | ) = (jA>T|), forall T] e Th

M2 AN Modélisation mathématique et Analyse numérique
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This problem can be expressed compactly as

(3.4)

where the operator sét h : Xh —> X̂  is defined implicitly by the left hand side
of problem (Gh). Specifically the operator $$t h has the form

where ^ i V ^ x ^ - ^ V ^ x Wh and 5 h : Vfc x 1^-> /^ are given by

' (Ji all

for all

and B*h is the L2 -adjoint of Bh.
The operator AA is symmetrie and positive semidefinite with respect to the

L2 inner product. In fact, Korn's inequality implies that
c|> ̂ ^ (C<f<(>, <̂1>) is a norm on H1 equivalent to the usual one. However,
Ah is only positive semidefinite since its kernel { 0 } x ^ is nonzero. The
operator séuh is self adjoint with respect to the L2 inner product on Xh.
Furthermore, under appropriate assumptions on the finite element spaces,
which are introduced in the next section, sét h is nonsingular.

The proof of the discrete version of Theorem 2.2 which we shall give in § 5
will require that the discretization scheme satisfy certain abstract hypotheses.
These are mostly the same hypotheses that are needed to prove that the scheme
is free of locking. Af ter stating them, we shall give several examples of finite
element spaces which satisfy them.

The mixed finite element method given by Problem (M. ) is determined by
1 0

the spécification of the finite element spaces Yh cz H , Wh a L , and
F ^ c L , and the operators grad^ : Wh —> Th (assumed to be injective on
vol. 31, n° 4, 1997
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Wh) and R^ : V^ —> Th. In addition, we require, for the analysis only, a space
Qh a LQ (the subspace of L2 consisting of functions with mean value zéro) and
an operator curl̂  : Qh -^ Th. Adjoint operators divA : Th —> Wh and
rotA : Th —> Qh are defmed by

(diwhi;^)=-(Ç,gradhJLi) forall Ç e ^ e

and rotft : Th -> Qh by

(3.5) ( rotA Ç, $ ) = ( Ç, curl̂  ̂  ) for all Ce Th, q^ Qh

We then make the following hypotheses :

(Hl) (Discrete Helmholtz décomposition)

the décomposition being orthogonal with respect to the L2 inner product.

(H2) There exists a constant C1 independent of h such that

||RhVllo+ ||rot fcR fcV | |0^ CJIvÜ! forall y <= V, .

(H3) There exists a positive constant C2 independent of h such that

(curl.p, R, \\f)

Note that by (3.5) and (Hl), rot̂  grad^ r = 0 for all r e Wv A useful
estimate, which follows directly from (H2) and (H3) is that

(3.6) \\p || 0 ^ C|| curlfc/> || 0 for all P 6 f i f c ,

where C is a constant independent of Zz.
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PRECONDITIONING DISCRETE APPROXIMATIONS 529

The statement of the discrete isomorphism theorem will involve the use of
several mesh dependent norms based on the discrete operators grad^, curl^,
div/; and rot^. We define for <j> e Vh, œ e Wh, and Ç e I \ ,

|û>lli,A= | |g rad A û) | | 0 , || co || - i, *

2x1/2
0 '

We can now define the r-dependent norm on Xt h = \ h x Wh x T/7 :

The dual space Xt h coincides with Xt h as a set, but carries the dual norm :

^ ! l j A + \\co\\luh+ L

We next discuss several choices of finite element spaces which have been
proposed for the approximation of the Reissner-Mindlin model and verify that
they satisfy hypotheses (H1)-(H3). Although many other possibilities appear
in the literature, we confine ourselves to methods using triangular finite
éléments which have been rigorously established to be free of locking. In the
method of Arnold and Falk [1], each component of Yh consists of continuous,
piècewise linear functions plus cubic bubbles, Wh is the noneonfomring

piecewise linear approximation of H1, Th is the space of piecewise constants,
Qh is the space of continuous piecewise linear functions, grad;i is the piece-

vol. 31, n° 4, 1997
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wise gradient (which is one-to-one on Wh), curl^ is the ordinary curl and
R^ is the L -projection. The discrete Helmholtz décomposition (Hl) is proven
in [1]. Clearly | | R A v | | 0 ^ ||\|/||r In addition

(rot,, R^ y, q) = (Rh y, curl,, q) = (y , cur\hq)

= ( \\f, curl 3 ) = ( rot \|/, <? ) for all q <E Qh .

Hence, || rot^ Rh \\f || 0 ^ ||rotv|/||0, which establishes (H2). Note that in this
case, the ordinary divergence and rotation operators are not defined on Th,
which accounts for the introduction of the discrete versions of these operators.
Finally, we observe that

(cur\hp, Rh y ) = (curl/7, y ) for all p e Qh7\\f e \ h ,

and so (H3) follows by a simple modification of the stability proof for the
MINI element for the Stokes problem.

Several families of locking-free methods are proposed and analysed in [9].
These methods f all into our framework, but have some additional properties.
First, Wh cz H , r^c iH(ro t ) , grad^ = grad and rot̂  = rot (then div^ and
curl^ are defined by duality with respect to these ; they do not coincide with
the ordinary divergence and curl). Second, the operator R^ extends to a
bounded operator from H1 to Th and its norm in J5?(H\L2) is bounded
uniformly with respect to h. Most important are the following five properties,
which were formulated in [9] as the basis of the convergence theory.

(PI) grad WhcTh-9

(P2) r o t r . c Q , ;
(P3) rot Rh\\f = Ph rot y for y € H1, where Ph is the L2 -projection into

fi*;
(P4) If rj e Fh satisfies rot 7 = 0, then rj = grad ju for some \i e Wh ;
(P5) There is a positive constant C independent of h such that

f o r a i 1

These properties imply our hypotheses (Hl) through (H3). The discrete
Helmholtz décomposition (Hl) is derived from (PI) through (P4) in [9].
Hypothesis (H2) clearly follows from the assumption that R^ is uniformly
bounded in «£?(H\ L2) and (P3). Hypothesis (H3) is an easy conséquence of
(P3) and (P5). Consequently, our hypotheses are satisfied by all the éléments
proposed in [9]. In addition to those éléments, Durân and Liberman [12] have
proposed an element which possesses the same properties (in particular which
satisfies (PI) through (P5)), and consequently which satisfies our hypotheses
as well. For this element, the space Wh is chosen to be continuous, piecewise
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linear polynomials, Th the lowest order Raviart-Thomas approximation of
H(rot) , and R^ is the usuai interpolation operator associated with this space.
The space V^ consists of continuous, piecewise linear polynomial vectors
augmented by quadratic functions which have support in two triangles and
vanish on all edges except the common edge, where their direction is along the
tangent to the side. This space, together with piecewise constants, is a
modification (by rotation) of a well-known stable Stokes element and hence
(H3) is easily seen to be satisfied. A variant is to take for V^ all continuous,
piecewise quadratic vectors.

4. THE DISCRETE ISOMORPHISM RESULT

We now turn to the discrete isomorphism result

THEOREM 4.1 : Suppose that the subspaces VA, WhyTh and Qh and the
operators grad^, curl^ and R̂  satisfy hypotheses (H1)-(H3) and let
( fk, gh, }h ) e Xt h be given. Then there is a unique solution
(<j>fc, coh, Çfc) e Xt hto Problem (Gh). Moreover there exist positive constants
Cj and c2, independent of h and t, such that for 0 ^ t ^ 1,

Before turning to the proof, we prove two lemmas under the hypotheses
(H1)-(H3). The first lemma uses the discrete Helmholtz décomposition to give
an equivalent norm on H~ x(divA).

LEMMA 4.2 : Let Ç = grad^ r + curl^/?, with r G Wh and p G Qh. Then
there exist s a constant c > 0, independent of h such that

IK I k '(
Proof. The first inequality is straightforward :

KIk '(cUv,) = sup sup
J l H II (

p sup
r J l H II H» (rot,) n e r„ II ̂  II Hh (rot,,)

[

II H Ilô» (rot»)

To prove the second inequality, choose

tl = grad/z r + curl,, q ,
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where q e Qh satisfies

(4.1) ( curl^ q, curl^ v ) = (/?, v ) for all v e Qh .

Note that this problem, which in light of (3.6) has a unique solution, is
equivalent to

rot^ curl qh = p .

From (4.1) and (3.6) we have | | cur l^ | | É / ( r o t ; t ) ^ ( 1 + C2)m ||/>||0, so

NII !.(**)= llgrad.rll2^ l|curl^|||/)(rotft) ^ Hgrad, r\\\

Using the orthogonality of grad^ Wft and curlA Q ,̂ we get

II ril > ( ^ T l )

( grad^ r, grad^ r ) + ( curl^ /?, curl^ q )

J|grad„r||20+l|p||20

11*1 II H„(rot,,)

and the desired result easily follows. D

LEMMA 4.3 : There exists a constant y9 > 0 independent of h such that for
all Ç e Th,

- gradh

Proof : By (Hl), we can write Ç = grad^ r + curl^ p for some re Wk,
p e Qh. By (H3), we can then find \\f e VA such that

^ C 2 | | p | | 0 .
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Next, choose ju ~ - C\ C\ r, where Cl and C2 are the constants in (H2) and
(H3). Then

- (grad/t r, gradàiu) + (gradA r, RA v )

| | * - || grad, r || 01| R, ¥ || 0

Moreover

î l lgrad^H^ C(

The result follows from these two mequalities and the proceeding lemma. D

Proof of Theorem 4.1 : For simplicity of notation we drop the subscript h
on the solution and data, writing them as (<|>, œ, Ç) and (f, g, j ) respectively.
We first prove the bound on the solution from above :

(4.2) I I ( * , Û U . A Uv

Choosing \|i = <j>, fi = œ9 and t| = Ç in (3.1)-(3.3), we get

(4.3)

From Lemma 4.3, (3.1) and (3.2), we have

( Ç, R/21|/ - grad;i

< su [ ( 4 , v ) ( . v ) ( g .
( } ^ *e v ™ e w>- ( IIVII i + II grad, n |i l ) m

1,+ l|f|LMl+

From (3.3), we have

(4.5) grad/? ca = R;i 0 + t1 Ç + j .
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Now

(4.6) > + f - ' . I

using the définition of the sum norm and hypothesis (H2). It also foliows from
the définition of the norms that

(4-7) '2!KllH,,(rot4) + r . .L ' < t\\QQ <

Combining (4.5), (4.6) and (4.7) we deduce

||grad/i(y||ô/(rotfc)+r , L, =S C[ ||*||1 + IKU^ W ) n , . t « + ll j l lù^,*,- M.»] •

Now by the définition of the norm and (Hl),

re J"U Q„

= inf (| |gradA(co-

l l g r a d ^ " =

where the last line above is obtained by a simple variational argument which
shows that the infimum is obtained for r — co/( 1 + f ).

Since we have assumed that t ^ 1, it easily follows that

(4.8) J = ||û>||lifc < llgradAa>||ô/|(rotyi) + r ,.L, ^ ||a>||lifc,

and so

(4.9) | |«ö|| l i f c^ C(
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Inserting this result in (4.3) and using the Schwarz and arithmetic-geometric
mean inequalities, we obtain

and hence that

2 il y M 2 y~,r h on 2 , || _ II 2

From (4.4), it then follows by standard estimâtes that

rot/ |) + r

This estimate together with (4.9) complètes the proof of (4.2).
The proof of the reverse bound

is quite direct. We see from (3.1) and (4.6) that

I - 1, * = ™

Similarly, (3.2) and (4.8) give

n n (Ç. grad;iJu)
l l 9 l L % S ^

sup
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Finally, from (4.5), (4.6), (4.8), and (4.7), we obtain

l . L 2

\co\\hh+

The desired inequality follows by combining these results. D

5. IMPLICATIONS FOR PRECONDITIONING

As discussed in the introduction, we propose to solve the discrete system
(3.4) by applying the preconditioned minimum residual method (or another
itérative scheme with similar properties). Furthermore, we will use Theo-
rem 4.1 to dérive the desired properties of the preconditioner. The precondi-
tioner ë$t h : Xh —> Xh is required to be L2 -symmetrie and positive dennite.
Hence, since sét h is also L -symmetrie, the preconditioned linear system

(5.1)

has a coefficient operator which is symmetrie with respect to the inner product
( 0&~£ . , . ). The preconditioned minimum residual method is a Krylov space
method where at least one évaluation of the coefficient operator $t h s/t h is
necessary for e ach itération. Ho we ver, in order to improve the numerical
stability of the method, an itération which requires two évaluations of the
original coefficient operator sét h and one évaluation of the preconditioner
@tt h is often preferred. For discussions on implementations of the precondi-
tioned minimum residual method we refer to Wathen and Silvester [24],
Klawonn [16], and Chapter9 of the text [14] by Hackbusch.

The preconditioned minimum residual method gives an optimal approxi-
mation of the solution of the linear system in the Krylov space generated by
the operator $8t h s#t h in the norm associated with the inner product

(5-2) , <<
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From this optimality property one can easily dérive upper bounds for the error
with respect to spectra! properties of the operator âSt h sét h (cf. for example
[19], [24] or [14]). Let K-K^âit h <s&t>h) be the spectral condition number
given by

sup |Â|

where the supremum and infimum is taken over the spectrum of SSt h sét h.
Then the réduction factor, after n itérations, in the norm associated with
the inner product (5.2), is bounded by 2 rn /( 1 + r 2 n ) , where
r2 = (K - 1 ) / ( K + 1 ). This upper bound for the réduction factor is in f act
the same as one would obtain after n/2 itérations of the conjugate gradient
method applied to the normal équations associated with the preconditioned
System (5.1). However, as for example discussed in [5] and [19], the minimum
residual method will usually perform much better than a normal équation
approach, and it is well understood that this phenomenon can be explained
from the lack of symmetry around the origin of the spectrum of âdt h sé t h.

However, the différence in the performance of these two methods is not
important for the theoretical discussion given here. The significance of the
upper bound given above, is that if the spectral condition number of
^th^th *s bounded independently of t and h, the resulting itération will
achieve any given réduction factor in a fini te number of itérations, independent
of t and h.

As indicated above, we will use Theorem 4.1 in order to dérive the desired
properties of the preconditioner M{ k. This theorem states that the operator
norms || s&t h || ̂ x f x*f^ and || sé~t 11| &(X* f x , ) a r e bounded independently of
t and h. Hence, if the preconditioner 3&t h is chosen such that

II ̂  \^&<Xth x,h) an(^ W^'tl W&(xth,x*h)
 a^ so a r e bounded independently of t

and h, we immediately obtain bounds, independent of t and h, for the operator
Sèt h S0t h, and its inverse in Sf(Xth,Xt h). Since the spectral radius of an
operator is bounded by any operator norm (of an operator mapping a space
into itself), we therefore conclude that this mapping property of @t h implies
that the spectral condition number of £%t h jtft h is bounded independently of
t and h.

Assume that we have used the mapping argument above to identify one
possible preconditioner Mt h, such that the operator norms \\âSt h\\^x*, xtf)
and || $~l || g,(Xt ktx*h)

 a r e bounded uniformly in t and h. Furthermore, assume
2that $t h : Xh —> Xh is another L2 -symmetrie operator which is spectrally

equivalent to â$t h, i.e., the two bilinear forms ( $t h .,. ) and ( 3&t h . , . ) are
equivalent uniformly in t and h. Since || . | |x and || . ||^^ are dual norms with
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respect to the L2 inner product we can conclude that \Mt h\\^(x
s
fh xf%) anc*

II ̂ t h 11 <e{xt h x"lh)
 a r e a * s o bounded independently of t and h. Hence, we can

always replace one possible preconditioner by another L2 - symmetrie and
spectrally equivalent operator.

Utilizing the structure of the space Xh as a product space, we consider block
diagonal, positive defmite preconditioners of the form

(5.3)

Written in terms of the blocks of Mt h, the desired mapping properties of the
preconditioner are equivalent to the exisence of constants c1 and c2» indepen-
dent of t and h such that

(5.6) '(div/()nf.L2

The conditions on hh and Mh required for (5.4) and (5.5) are exactly of the type
satisfied by standard preconditioners for second order elliptic operators.
Hence, we need only discuss the operator N, h. The special case t = 0 was
discussed in § 3 for the continuous problem, where it was noted that in this
case No is an isomorphism from H^(rot) into H~ ^d iv) and that the natural
choice for NQ is given by I + curl rot. For the discrete problem, an analogous
situation holds : if No h is chosen to be the operator Ah : Th —» Th defined by
Ah = I + curl;i rot^, then (5.6) holds in the case £ = 0 with
cl = c2 = 1. In f act, if we choose No k to be an operator which is spectrally
equivalent to I + curl^ rotA then No k also has the right mapping property in
this case.

We now consider the case of a gênerai t. Then (5.6) tells us that Nr h should
be spectrally equivalent to an isomorphism from Th equipped with the norm
H^( rot^ ) H-1~ l . L to the same space equipped with the norm
H^ ^div^) n t. L2. Therefore the following resuit is useful.

LEMMA 5.1. The operator A^ l + t11 maps Th isomorphically onto itself.
Moreover

J 2 'CBv^nr.L» for ail î, £ T, .
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Proof. Indeed,

The lemma follows from this identity and the fact that the

HA(rotA) + f x. L2 norm is dual to the H~ ^div^) n f . L 2 norm. D

Having found an operator which gives the correct mapping properties, the
problem is to find an equivalent operator which is easy to apply. Clearly, we
do not want to apply ( A^ 1 + t11)~ \ For this purpose, it is convenient to
introducé a family of operators on Th depending on the parameter t. For each
t e [0, 1 ] define the operator At h : Th —» Th by

so that A^ = A1 h. The lemma above shows that the operator
( A^ + t2 I )~ 1 = Ah( I + t2 Ah )~~ 1 has the mapping property required by
(5.6).

Observe that since r e [0, 1], the operator ( A~ 1 + t2 I)~ 1 is spectrally
equivalent to A{ hA~h. To see this, note that if T| is an eigenfunction of Ah

with eigenvalue JJ, then r\ is also an eigenfunction of ( A~ 1 + t2 I )~ l and
A i ; iA~A with eigenvalues jul{\ + jut2) and JLI/( 1 + /ut — t ), respectively.
Since ju > 0, we see immediately that for 0 ^ t ^ 1,
ju/( 1 + fjt2 ) ^ ^/( 1 + fit1 - t1 ). To show that

we show that

Now since ƒ(/, ju) is an increasing function of t and a decreasing function
of û,

where /i0 is the minimum eigenvalue of Ah. Since (AAÇ, Ç) ^ (Ç»Ç)>
jU0 ^ 1 and so /(r,ju) < 2.

Hence, it seems natural to dérive the preconditoner Nf h by replacing
A~ ^ by a suitable preconditioner. However, such an approach will lead to an
operator Nf h which, in gênerai, will not be L2 -symmetrie. Instead we shall
dérive the preconditioner from the identity

(5-7) At „ A" ,J = I + ( 1 - t2 ) curl, rot, A" „' .
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In order to use this identity, we define operators St k: Qh—> Qh by

These operators are L2 -symmetrie and positive definite and correspond to
finite element discretization of the Neumann problem for the scalar second
order elliptic operator I-t2â. In f act, if rot^ = rot, the operator StJl

corresponds to a standard mixed finite element discretization of such prob-
lems, except that the curl and rotation operators are used instead of the
gradient and divergence. On the other hand, for the method proposed in [1],
St h corresponds to a standard conforming piecewise linear discretization of
this operator.

Observe that from the définitions of A, h and St h we obviously have the
identity

This immediately implies that

Hence, it follows from (5.7) that

(5.8) A, th A",1 = I + ( 1 - t2) curl, S",1 rot,, .

We now assume that we have at our disposai preconditioners
0t h : Qh -^ Qh for the discrete elliptic operators St h. More precisely, we
assume that the operators <Pt h are self-adjoint operators which are spectrally
equivalent to S"^1, i.e., there exist positive constants cx and c2, independent of
t and h, such that

(5.9) cx(0thq,q) =£ {S'lq^q) ^ c2(&thq,q) for all q e Qh .

We will not consider the construction of the operators <2>t h hère. But as
observed above, the operators St h correspond to conforming or nonconform-
ing finite element approximations of the elliptic operators I — t A. In the
conforming case, the construction of such preconditioners has been intensively
studied. Also preconditioners for nonconforming approximations have been
studied by many authors. We mention, for example, that techniques where
such preconditioners are derived from Standard conforming preconditioners
are described by Bramble, Pasciak and Xu [7] and Xu [25], while studies of
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the particular operators which arise from mixed finite element discretizations
are performed by Cowsar [10], Cowsar, Mande! and Wheeier [11], Rusten and
Winther [20], Rusten, Vassilevski and Winther [18], and Vassilevski and Wang
[22].

Using the operators <Pt h, we define operators Dt h:Th~> Th by

(5.10) D f h = I + ( 1 - t2 ) curl^ <Pt h xoth .

By construction these operators are L -symmetrie. Using this operator, we can
now state the main resuit of this section.

THEOREM 5.2. Assume that the operators &t h satisfy (5.9). Then the choice
Nttk = Dt h satisfies (5.6) with constants cx and c2 independent of t and h and
hence, together with standard pre conditioners L>h and Mh satisfying (5.4) and
(5.5) give rise to a preconditioner Mt hfor the Reissner-Mindlin System (3.4)
such that the spectral radius of sé\ hâSt h is bounded independent of t and h.

Proof. In light of the previous discussion, it is enough to show that D, h is
spectrally equivalent to the operator A1 ^A"^1 uniformly in t and h. This
follows directly from (5.8) and (5.10). D

There are two cases in which the computation of the operator Dt h is
simplified. These are t = 0 for which St h = I and hence &t h is an operator
equivalent to the identity and t — 1 for which Dr h = I. We now discuss
conditions under which the preconditioner Df h may be replaced by the simpler
preconditioner Do h or Dj h = I without significant change in the convergence
properties of the itération scheme. We first consider the case when
t — O(h). The foliowing lemma is the key to our result.

LEMMA 5.3. Suppose that there exists a constant Kx such that
|| rot^ x\ || 0 ^ KY h~ 11| x\ || 0 for all T| G rfe, and that we impose the restriction
that t ^ K2h for another constant KT Then there exists a constant C
depending on Kx and K2 but otherwise independent of h and t such that

Proof The first inequality of (5.11) is obvious. For the second note that

NllLrot„)= Nllo+ llrot̂ nllo ^ (1 +K\h~2 l

'*- 2 || „ M 2
lo •
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Therefore, for any splitting of Ç as ^ + Ç2 with Çp Ç2 e Th,

II Ç II éA(rot,) ^ 2 ( IKlllÉ/j(rot/l)
+ llfellfcCrot,))

and, taking the inflmum over all such splittings,

II Ç II I/Xrot,) ^ C K II Hft(rot/S) + r ' . L2 »

which complètes the proof of (5.11). Then (5.12) follows by duality. D
We note that when rot^ = rot, as is the case in the methods proposed in [9]

and [12], the inverse hypothesis of the lemma is a standard one. For the
method of [1], in which rot^ ^ rot, the vérification of this hypothesis follows
easily from (3.5) and the Standard inverse hypothesis for piecewise linear
fonctions.

Using this result, we see that if t~O(h), then Theorem4.1 and (5.6)
remain valid when we replace the norms || . llôA(rot, ) + r ' L2 anc^

II • II m '(d.v,)n/.L2 by t h e i r V a l u e S W h e i ï X = 0> t h a t i s by II • llH/l(rot,) a n d

II • II H^ '(div,,)- Thus, we have the following corollary to Theorem5.2.

COROLLARY 5.4. If t = O(h), then Theorem 5.2 holds with Df h replaced

We next consider the case when t = O( 1 ).

COROLLARY 5.5. If 0 < r0 ^ t ^ 1, then Theorem 5.2 holds with
Df h replaced by Dj h = I, where the constant c2 now dépends on tQ, but is
otherwise independent of t and h.

Proof We first observe that it follows easily from the définitions that for all

t^ + r l-

min ( 1 , 0 NII^'CcHv^nl.L2 ^ NllH^'(d,vft)r,r.L
2

^ NIIHÜ '(divA)nl.L2-

Thus, Theorem 4.1 and (5.6) remain valid when we replace the norms
a n d II • II H; 'Cdw^nr.L2 bY t h e i r V a l u e S w h e n f = *> t h a t i s

' - L 2 C ^

_L2 and II . IIj^ i (dlVA)nl.L2, and simultaneously replace the
constant c2 by t 2 cT The Corollary follows directly since tQ ̂  t. D
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The importance of this result is that the simple preconditioner resulting from
the choice N, h = I has a spectral radius independent of h and thus would be
expected to produce reasonable results for moderately sized values of t. We
explore this possibility in § 8 in our numerical examples.

One item that may not be clear is why in the case t = 0 (or in fact
(i = O(h)), we cannot just make the choice Nr h = AA. Since this is a
discretization of a differential operator, intuitively it should be local, and hence
easy to evaluate. The issue here, which we explore in detail in the next section,
is that when one looks at the matrix représentation of this operator, its
application appears to require the inversion of a Gram matrix.

6. REPRESENTATION OF OPERATORS

The purpose of this section is to discuss the computational conséquences of
using the preconditioners Dt h defined by (5.10). Of course, in order for these
preconditioners to be effective, the cost of evaluating Df h should be propor-
tional to the dimension of Th.

For this discussion we will find it useful to consider the different repré-
sentations of the éléments of the space Th as vee tors in Euclidean space,
equipped with the ordinary Euclidean inner product. Let d dénote the dimen-
sion of Th. If Ç e F^ we let TIh Ç e Rd be the vector of coefficients in the
expansion of Ç in terms of a given local basis {r\} of Th, i.e.,

7 = 1

Furthermore, we let Y^ : Th —» M be defined by the inner products with the
basis functions, i.e., (Y^ Ç). = (Ç, Ï ^ ) . By construction we have that these
maps preserve inner products in the sense that

and as a conséquence,

where the asterisk is used to dénote the adjoint opération. The significance of
these représentation operators is due to the fact that in the finite element
method, the coefficient operator sét h : Xh ~> Xh is naturally represented as a
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matrix, frequently referred to as the stiffness matrix, mappmg the coefficients
of x e Xh, with respect to a given local basis, into the corresponding repré-
sentation of sét h x in terms of inner products. More precisely,

diag ( YOifc, T,) siuh diag (TFQllFh
x),

is a sparse matrix. Here the operators 770 h and To h, mapping V^ x Wh into
a Euclidean space, are defined analogously to the operators IJh and T^ above.
Hence, the preconditioner $t h must have the reversed représentation. In
particular, this means that the desired représentation for the operator Dr h is the
matrix FIh T>t h T~ \

Let us recall that the operators D, k:Th—^ Th, given by (5.10), are defined
from operators &t h : Qh —> Qh. These operators are supposed to be precondi-
tioners for discrete approximations of the differential operators I - t1 A
defined on Qh. In particular, when t = 0 the operator &ö h is required to be
spectrally equivalent to the identity operator on Qh. Since the operators
<Pt h correspond to preconditioners for discrete elliptic operators, it is reason-
able to assume that it is inexpensive to evaluate the operators flh &t ^T^ \ ï.e.,
the cost is proportional to the dimension of Qh. Hence, the desired représen-
tation of Df h should utilize this représentation of &t h. Here, the représentation

operators 77;i, Y;ï, mapping Qh into Euclidean space are defined from expan-
sions and inner products with respect to a given local basis, in analogy to the
operators 77A, Th on Fh defined above.

Consider first the method introduced by Arnold and Falk [1]. For this
method Fh is the space of piecewise constants and Qh is the space of
continuous piecewise linear functions. Hence curl̂  is the ordinary curl op-
erator, but the adjoint operator rot̂  is defined by (3.5). Therefore, the matrix
FIh cwx\hTFh

 ] is local. Furthermore, by (3.5) and the property (6.1) it follows
that Th rot/z T^ is the transpose matrix. Also, since Fh is the space of vector
piecewise constants, the matrix I7h T^ x is diagonal.

We can now evaluate IIh Df h Ŷ
 1 as a composition of local operators by

using the identity

+ ( 1 - t2) {nhcnr\hTTh
l){nh *lthrh

 x) (f.rot.T; ').

We should remark here that even if t = 0, we need to replace the identity
operator on Qh by a suitable preconditioner ^ 0 h. The reason for this is that the
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inverse mass matrix n^Th
 l is not local for the continuous piecewise linear

space Qh. A suitable operator &Q h : Qh —> Qh is in this case given as the sum
of local projections, Le.

(6-2) ^"-?-Hiï*-
Hère {̂ .} is the standard local basis on Qh. This operator is, under suitable
weak uniformity assumptions on the triangulations, spectrally equivalent to the
identity operator; cf. [23]. Furthermore, ÎIh <P0 hT~ l is a diagonal matrix.

Consider next the case where Th is a conforming subspace of H(ro t ) , such
as in the methods discussed in [9] and [12]. In this case rot^ is the ordinary
rotation operator and rot^( Th ) c Qh. Again, the problem in this case is that the
inverse mass matrix 77'h Y" l is not local. Writing TIh Dt h Y^ l in the form

nhvt,hr-h
x = nhrh

l

we note that Thioth ITh is a local operator and therefore it's adjoint
77^ lTh curl^ 77^ l is also local. Hence, the only difficulty in evaluating the operator

Y^ Dt h Y~ 1 is that we need to evaluate the nonlocal matrix I7hY~ \ In the next
section, we will discuss one way of overcoming this problem.

7. A RELAXATION PROCEDURE

The purpose of this section is to discuss the construction of preconditioners
in the case where Th c iH(ro t ) . We recall that in this case we also have
grad^ = grad, with grad (Wh) aTh and that Rh(Yh) e Fh.

In order to avoid the évaluation of the inverse mass matrix IJhT~ \ which
enters the expression of the preconditioner ITh Dt h ~ï~h \ we will consider an
extended system, posed in a larger space Fh. The extended System will have
the same solution as the original system (3.4). However, since we have
extended the space, the séquence of approximations generated by an itérative
method like the minimum residual method will in gênerai not be in the space
Xh. Therefore, we refer to this approach as a relaxation procedure.

Assume that the space Th is constructed from a triangulation 3~h. On each
interior edge let s be a chosen unit tangent vector. Since Th a H(rot ) , r\. s is
necessarily continuous on each interior edge for any r\ e Tk. We let Th dénote
the larger, discontinuous space obtained by removing the continuity con-
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straints on the interior edges. In particular, if {T^-}^ J is a basis for Tk, then we
obtain a basis for f h of the form {r\ T}=1 T e g-, where ST. dénotes the set of
triangles in the support of i]. and f]. r dénotes the restriction of r\j to T. Let

d dénote the dimension of Th.
Let JJh and Y;i be the représentation operators, mapping Th into Euclidean

space, which are the obvious extensions of the operators 77̂  and T^ introduced
above. Since Fh is discontinuous, the inverse of the mass matrix, II^Th is a
local, block diagonal operator. Let Xh-\hx Wh x Th and define an
L2 -symmetrie operator si t h : Xh —» Xh as the coefficient operator of the
System (3.1)-(3.3), but where we use the space Th instead of Th. If
P^ : F;i —> Yh is the L2 -projection, then the operator si t h can be alternatively
written as

erf
t , h ~ ^ t,k

_ f
2( <L —

where SPh - diag ( I, 7, P^ ) and where $ dénotes the identity operator on
Xh. Hence, the operator si t h is block diagonal with respect to the décom-
position

(7-1) Xh=Xh®XÏ,

where Xh is the orthogonal complement of Xh in Xh with respect to the L
inner product. However, the operator sê t h will be singular when t = 0. In
order to avoid this diffïculty, we will introducé a perturbation of this operator.

Define an operator J^ : f h —> Th by averaging the coefficients, Le.,

where | ST. | dénotes the number of triangles in 2T. Hence,

JA *\ = n for all r\ e Th

We also observe that the operator 77̂  J^77^ l : Rd —> Ud is local. Furthermore,
if the triangulation 9"'h is quasiuniform, then the operator Jh is L -bounded,
i.e., there is a constant c, independent of h, such that

(7-2) IIJ f c ï | l lo^c| | t | | |o f o r a l l T i e f , .

This inequality will be assumed throughout this section.
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Let Y^~ be the orthogonal complement of Th in Th with respect to the
L2 inner product. The norms || . ||0 and \\(I-Jh). ||0 are equivalent on
r ^ , i.e., there is a constant c, independent of h, such that

N l l o ^ l l ( I - J A ) ï l l l o ^ c N H o foraUrie 1 ^ .

The left inequality here follows since ( Ï|, JA Ï | ) = 0 for any r\ e Tj*~, while
the right inequality follows from (7.2). Since
( I — JA ) ( I — PA ) = I — JA this can be equivalently written as

(7.3)
f

Observe that the operator (I-J/t)*(I-J/i), where
(I- Jh)* :rh->Th is the L2-adjoint of I - J^ : fh —» f k, maps Th into
T^. Hence, if we let Jfh :Xh^Xh be given by

Jth = - h2 diag (0, 0, ( I - J J * ( I - Jh))

then Jfft is L -symmetrie and maps Xh into (X^" ). Instead of the System (3.4),
consider the extended System

(7.4)

It follows directly from the block diagonal structure of this System, with
respect to the décomposition (7.1), that it is nonsingular. Furthermore, if
j A G Th, then C,h e Th and hence, for such data, the solution of (7.4) is also a
solution of (3.4).

We now propose to solve the symmetrie System (7.4) by the minimum
residual method (or a similar method). The coefficient operator
si t h + Jïf\ of the System (7.4) is represented by the matrix

diag (Yo „ Y„) (j*t „ + 3trh) diag

Hence, we need to construct a suitable preconditioner $ t h for
si t h + $ \ such that the operator

diag ( 770 ,, ÏIh ) â , ;i diag ( Y" \, % l ) ,

can be effectively evaluated. As above, the desired mapping property for the
preconditioner will be derived from the corresponding mappint property of the
coefficient operator.
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In order to state the mapping property of the operator sê t h + $Ch more
precisely, define in the same way as above, a t and h dependent norm on

Furthermore, the corresponding dual space Xt h, also equal to Xh as a set,
carries the dual norm :

It follows directly from the mapping properties of sét h and the block diagonal
structure of si t h + 3Ch with respect to the décomposition (7.1) that the

toperator norms

are bounded independently of t and h, and this détermines the desired mapping
properties of a possible preconditioner M t h = diag (L^, Mh, Nt h).

As above, the desired properties of the operators L^ and Mh are given by
(5.4) and (5.5). Hence, we only need to consider the operator
Nt h : f ^ —> Yh. From the properties of se t h + $Th it follows that N, h is
required to have operator norms

(7.5) | |N U

independent of t and h. Hère the norms II . Il ̂  and II . || + are defined by
restricting the norms II . il y and II . Il ̂  to T,, i.e.,

and

where
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In order to construct a suitable preconditioner Nt h satisfying (7.5), we will
utilize the operators D, h : Th -^ Th given in (5.10). By Theorem 5.2, the
operator norms

(7-6) UI>, U

are bounded independently of t and h.
Consider the operator

(7-7)

on th. It follows directly from (7.6) and the définitions of the norms
|| . || f and || . || f,* that this operator has the mapping property (7.5) required
for Nt h. However, this operator will not be computationally effective since the
appearance of the L -projection makes it necessary to evaluate the inverse
mass matrix UhT~\

Instead of the operator (7.7) we will therefore define N, h : Th —> Th by

(7-8) N/iA = J,Dfi,J, + p - i ^ ( I - J f c M I - J J .

Since the matrices JJh JhÎTh \ T^ J* T~ 1 and ÎI^Th
 l are local, the operator

nhNt jY^ * can be expressed as the product of local matrices according to the
formula

nh\Jll = (fihrh
 ]) (f, ï l l

+ ( i -t2) (

and hence can be effectively computed.
We also need to show that the operator N, h is spectrally equivalent to the

operator given by (7.7). As was done in Lemma 5.3, we shall assume that the
space Th admits an inverse property of the form

(7.9) l l r o t î i l l o ^ ^ h - ' l l î l l l o . for all f) e

where the constant Kl is independent of h.
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The following resuit implies that the operator Nf h satisfies the mappmg
property (7 5)

LEMMA 7 1 Assume that the property (7 9) holds and that the operator
Dt h Th -^<E T^ is defined by (5 10) Then the operator Nf h, defined by (7 8),
is spectrally equivalent, uniformly in t and h, to the operator given by (7 7)

Proof We first estabhsh that the spectral radius, p( T)t h ), of D, h satisfies the
bound

(7 10)

where c is independent of t and h Smce from the proof of Theorem 5 2, the
operators Dt h and Ax h A~ l are spectrally equivalent, this bound would follow
if a corresponding property holds for the operator Ax hA~l Note, ho wever,
that if il is an eigenfunction of A with eigenvalue /u, then t | is also an
eigenfunction of At h and A ^ A " ^ 1 with eigenvalues 1— t2 + t2 ju and
jj/( 1 - t2 + t2 jbi) = A, respectively Hence,

Taking inner products with T|, we get

Nllo

Hence, X =ƒ( || rot il \\ / | |n \ \ \ where /(JC) = (1 +JC)/(1 + t2 x) Smce
ƒ( x ) is an mcreasmg function for 0 ^ t ^ 1 and

2 o ^ K\h~2 by (7 9), we get that

1 _i_ V2 h~ 2

1 + A 1 rl 2 2 - 1
^ ^ i ++2v2h-2 ^ c ( r + A )

1 + t A j /Z

Hence,

and this implies (7 10)
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To show the spectral équivalence, we observe that

T Tk T .u ,» \ i I / r r T " I r-f T T » » ,u \

Hence, using the arithmetic-geometric mean inequality, (7.10), (7.3), and the
triangle inequality, we get

( [ i - JJ i . [ i -

The reverse inequality follows by a similar argument. D
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8. NUMERICAL EXAMPLES

In this section, we shall report on numerical experiment s using some of the
preconditioners developed in this paper. The main purpose of these experi-
ments is to illustrate the typical behavior of the algorithms discussed above.
Therefore, we have considered only modest size problems using simple
meshes. In fact, all the experiments are done in Matlab. The largest Systems
we consider below have approximately 250,000 unknowns.

The material constants are chosen such that k = 5/6, E = 3 and
v = 1/4. Hence, X = Ek/2( 1 + v) = 1.

The domain Q cz IR is taken to be the unit square. The triangulation of
Q is obtained by first dividing Q into squares of size hx h, and then dividing
each square into two triangles using the positively sloped diagonal. Further-
more, all the computations are done with the method of Arnold and Falk
described in § 3 above. Hence, the space \ h consists of continuous piecewise
linear functions plus cubic bubbles on each triangle, Wh is the nonconforming
piecewise linear space, with continuity requirements only at the midpoint of
each edge, and Th is the space of piecewise constants. Furthermore, the
auxiliary space Qh, which will be needed in order to construct the operators
D, h, is the space of continuous piecewise linear functions.

As discussed above, we shall consider the preconditioned System (5.1) with
a block diagonal preconditioner 0&t h of the form (5.3), i.e.,

In order to define the proper preconditioners L^ and Mh, defined on \ h and
Wh respectively, we shall utilize a preconditioner Wh for the discrete Laplace
operator, with Dirichlet boundary conditions, defined on the corresponding
conforming space, Wc

h cz Wh, consisting of continuous piecewise linear func-
tions. In our examples below, the preconditioner Wk : W

c
h —» Wc

h is a standard
V-cycle multigrid operator, where a Gauss-Seidel operator is used as a
smoother and where the coarsest level corresponds to h = 1/2.

In the space Yk, the subspace spanned by the bubble functions is orthogonal
to the space of continuous piecewise linear functions, W ,̂ with respect to the
Dirichlet form. Hence, the operator hh can be constructed from a diagonal
matrix, corresponding to the space spanned by the bubble functions, and by
two copies of the operator Wh. The operator Mh, on the nonconforming space
Wh, is constructed from Wh by using the auxiliary space approach described in
Xu [25]. Hence, the operator Mh is of the form

where Pc
h -Wh~¥Wc

h is the L2 -projection and where Rh : Wh -^ Wh is a
smoothing operator. In the examples below, Rh is obtained from two Rich-
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ardson itérations. The preconditioners L^ and Mh will be fixed throughout all
the examples below.

In order to construct the third block of the preconditioner, Nf h, we will need
operators Dr h : Th e Fh of the form given by (5.10). Furthermore, the défi-
nition of these operators require other operators <Pt h : Qh —» Qh, which are
preconditioners for the discretization of the Neumann problem associated the
operator I - t2 Â with respect to the conforming piecewise linear space
Qh. The operators <Pt h will be constructed analogously to the operator Wh

described above, i.e., <Pt h are standard F-cycle multigrid operators. However,
compared to WhJ we need modifications due to the /-dependent differential
operator and due to the different boundary conditions.

In the examples below, the preconditioned system (5.1) is solved either by
the minimum residual method or by the conjugate gradient method applied to
the normal équations. Here the normal équations are defined with respect to
the inner product (Mth*,. ). Hence, both methods minimize the norm
associated with the inner product (5.2) over proper Krylov spaces. We recall
that the work estimate for one itération of the conjugate gradient method
applied to the normal équations corresponds roughly to two minimum residual
itérations. In the examples below, we therefore compare the number of
itérations for the minimum residual method ( NMR ) with twice the number of
itérations for the conjugate gradient method applied to the normal équations
(NCGN). The condition number of the operator â$ths0th, K^Mt h sét h),
which we estimate from the conjugate gradient itération using a standard
Matlab routine, will also be given.

The itérations are terminated when the error, measured in the norm asso-
ciated with the inner product (5.2), is reduced by a factor less than
5.10 i- 4

EXAMPLE 8.1. In this example t = 0. The preconditioner 't, h is obtained
as explained above with Nt h = Do h given by (5.10). For each of several
values of h, the preconditioned system was solved by the minimum residual
method and by the conjugate gradient method applied to the normal équations.
The results are given in Table 1.

Table 1. — The case t = 0, N,Jt = D0>A.

h

NCGN

2"3

41

48
8.17

2_4

41
50
10.7

2-5

35

48
11.1

2-6

29
40

10.6

T1

24
34

9.62

Observe that, in agreement with the theory above, the condition number
jc({fflt h sét h ) appears to be bounded independently of ht and hence the
numbers of itérations for both methods remain bounded.
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EXAMPLE 8.2. According to Corollary 5.4, when t is sufficiently small
relative to h, then the choice N, h — Do h should be a good one. In order to
test this, we show in Table 2 the results of taking t = 0.01 and

Table 2. — The case t = 0.01, Nf h = Do h.

^ C G N

h 2 " 3

39
48

8.15

2 " 4

35
50
10.7

2 " 5

28
48
11.4

2 - 6

40
108
32.9

T1

72
360
113

As expected, we observe that, for sufficiently large values of h, the choice
Nr h = Do k. leads to a reasonably good preconditioner. However, when h
becomes small enough, so that t is no longer small compared to h, the numbers
of itérations increase rapidly. This clearly illustrâtes that by using this sim-
plified preconditioner, we do not get a condition number for the preconditioned
System which is bounded independently of h.

We compared the results in Table 2 above with the choice Nf h = Df h. In
this case Theorem 5.2 predicts that the preconditioner is uniform with respect
to h. This is clearly confirmed by the results given in Table 3.

Table 3. — The case t = 0.01, N, h = Dt h.

h

NMR

NCGN

2 " 3

39
48

8. 15

TA

36
50
10.7

2 " 5

28
48
11.2

2 " 6

25
42
11.1

T1

24
36

9.68

Ex AMPLE 8.3. We next consider the case when t = 1 and choose
N, h = Dl h = I. We expect this choice to be a uniform preconditioner with
respect to h. The results which were obtained are given in Table 4.

Table 4. —The case / = 1, N, h = DrJt = I.

h

NMR

^ C G N

2~3

22
102
17.5

2 " 4

22
104

18.4

2~5

20
106
19.0

2 " 6

20
104

19.0

2 " 7

20
102
18.9
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As expected the results appear to be uniform with respect to h. Also observe
the substantial différence in the behavior of the minimum residual method and
the conjugate gradient method for the normal équations in this case.

EXAMPLE 8.4. If we now consider the case t~ 0.1, then by Corollary 5.5,
we expect that the preconditioner N, h = D1 h = l used in the previous
example would still be a good one; The results of that experiment are shown
in Table 5.

Tabïe 5. —The case t = 0.1, Nf ft = I.

h

NCGN

2~3

78
226
90.2

2" 4

80
214
78,5

2" 5

80
198

un

2 ' 6

78
190
70.1

T1

78
188
70.7

These results clearly reflect the fact that when Nf h = I the condition
number of âSt h sét h is independent of h. However, compared to Example 8.3,
the condition numbers K{ âSt h sét h ) have been substantially increased. This
illustrâtes the dependence of the condition number K(&t kstft h) ont with this
choice of preconditioner.

As a comparison, we repeated the experiment, but with Nf h = Dt h. instead
of Nf h = I. The results are given in Table 6.

Table 6.—The case t = 0.1, N,iA = Dth

h

N

NCGN

^ t, h t, h '

2 " 3

28
48

8.64

2"4

28
54
10.8

2 " 5

27
52
11.1

2 ' 6

26
50
11.2

T1

26
50
11.1

We observe that the condition numbers obtained in this case are comparable
to what we got in Example 8.1 when t = 0.

In the four examples above, we have tested different choices of precondi-
tioners âSt ft, obtained by letting Nf h = Ds h for proper values of 5, According
to Theorem 5.2 the choice Nr h = Dt h gives a preconditioner which is uniform
with respect to the thickness parameter t and the discretization parameter h.
However, the operators Df k simplify in the two extreme cases, t = 0 and
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t~\y since D1 h = I and since Do h can be defined from an approximation
of the identity, &0 h, of the form (6.2). Hence, in the two extrême cases we do
not need to implement preconditioners &t h for discrète versions of the
operator I - t2 A.

When t = 0, the results for Nr h = Do h seem to conflrm the prédiction that
the condition numbers K( $t h se't h) are independent of h. In fact, the results
of Example 8.1 show that the condition numbers in this case, which corre-
sponds to the biharmonic équation, are close to 10. Hence, we hâve clearly
demonstrated that standard preconditioners for second order elliptic operators,
together with the discrète differential operator Do /i, are sufficient to construct
an effective preconditioner for this problem. When t is sufficiently small
compared to h, we hâve also shown, in agreement with Corollary 5.4, that
N, h = Do h is a n effective preconditioner.

Furthermore, the experiments show that for a fixed t > 0 and Nf h = I the
condition numbers K( SSt h set h) appears to be bounded independently of h.
However, they grow with decreasing values of t Finally, the experiments also
confirm that in order to obtain a preconditioner $t h such that the condition
number K( 3$t h set h ) is bounded independently of both the parameters t and
h, we need to implement the full operator Dt k, given by (5.10), for the proper
value of t.

ACKNOWLEDGEMENTS

The authors would like to thank Torgeir Rusten for his help with the
computations reported in this section.

REFERENCES

[1] D. N. ARNOLD and R. S. FALK, 1989, A uniformly accurate finite élément method
for the Reissner-Mindlin plate, SIAM J. Numer. Anal, 26, pp. 1276-1290.

[2] J. BERGH and J. LÔFSTROM, 1976, Interpolation spaces, an introduction, Springer
Verlag.

[3] D. BRAESS and C. BLÔMER, 1990, A multigrid method for a parameter dépendent
problem in solid mechanics, Numer. Math,, 57, pp. 747-762.

[4] J. H. BRAMBLE and J. E. PASCIAK, 1988, A preconditioning technique for
indefinite Systems resulting from mixed approximations of elliptic problems,
Math. Comp., 50, pp. 1-17.

[5] J. H. BRAMBLE and J. E. PASCIAK, Itérative techniques for time dépendent Stokes
problem, to appear in Comput. Math. Appl.

[6] J. H. BRAMBLE, J. E. PASCIAK and A. T. VASSILEV, Analysis of inexact Uzawa
algorithm for saddle point problems, to appear in SIAM J. Numer. Anal.

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



PRECONDITIONING DISCRETE APPROXIMATIONS 557

[7] J. H. BRAMBLE» J. E. PASCIAK and J. Xu, 1991, The analysis of multigrid

algorithms with nonnested spaces and noninherited quadratic forms, Math.

Comp., 56, pp. 1-34.

[8] S. C. BRENNER, 1996, Multigrid methods for parameter dependent problems, to

appear in Math. Modelling Numer. Anal, 30, pp. 265-297.

[9] F. BREZZI, M. FORTIN and R. STENBERG, 1991, Error analysis of mixed-
interpolated éléments for Reissner-Mindlin plates, Math. Models and Methods in

Applied Sciences, 1, pp. 125-151.

[10] L, C. COWSAR, 1993, Dual variable Schwarz methods for mixed finite éléments,

Report TR93-09, Riee University, Houston.

[11] L. C. COWSAR, J. MANDEL and M. F. WHEELER, 1995, Balancing domain

décomposition for mixed finite éléments» Math. Comp., 64, pp. 989-1015.

[12] R. DURÂN and E. LïBERMAN, 19925 On mixed finite element methods for the

Reissner-Mindlin plate model, Math. Comp., 58, pp. 561-573.

[13] H. C. ELMAN and G. GOLUB, 1994, Inexact and preconditioned Uzawa algorithms

for saddle point problems, SIAM J. Numer, Anal, 31, pp. 1645-1661.

[14] W. HACKBUSCH, 1994, Itérative solution of large sparse Systems of équations,

Springer Verlag.

[15] Z. HUANG, 1990, A multi-grid algorithm for mixed problems with penalty, Numer.

Math., 57, pp. 227-247.

[16] A. KLAWONN, 1994, An optimal preconditioner for a class of saddle point

problems with a penalty term, Preprint.

[17] P. PEISKER, 1991, A multigrid rnethod for Reissner-Mindlin plates, Numer. Math.,

59, pp. 511-528.

[18] T. RUSTEN P. S. VASSILEVSKI and R. WÏNTHER, 1996, Interior penalty precon-
ditioners for mixed finite element approximations of elliptic problems, Math.

Comp,, 65, pp. 447-466.

[19] T. RUSTEN and R. WÏNTHER, 1992, A preconditioned itérative method for saddle

point problems, SIAM J. Matrix Anal Appl, 13, pp. 887-904.

[20] T. RUSTEN and R. WÏNTHER, 1993, Substmcture preconditioners for elliptic saddle

point problems, Math. Comp., 60, pp. 23-48.

[21] D. SILVESTER and A. WATHEN, 1994, Fast itérative solution of stabilised Stokes
Systems, Part II : Using gênerai block preconditioners, SIAM J. Numer. Anal, 31,

pp. 1352-1367.

[22] P. S. VASSILEVSKI and J. WANG, 1995, An application of the abstract multilevel
theory to noneonforming finite element methods, SIAM J. Numer. Anal, 32,

pp. 235-248.

[23] A. WATHEN, 1987, Realistic eigenvalue bounds for the Galerkin mass matrix,

IMA J. Numer. Anal, 7, pp. 449-457.

[24] A. WATHEN and D. SILVESTER, 1993, Fast itérative solution of stabilised Stokes
Systems, Part I : Using simple diagonal preconditioners, SIAM J. Numer. Anal,

30, pp. 630-649.

[25] J. Xu, 1996, The auxiliary space method and optimal multigrid preconditioning
techniques for unstructured grids, to appear in Computing, 56, pp. 215-235.

vol. 31, n° 4, 1997


