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NONCONFORMING FINITE ELEMENT METHODS
FOR THE EQUATIONS OF LINEAR ELASTICITY

RICHARD S. FALK

Abstract. In the adaptation of nonconforming finite element methods to the

equations of elasticity with traction boundary conditions, the main difficulty in

the analysis is to prove that an appropriate discrete version of Korn's second

inequality is valid. Such a result is shown to hold for nonconforming piecewise

quadratic and cubic finite elements and to be false for nonconforming piecewise

linears. Optimal-order error estimates, uniform for Poisson ratio i^6[0, 1/2),

are then derived for the corresponding P2 and P¿ methods. This contrasts with

the use of C finite elements, where there is a deterioration in the convergence

rate as v —► 1/2 for piecewise polynomials of degree < 3 . Modifications of

the continuous methods and the nonconforming linear method which also give

uniform optimal-order error estimates are discussed.

1. Introduction

The finite element approximation of the equations of linear isotropic elas-

ticity may be accomplished in a variety of ways. The most straightforward

approach is to use the pure displacement formulation and conforming finite

elements. The analysis of this method is well understood. It works well if

the elasticity tensor is positive definite, but suffers a deterioration in perfor-

mance in some cases as the Poisson ratio approaches 1/2 (i.e., as the material

becomes incompressible). Specifically, as discussed in [19], for piecewise linear

elements, the method may not converge as the Poisson ratio approaches 1/2,

and for piecewise polynomials of degree 2 and 3, the error in the method may

be of order one less than the optimal approximation in the finite element sub-

space. For piecewise polynomials of degree > 4, optimal-order error estimates

are obtained for most meshes (cf. [18]).

A second approach is to use a mixed finite element method based on the

Hellinger-Reissner variational principle. In this approach, both stresses and

displacements are approximated and a stable combination of finite element

spaces must be found to approximate these variables. While several pairs of

stable spaces ([17 and 9]) are known for scalar second-order problems, the sym-

metry requirement on the stress tensor does not allow the direct use of these
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spaces for the system of linear elasticity. Several approaches to circumventing

this difficulty have been analyzed and all of them have the important feature

that the accuracy of the method does not deteriorate as the material becomes

incompressible.

One of the mixed finite element approaches is to use macro elements. In this

technique, the basic finite element mesh is subdivided and certain interior de-

grees of freedom are eliminated so that the resulting macro element will satisfy

some additional constraint (in this case symmetry). In [15] a piecewise linear

macro element is proposed and analyzed and in [3] a family of higher-order

elements is developed.

Another approach, developed in [2], is to modify the Hellinger-Reissner vari-

ational principle by introducing a Lagrange multiplier to enforce the symmetry

constraint. When this variational principle is discretized, the symmetry condi-

tion is partially relaxed and a stable triple of triangular finite elements is devel-

oped for the modified variational principle (which now includes an additional

variable to approximate the multiplier). This idea has been extended in [16] to

higher-order and rectangular elements and to elements for the three-dimensional

equations of linear elasticity.

In [4], the problem of symmetric stress tensors is overcome by the devel-

opment of a new mixed variational formulation of the elasticity equations in

which the spaces no longer have any symmetry constraint. Thus, standard pairs

of stable finite element spaces developed for the scalar problem may be directly

applied. The method is quite simple in the case of displacement boundary

conditions, but must be modified for pure traction or mixed boundary condi-

tions due to the fact that the original stress variable does not appear in the new

formulation.

One drawback in the use of mixed methods is the large number of variables

involved, although this difficulty may be partially circumvented using techniques

presented in [1]. The basic idea is to reformulate the discrete equations as a

generalized displacement method in which the stress variable has been elimi-

nated. In the simplest case of the approximation of Poisson's equation by the

lowest-order Raviart-Thomas elements, it is shown that the method is equiv-

alent to a slight modification of the approximation of Poisson's equation by

nonconforming piecewise linear elements. Since this is the case, it is natural to

ask whether nonconforming finite elements may be used directly in the approx-

imation of the elasticity equations and whether the use of such methods would

have any advantages over conforming or mixed finite element methods. For

the case of scalar second-order equations, a detailed analysis of nonconforming

methods is given in [17], and for the stationary Stokes problem, the use of such

methods is analyzed in [12]. The case of nonconforming quadratics for both

the scalar second-order problem and the stationary Stokes equations is consid-

ered in [13]. Since the stationary Stokes equations are closely related to the

displacement-pressure formulation of elasticity, the extension of such methods

to the equations of elasticity (involving displacements and the full stress tensor)
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would appear to be straightforward. In fact, the boundary conditions imposed

play a crucial role, and it is only in the case of pure displacement boundary con-

ditions, that an extension is obvious. The reason for this is that in the case of

homogeneous displacement boundary conditions, the continuous problem may

be transformed so that one works with a bilinear form involving the Dirich-

let form /ngradw : gradv , instead of the more natural form /n e(u) : e(v).

The problem with this second form is that it is not at all clear whether the

discrete analogue of Korn's second inequality, used to establish the coercivity

of the form, holds for nonconforming finite elements. In fact, we show in §6

that it fails for nonconforming piecewise linear functions. The result of this

failure is that the straightforward application of nonconforming piecewise lin-

ear elements to the approximation of the elasticity equations with pure traction

boundary conditions leads to a discrete problem with a large space of solutions,

while the solution of the continuous problem is unique up to addition of the

three-dimensional space of rigid motions. This problem is completely avoided

in the analysis of the Stokes problem in [12], since the basic problem is given

in terms of the Dirichlet form, and only homogeneous Dirichlet boundary con-

ditions are considered.

In this paper, we consider the approximation of the equations of elastic-

ity with pure traction boundary conditions by nonconforming piecewise linear,

quadratic, and cubic finite elements. For the piecewise quadratic and cubic

cases, we use the straightforward extension of the nonconforming methods dis-

cussed in [12, 13, and 17]. For piecewise linears, we propose a slightly modified

version in which a local projection is added. We then derive optimal-order er-

ror estimates for these methods in which the constant remains uniform as the

material becomes incompressible. The keys to this analysis are the proof of

appropriate discrete versions of Korn's second inequality and the equivalence

of the displacement formulation of the elasticity equations with a Stokes-like

formulation involving displacements and a single stress variable.

The nonconforming schemes we consider are equivalent to trivial mixed

methods, where the stresses are discontinuous piecewise polynomials which are

easily eliminated from the system. Since these methods share with other mixed

methods the property that they do not deteriorate in accuracy as the material

becomes incompressible, they raise the question whether the large number of

variables present in the mixed methods mentioned previously contribute in any

way to a better approximation. For one-dimensional problems, the results of

Babuska and Osborn [7] prove that for rough coefficients, certain mixed for-

mulations do perform better. In the case of two-dimensional problems, there

are presently no general theoretical results of this type. Also relevant to the

choice of methods for the numerical approximation of the elasticity equations

is the remark made in the last section, that using ideas developed for the Stokes

problem, the loss of accuracy near incompressiblity for conforming methods

using piecewise polynomials of degree  < 3 is easily fixed.   The number of
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unknowns for the modified methods constructed require less for linears, the

same for quadratic, and more for cubics than the corresponding nonconforming

methods. As mentioned previously, for piecewise polynomials of degree greater

than three, the standard displacement method using conforming elements suf-

fers no loss of accuracy. Since it uses fewer unknowns than other methods, it

thus appears preferable.

An outline of the paper is as follows. In the next section, we include the

notation to be used along with some preliminary results useful in the paper. In

particular, a statement of a continuous version of Korn's second inequality is

given along with a proof which allows generalization to nonconforming finite

elements. Section 3 describes the approximate problems and §4 contains the

statement and proofs of the discrete versions of Korn's second inequality needed

for the analysis of these methods. An error analysis of the methods is presented

in §5. In §6, we examine the case of nonconforming linears, showing why

Korn's second inequality fails and proposing a modified method to deal with

this difficulty. This method produces a nonsymmetric approximation to the

stress tensor a and is shown to be equivalent to a mixed formulation (similar

to that in [2]) in which the symmetry of the stress tensor is relaxed through

the use of a Lagrange multiplier. In §7, modified forms of the standard finite

element method for conforming piecewise polynomials of degree < 3, which

alleviate the problem of deterioration of accuracy for nearly incompressible

materials, are discussed.

2. Notations and preliminaries

We will use the usual L -based Sobolev spaces Hs. An undertilde to a

space denotes the 2-vector-valued analogue. The undertilde is also used to de-

note vector-valued functions and operators, and double undertildes are used for

matrix-valued objects. The letter C denotes a generic constant, not necessarily

the same in each occurrence. We will use various standard differential operators

defined as follows:

.        (dp/dx\ ( dp/dy
ë™dp={dp/dy)>        ™ñp={-dp/dx

dv,     dv0 dv.     dv,
dlv^ä7 + ä7'     rot^ = -ö7 + ä7'

g~   ~     \dv2/dx   dv2/dy) ' * ~     \dv2/dy   -dv2/dx)

^x'(VtllmllllJZ) '        *(-) = Vd, + (grad,)<].
« «     \dx2x/dx + dz22/dy J « ~      2    «   ~        »   ~

We also define two constant tensors

Í=U    1    '        *=    1     0
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and for any tensor x

tr(r) = t : Ô,       as(t) = x : %,

where
2      2

í=l ;=1

An easy calculation shows that

(2.1) e(v) = gradf - ^rotu^.

The traction boundary value problem for the equations of plane strain linear

isotropic elasticity may be written in the form

(2.2) a - p  e(u) + -—y-divuô     inQ,

(2.3) -div<r = /      infi,

(2.4) °n = 8      onöQ,

where a denotes the stresses, u the displacements, / the body forces, g the
¡5¡ rw f*j <%»

boundary tractions, E is Young's modulus, v the Poisson ratio, and we have

set p = E/(\ +i/).

In order for a solution to exist, the data / and g must satisfy the compati-

bility condition

f -v dx +       g • v ds = 0      for all   v £ RM,
Jn~   ~ Jd£l~   ~ ~

where RM, the space of rigid motions, is defined by

RM - \ v : v = (a + by, c - bx), a, b, c £ E } .

When this compatibility condition is satisfied, the solution (a, u) will be unique

in L  x V, where

V = iv eHl{Sl): [ vdx = 0, f rotvdx = 0 } .
I ~    ~ Ja ~ Ja     ~ J

A weak mixed formulation of the elasticity equations is

Problem E. Find a £ H    and u e K such that

Aa : x dx -     e(u):xdx = 0   for all x £ H ,
Jn   *>   *> in88 ~    a a     aS

a : e(v)dx =     f-v dx +       g -v ds   for all v £ V,
ja «   « ~ jn ~  ~ _/a£i ~  ~ ~
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where

Act = —  a - vix(a)ô
«     fi L« v«y«.

and

#5 ={t£L2(Q):t12 = t21}.

For 0 < v < 1/2, a may be easily eliminated from the elasticity system

(2.2)-(2.4). The resulting pure displacement problem has the following well-

known weak formulation:

Problem P. Find u £ V such that

B(u ,v)=f-vdx+       g -vds      for all   v £ V,
~    ~        Jn~    ~ 7â£î~    ~ ~      ~

where

B(u, v) = pi     e(u) : e(v)dx + -.—=- / div u div v dx ).
~  ~ \7n ~ ~    ~ ~ 1 - 2v Jçi      ~      ~     /

Using the identity (2.1), we may also write

B(u, v) = p( / grad w : grad vdx - = / rot « rot i> iix
~~        v,/n  «   ~     »   ~ 2Jçi

+ -—t— / divwdivuúÍA:).
l-2v Ja      ~      ~     /

If we define

p = -tra = - —A— divw,
«        \ —2v

then

(2.5) a = pe(u) - vpô,

and the equations of elasticity may also be written in the form:

Problem S. Find m e K, p £ L2(Q.) such that

(2.6)

pi e(u) : e(v) dx - u     pdivv dx
Jn" ~    ~ ~ ./n

=     f -vdx +       g -vds   for all f e F,
Ja ~  ~ ./an ~  ~ ~    ~

(2.7) / divuqdx = -p    (\-2v)\ pqdx   for all ¿/ e L (Q).
Vn      ~ Jn.

This formulation is valid even in the incompressible limit v = 1/2 (the sta-

tionary Stokes equations).

The proof of existence and uniqueness of the weak solution to Problem E,

P, or S depends on the use of Korn's second inequality, which insures the

coerciveness of the bilinear form Jn e(u) : e(v)dx for u £ V . One version of
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this result may be stated as follows:

Theorem 2.1 (Korn's second inequality). For all u £ V, there exists a constant

K independent of u such that

||e(w)||0>iq|gradu||0.

Unlike the proof of Korn's first inequality, which establishes the above result

for u £ H (ß), the proof of Theorem 2.1 is not elementary, and many proofs

have been given in the literature. Since a discrete version of this inequality

will be the essential ingredient in the analysis of the nonconforming finite el-

ement approximations to the elasticity equations given in the next section, we

now present a proof of Theorem 2.1 which may be generalized to the case of

nonconforming finite elements.

The key fact used in the proof is the following lemma (cf. [14] for smoothly

bounded domains and [6] in the case of a polygon).
9 1

Lemma 2.2. Given p £ L (ß), with  Lp = 0, there exists v £ H (ß) such

that

divv=p   in£l,        \\v\\x <C\\p\\0,

with C independent of v and p.

Proof of Theorem 2.1. Using (2.1), we have for all x £ L ,

/ e(u) : xdx = / (grad« - -rot«/) : xdx.
Jna ~    a Jn   ~   ~    2     ~«    a

Using Lemma 2.2, we may choose  x = grad u - curl z, where z £ H (ß)

satisfies

divz = rotw   inß,        \\z\\. < C\\ rotwL.

Then

||t|Io ^ llgradM||0 + || curlz||0 < C||gradw||0.

Now using the L   orthogonality of grad u and curl z , we obtain

/ e (u) : x dx = /  ( grad u : grad w - ^ rot «[rot u - divz] ) dx
Ja w ~     « Jn\   a    ~      «    ~      2       ~       ~ ~y

= ||gradw||0.

Hence,
JQ e(u) : x dx

£(«)||0>      *uTu ~—>^l|gradu||0.   D
T 10

3. Approximation scheme

In this section we consider nonconforming finite element methods based on

the variational formulation of Problem P. In the case of cubics, we   use the
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straightforward generalization of the method analyzed in [17] for scalar second-

order problems, and for quadratics, we use the ideas in [13]. Unfortunately,

this straightforward generalization does not work for nonconforming piecewise

linear elements. The reason for this, to be made more precise later, is that a

needed discrete Korn's inequality fails for this space, and thus the form B(u, v)

is not coercive. Some modifications of the basic method which get around this

problem are discussed in §6.

We assume henceforth that the domain ß is a polygon, which is triangu-

lated by a triangulation !Th. As usual, the subscript h refers to the diameter

of the largest triangle in ^, and the constants in our error estimates will be

independent of h, assuming that a minimum angle condition is satisfied as

h^O.
Denoting by Xi the barycentric coordinates of a triangle T and by &k(T)

the set of functions on T which are the restrictions of polynomials of degree

no greater than k , we define the following finite element spaces with respect to

the triangulation ZTh :

Mk_x = { n e L2(ß) : n\T £ &>k(T) for all T £ 9"h } ,

Mk = Mk_x n Hx(&),

Mk = Mk_xnH^),

k k
Mt = {n £ M_x : n is continuous at the k Gauss points

on each edge of ^},

B   = {n £ M0 : n\T £ A1A2A3span{x1'x2- "', 0 < i < k- 3}} ,

2 2
Bt = {n £ M_x : n equals zero at the two Gauss points

on each edge of ^}.

Note that Mt are the usual nonconforming approximations of HX(Q). For

p £ Mt +HX(Q.), we define gradA p to be the L2(ß) function whose restriction

to each triangle T £ !Th is given by grad/z|r. Analogous definitions hold for

rotÄ , grad¿ , div^ , curl^ , and eh. Note that

(3.1) eh(u) = gradhu-=rothux.
as     ~ %       ~       z ~S3

Finally, define

V. = < v £ Mt : / v dx - / rotA v dx = 0 \.
( ~     ~     Jn ~ Jn       ~ J

The nonconforming finite element approximation schemes for Problem P are
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then given for k - 2 and k = 3 as follows:

Problem P \ . Find uh £ v\ such that

where

B.(uh ,v) -     f -vdx +       g -vds   for all v £ V. ,
~    ~     Ja~ ~ ^on~ ~ ~

Bh(u,v) = p(¡ eh(u):eh(v)dx + —^1- / divÄ«divÄvdx)
\Ja~   ~~~ i - ¿v ja       ~        ~     /

= p ( / grad, w : grad, vdx- ^ / rot, « rot, w ¿to

-^— / div. u div, u i/x- 2v Jçi     n ~     n~+ T

>k   r-    Afk-l
Note that since divF^ ç M_x   , it it easy to see that Problem P h is equiva-

lent to the following discretization of Problem S:

Problem S £ . Find uh £ Vkh, ph e Mk_~xx such that

(3.2)

P / £h(uh) '■ e/»dx-v l phdwhvdx

=     f'Vdx+       g-vds   for all t; G K,,
Ja~  ~        Jon~  ~ ~    ~

(3.3) / div, u.qdx = -p~~ (\-2v)\ phqdx   for all # g A/71.

If we define

s.* {tetf     :T,.|r€^(r)};

then, since e(Vh) ç H    ' , it is also easy to see that Problem Ph is equivalent

to the following discretization of Problem E:

Problem Ekh . Find ah £ if^  and uh £ V\ such that

fe-i
S,h

/ Aah : x dx - / eh(uh) : x dx = 0   for all x £ H'
Ja   K    a Ja~   ~      ~ »    ».

/ a. : e.(v)dx =     f-vdx +       g -vds   for all v £ V
jQ*n   a" ~ yn~ ~        yön~ ~ ~    ~ a-

Note that the above approximations also make sense in the incompressible limit

v = 1/2.
Once an approximation uh to u has been computed, an approximation ah

to

a — p e(u) +
\-2v

may be computed from the formula

v

div wó = ¿¿e(«) - upó

(3.4) 2*=^ |/>(^) + T32i;divA^| = t*ih(«,h) - vPh&
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4. Discrete Korn's inequality

The essential difference between the analysis of nonconforming finite element

methods for the system of elasticity and the analysis of the scalar second-order

problem studied in [17] is the need in the elasticity equations for a version of

Korn's second inequality to insure the coerciveness of the bilinear form. Since

the nonconforming spaces are not in H (ß), this fact does not follow from the

continuous case. In this section, we address this problem by giving a proof of

a discrete version of Korn's second inequality.

Theorem 4.1. For all v £V h, k = 2,3, there exists a constant K independent

of v such that

(4.1) ||!A(£)||0>/qgradA£||0.

To prove Theorem 4.1, we use a discrete version of Lemma 2.2., which states

a result about two well-known stable pairs of conforming finite elements for

the Stokes problem, i.e.,   (W2h,R2h)  =  (M20U B3, Mx_x)  and  (w\,r\) =
0 3 4 2

(M0 U B , M_x). We include a proof for future reference.

Lemma 4.2. Given p £ Rh   (k = 2 or 3) with ¡npdx - 0, there exists vh £

w\ such that

divvhqdx=     pqdx   forallq£R\,        \\vh\\x < C\\p\\Q,

with C independent of h and p.

Proc

ing:

Proof. For v £ [HX(T)]2 , define an interpolant Uxv £ [â°2(T)f by the follow-

Tl^^a) = Ihvt(a)   for each vertex a of T,

/ (Tlxvi - v¡) ds = 0   for each edge e of T,

where Ihvj denotes the Clément interpolant of v, (cf. [14, pp. 110]). Then

/ div(w -Uxv)dx = yZ     ^iv ~v)-nds = 0,
Jt j=xJe¡      ~    ~    ~

and it is well known that

lin^n, < c||ií||¡.

Using the ideas in [12] and [10], we next define for w £ [Hx(T)f, with

JTdi\w dx = 0, an interpolant n2u; with n^ in the space of bubble func-

tions of degree k + 1 (i.e., G lxk2k39°k_2(T)), and defined by the following:

ÍàivOl-w - w)q dx = 0   for all (7 e&>t_AT)
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and for k = 3 by the additional condition

/ [xx(Tl2w)2 -x2(Tl2w)x]dx = / [xx(w)2 -x2(w)x]dx.
Jt ~ ~ Jt      ~ ~

Note that since U7w vanishes on the boundary of T,

/ Tl2w -Vqdx = - / div wqdx   for all q £ &k_x(T).
Jt     ~ Jt      ~

It can then be shown that II, to is well defined and satisfies ||n,to||, < C||io||. .

Choosing vh = Tlxv + Tl2(v - Tlxv), where v is given by Lemma 2.2, we get

that

/ divvhqdx = / divvqdx= / pqdx   for all q £ ¿Pk_x(T),
J i J i J T

\\vk\\x <C\\v\\x<C\\p\\Q,

which establishes the lemma.   D

Proof of Theorem 4.1. Using (3.1), we have for all t £ L ,

/ eh(u):xdx= /  I gradÂ u - ^rotÄ «/ ) : t ûlx.

Using Lemma 4.2, we may choose x = gradA u-curl z, where z G Wkh satisfies

/ div zqdx- \ rotA uq dx   for all q £ Rh,
(4.2) Ja      ~ Ja

\\z\\x < C\\ro\hu\\0.

Then

ll^llo < llgrad* «Ho + II c^rl£llo ̂ C||g^adA u||0.

Now observe that

f r        dz
j grad. « : curl zdx = 52/    « • '^ ds = 0,

Jçj    as       ~        as   ~ ~ Jqt^    dS

since on boundary edges z = 0 and on interior edges, contributions from

adjoining triangles cancel. The cancellation occurs since the integrand along the

edges involves only tangential derivatives of z which are polynomials of degree

< k - 1 (occurring with opposite signs) and moments of u of order < k - 1

on each edge which are continuous across edges. Using this L2 orthogonality

of gradÄ u and curl z and (4.2), we obtain

/ eh(u) : xdx =      I grad, u : grad, u - ^rot, w[rot, u - divz] 1 dx
Ja*'   ~    a Ja\ a     ~     ~~    2       ~        ~ ~ /

= ||gradA Miß.
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Hence,

faeh{u):rdx
||eA(w)|lo >     ~ ||~„ ~— > ^llgradA u\\Q.   □

i¿"o

5. Error estimates

In this section we give estimates for the errors

llíí'ííJl.A-IISraMíí-^)"«)    and     Hg-gJo-

Note that the estimates obtained do not deteriorate as the material becomes

incompressible (i.e., v -> 1/2). The techniques of the proof use the ideas de-

veloped in [12, 17, and 13], and the saddle point analysis developed by Babuska

and Brezzi. The discrete Korn's inequalities derived in the previous section are

used to establish the coercivity of the bilinear form. Although the general ap-

proach to deriving error estimates for mixed finite element approximations is

now fairly standard, the analysis of nonconforming finite elements is not as

widely known. Hence, we provide a derivation of the error estimates. For more

background on this subject, the interested reader is advised to consult the gen-

eral treatment of error estimates for mixed finite element approximations given

in the recent book of Brezzi and Fortin [10].

Theorem 5.1. Let (u, p) and (uh , ph) be the solutions to Problems S and S h ,

respectively (k = 2 or 3). Then there exists a constant C, independent of u

and h, and uniform for 0 < v < 1/2, such that

\\u-!ik\\i,h + v\\P-Ph\\o

<Cinf    \\u-vh\\xh + \\p-qh\\0

Er/aT-™-™*^- haS-whds'
+ sup

«l.A

where the inf is taken over all vh £ Vh and qh G M_\X > and the sup is taken

over all wh £ Vh.

Proof. The key ingredient in the proof (e.g., see [8]) is the stability condition

$aá™hlhahdx
(5.1) inf        sup    -r:—r—7—— > y.

o^6A/Î7'o¿vhevkh   llü/Jli.Allfyllo

For the case k = 3 , such a condition has been established (for most commonly

used meshes) in [11] in the stronger case when vh £ Mt vanishes at the Gauss

points on <9ß and p is replaced by p-p , where p denotes the mean value of
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p on ß. Using that result, we can find zh £ Mt and vanishing at the Gauss

points on öß satisfying

di\hzh=p-p,        ||£Ä||1;A<C||p-p||0.

Setting vh - zh - 1 h + \(x -x, y - y)p , it is easy to check that vh £ v\ and

satisfies

dWhvh=p,       l|vÄ||1)Ä<C||p||0,

from which (5.1) follows. In the case k = 2, (5.1) is established by first noting

the result of [ 13] that the space of nonconforming piecewise quadratics consists

of conforming piecewise quadratics plus the functions cTB2T, where B2T is the

piecewise quadratic vanishing at the two Gauss points on each of the edges of

the triangle T and is zero outside of T. The proof of (5.1) is now almost

identical to that given in Lemma 4.2 for the choice of conforming quadratics

plus cubic bubble functions for velocities and discontinuous piecewise linear el-

ements for pressure. We need only replace the cubic bubble function /L,A2A3 by

the function B2T . To see that the nonconforming version of the n2 interpolant

is well defined, note that fT BT dx ^ 0 and

/ div, (cTBT)qdx - - \ cTBTVqdx,
Ja Jt~

for all q £ M_x, which follows from the facts that the two-point Gauss in-

tegration formula is exact for polynomials of degree < 3 on each edge and

BT vanishes at these points. The modification given above in the cubic case

to produce orthogonality to rigid motions can also be applied in the quadratic

case. We remark that the result obtained in [13] does not directly establish (5.1)

since the interpolant constructed uses point values, although it is sufficient for
the optimal-order error estimates given in Theorem 5.3 below.

To simplify the exposition of the remainder of the proof, we define

ah(u,v) = p / eh(u): eh(v)dx.
Jaa    ~      as    ~

Multiplying (2.3) by vh £ Vh , integrating by parts, and using (2.5) and (2.4),

we obtain

ah(u,vh)-v \ pdivhvhdx= / fvhdx+ / gvhds + Gh(vh),
~  ~ Ja ~ Ja— Ja —

Ga(Ha) = E/   Zn-lhds~ i   S-vhds
t JdT—  ~ 7an

where

is the error due to the use of nonconforming elements. Hence, for any u¡ £ Vh
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k— 1
and any p¡ £ M_ x   , we have

ah(u¡,vh)-v j p¡divhvhdx
~    ~ Ja

= ah("i ~l>lh)-v I iPj-P)diyhlhdx

+     fvhdx+     gvhds + Gh(vh).
Ja— 'n~~ia

Subtracting (3.2), we then obtain

(5.2)
ah^I -lh'lh)-V ja(Pl-Ph)diyh In dx

= ah(uI-u,vh)-v j (Pl-p)d\\hvhdx + Gh(vh)

Using (2.7) and (3.3), we easily obtain for all q £ M_x ' that

/ dwh(u,-uh)qdx
Ja        ~

(5.3) =-p~x(l-2v)     (pj-ph)qdx+     d\\h(Uj-u)qdx
Ja Ja

+ p~\\ -2v) i (pj-p)qdx.
Ja

Choosing vh = Uj - uh in (5.2) and q = p¡ -ph in (5.3), and combining these

results, we obtain

ah(Uj-uh, U;-uh) + vp~x(l-2v) / (pj-ph)2dx

= ah(Uj-u, u,-uh)-v \ (p. -p)div.(u,-uh)dx

+ Gh(u,-uh) + v I (p¡-ph)di\h(uI-u)dx
Ja ~

+ ^'(1 -2v) j (p,-p)(p,-ph)dx.
Ja

It then follows from the discrete Korn's inequality and the Schwarz inequality

that

pK\\Uj-uh\\2x h + up~x(l -2v) I (p,-ph)2dx
~ Ja

^ Gh(»I - HJ+fWül - îfJl, Jí</ - îfUl.A + 2U\\P¡ -P\\oW"l - «*Hl,*

+ 2i/||p/-/7A||0||M/-u||ljA + i/^~1(l-2^)11^-^11011^-^1^.

Next, applying the stability condition (5.1), and using (5.2) and the Schwarz
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inequality, we get

_,             h&fhvJl(pI-ph)dx
v\\P¡ - Ph\\o < "V       sup    -

543

<¥»a6Ka
VhUl,h

<y~ p\\ui - uh\\i,h + p\\ui - "Hi h + Mp¡ -p\\o

+ sup
"to.''

whevh II^AHl.A

Combining these results and using the arithmetic-geometric mean inequality,

we obtain

\«i-«h\\i,h + ''\\Pi-P. A"0

<C l"/-Mlll.A + ll/,/-i'llo+   SUP
Gh(wh)

wL
wh€V„ M^Alll.A

Theorem (5.1) now follows directly from the triangle inequality.   G

Corollary 5.2. We have

ll£ - 2*llo.A < Cinf   ||« - vh\\xh + \\p - qh\\0

2ZThT™'™hds- ha8'Whdi
+ sup

toA 111,A

Proof. This follows immediately from (2.5) and (3.4).   D

Using again the results in [12] and [13], we then obtain the following optimal-

order error estimates.

Theorem 5.3. Let u and uh be the solutions to Problems P and Fh , respectively

(k = 2 or 3) and a and a,  defined by (2.2) and (3.4). If u £ Hk+X(Q) and

a G Hk{0) , then

\\a-2aIIi,a + \\%-gh\\o ̂ch (ii^iifc+i + iigiik)'

where C is independent of u and h, and uniform for 0 < v < 1/2.

6. NONCONFORMING PIECEWISE LINEAR ELEMENTS

Í>1As mentioned previously, inequality (4.1) does not hold for the space V.

of nonconforming piecewise linear elements.   To establish this fact, we use
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a dimension-counting argument. First observe that the subspace of Vh with

eh(u) = 0 has dimension > 2e - 3T - 3, where e and T denote the number

of edges and triangles, respectively, in the triangulation ¿7~h. This follows from

the facts that the dimension of Vh is 2e - 3, and since eh(u) is constant

on every triangle, the constraint eh(u) = 0 imposes at most 3T independent

constraints. But 2e - 3T - 3 = eB - 3, where eB denotes the number of edges

lying on öß. As soon as ¡Th consists of more than one triangle , this dimension

will be positive. On the other hand, the dimension of the subspace of Vh with

gradA u = 0 is clearly zero. Hence, there must exist functions in v\ for which

(4.T) fails.
We now consider a possible remedy for this problem, in which we make

a slight modification of the basic piecewise linear nonconforming method by

introducing a local projection in one of the terms. To describe this projection,

we assume that the domain ß has been first triangulated by a triangulation ^ .

The triangulation ^ is then created by adding three interior edges per triangle

formed by connecting the midpoints of the sides of each triangle T1 ££Th,. We

then define with respect to the coarse triangulation ETh, the finite element space

Gh, = { ß G L2(ß) : ß\T, e ^0(f) for all f g Th, }

and let P0 denote the L2 projection into Gh,.

In order to establish a discrete Korn's inequality, we next replace the operator

eh satisfying (3.1) by an operator e*h defined by

(6.1) gh(u)^gradhu-^P0rothux.

The approximation scheme is then given by:

Problem P \ . Find uh £ v\ such that

B*h(uh, v) =     f -vdx +       g -vds   for all t; G V
~    ~     Ja ~ ~ Jea ~  ~ ~

i
A'

where

B¡(u,v) = p( / e*h(u): e*h(v)dx + —v-=- \ divhudivhvdx

= p ( / grad, u : grad. v dx - ^ / P0 rot, u rotA v dx
\Ja  «~«~ 2 Jo.

^SaáÍWh~áÍVh~dX)'+T
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Note that since P0 div v\ ç G> , it is easy to see that Problem P \ is equivalent

to:

Problem S \. Find uh£ Vxh, ph£ G< such that

P / ca("a) : £a(u)dx-v \ phd\shvdx
JQa    ~        as    ~ ;n

= / f -vdx + /    g • v ds for all v £ V h,
Ja~  ~ ./an-  ~ ~    ~

/ div. uhqdx = -/i    (l-2v)\ p.qdx   for all # G G,-.
Ja       ~ Ja h

Note that the above approximation also makes sense in the incompressible limit

« = 1/2. The approximate stress ah is then defined by

<Lh=P
(6.2)

= P

g™dA «* - ¿^a Ihl + T^2¿diyh Ihi

&£dh »h - 2PoTOth Ihl »Phi-

The result of this change will be that the analysis will now depend on a

modified form of the discrete Korn's inequality given in Lemma 4.1 in which

the operator eh is replaced by the operator e*h . Specifically, we shall prove:

Theorem 6.1. For all v £ v\, there exists a constant K independent of v such

that

(6.3) |||¡(t;)||0>^||gradAt;||0.

To do so, we again need a discrete version of Lemma 2.2, giving a pressure

space which, together with continuous piecewise linear finite elements, forms

a stable pair of spaces for approximating the Stokes problem. A proof of the

following lemma may be found in [14].

o   .

Lemma 6.2. Given p £ Gh, with fnp = 0, there exists v £ M0 such that

/ divvqdx= / pqdx   for all q eGy ,        \\v\\x < C\\p\L,
Ja      ~ Ja

with C independent of v and p.

We now prove Theorem 6.1, using an argument similar to the one used in

the proof of Theorem 4.1.

Proof of Theorem 6.1. Using (6.1), we have for all x £ L ,

/ e*h(u) :xdx= /  (gradA u - ^P0roth ux ) : xdx.
Ja"   ~    ~ Ja\a    ~    z ~«/   a
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o  ,

Using Lemma 6.2, we may choose x = grad, u - curl z , where z G Mn satisfies

(6.4)    / divz<7<5?.x= / ro\huqdx   for all q £ Gu ,        ||z||. < C||rot, u|L.
Ja      ~ Ja      ~ ~ ~

Then

IKIlo < llgradA«illo + II c^llo ^ cllgr^dAÍíllo-

Now observe that

f r        dz
\ grad, « : curlzdx = 52 /    u • -^ ds = 0,
Ja  ~    ~     ~ ~ j JdT~   ds

since on boundary edges z = 0 and on interior edges, contributions from

adjoining triangles cancel. The cancellation occurs since the integrand along

the edges involves only tangential derivatives of z which are polynomials of

degree 0 (occurring with opposite signs) and average values of u on each edge

which are continuous across edges. (This argument is given in more detail in

[5].) Using the L2 orthogonality of grad, u and curlz and (6.4), we obtain

/ e*,(u) : xdx
Jaa   ~    *

= /  ( grad, u : grad, u - =P0 rot, «[rot, u - div z] ) dx = ||grad, u\
JQ \   «       ~       «       ~       l ~ ~ ~y as~

Hence,

$aih(u)'-ldx
|||A(«)|lo >      ~ ,,;,,  ~       > ^l|gradA «l|0.   °

The analogue of Theorem 5.1 holds for this modified approximation scheme,

and we again get the following optimal-order error estimate.

Theorem 6.3. Let u and uh be the solutions to Problems P and Pxh, respectively,

and a and ah defined by (2.2) and (6.2). If u £ H2(Q.) and a G Hx(iï), then

ll£ ~ ÍÍaHi.A + W% - g*llo ̂ C/?(Nll2 + llglll) '

where C is independent of u and h , and uniform for 0 < v < 1/2.

It is interesting to note that e*h, defined by (6.1), is not a symmetric matrix

because of the presence of the projection P0. In fact, it is possible to give an

interpretation of this scheme as a mixed finite element method involving both

stresses and displacements, which relaxes the symmetry of the stress tensor

through the use of a Lagrange multiplier. Thus, it is similar in spirit to the

method proposed in [2].    Using a slight modification of the ideas in [2], we
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consider the mixed formulation:

Problem M. Find a £ L2(ß), u £ V, y g L2(ß) such that

/ Ait : x dx - / grad u : x dx + / y as(r) dx - 0   for ail x G L (ß),
Ja   ~   ~ ./n   «   ~   * Ja       a as    »

/ a- : grad vdx =     f-vdx +       g -vds   for ail t; G K,
Jaa     w   ~ Jn~  ~ 7an~  ~ ~    ~

/.
as(CT)/? ¿x = 0   for ail y? G L (Q).

It is easy to see that if ct G L , u £ V, y £ L2 solve Problem M, then u£V

2 —
solves Problem P and a £ L   satisfies (2.2).   Conversely, if u £ V solves

2 2
Problem P and a £ L   satisfies (2.2), then (2.1) implies that a £ L , u £

V, y = rot w/2 G L2 solve Problem M.

To give a reformulation of the approximate problem P h, we first define an

approximate space of nonsymmetric stresses by

g! = il: xu\t 6 ̂ 0(r) for all r G ̂ , /, 7 = 1, 2}.

The approximate mixed formulation is then

Problem Wl\ . Find ah£ H°h, uh£Vxh, yh£ Gh, such that

/ Act, : xdx- / grad, uh: xdx+     yh as(r) dx = 0

for all t G H°h ,

(6.6) / er, : gradA vdx =     f -vdx +       g -vds   for all t; G V h ,
yaas       as yn~  ~ Jan~   ~ ~     ~

(6.7) [as(ah)ß = 0   for all y? G G.,.
Ja     a

We now show the equivalence of Problems PJ, and Mxh .

Lemma 6.4. Problem Mh has a unique solution ajl£ Hh, uh £ v\, yh£ Gh>,

where uh is the unique solution of Problem Fh, ah is given by (6.2), and yh =

(6.5)

lporoh "a •

Proof. To establish existence and uniqueness, we show that zero is the only

solution to Problem Mh with zero data. First set x — ah , v — uh , ß = yh . It

follows immediately that

0= / kah:ahdx = p(\\ah\?Q-v\\\r(ah)\¿))
Ja   ~

= P «A~2tr(*ft)C + IJ-P m2*)llo
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and hence that

Zh = 2tT{Zh)í

Inserting this result in (6.6), we get

)di\v dx = 0.iÇ/r"*
We now let z = gradr, where r satisfies Ar = tr(ah) in ß, r = 0 on <9ß.

Define zh £ Mt satisfying for each edge e of ZFh the condition Je(z-zh)ds -

0, and set t; = zh - zh, where we again use the notation b to denote the

mean value of b on ß. Then it is easy to check that v £ Vh and satisfies

divA v = tr(<7A). With this choice of v , it follows immediately that tr(crÄ) = 0,

and hence ah = 0. Inserting this result and choosing x = s*h(uh), we get that

||e*(MA)||0 = 0, and hence from (6.3) that uh = 0. Finally, choosing x = yhx

implies that yh — 0. It is now easy to check that uh , the solution of Problem

Pxh, ah given by (6.2), and yh = jPQroth uh, solve Problem Mxh .   G

7. Modified schemes for conforming elements

It should be noted that if a slightly different but analogous modification is

made to the usual continuous piecewise linear approximation of the displace-

ment formulation of elasticity, then one also obtains optimal-order error esti-

mates, uniform for v £ [0, 1/2). The modified approximation scheme is:

Problem c[ . Find uh £ w\ such that for all v £ W\ ,

pi     e(uh) : e(v)dx + -—r— / P0 div u, P0 div v dx )
\Ja «~«~ \ - 2v Jn ~ )

=     f -v dx +       g -v ds,
Ja~  ~ Jaa~  ~

where

/ vdx = i
Ja~ Ja

W. = \ve Mfí : i vdx = I rotvdx - 0

The loss of accuracy occurring for continuous piecewise quadratic and cubic

approximations to the elasticity equations near the incompressible limit can also

be eliminated by adding the bubble functions Bk+X to the spaces M0 (as done

for the Stokes problem) and then replacing the div u term by Pk_x div u , where
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2 k— 1
Pk_x denotes the L projection into M_x . Note that without this projection,

the divergence of the bubble functions will not be in this space. We are thus

led for k = 2 and 3 to the following approximation schemes:

Problem Ck . Find uh £ w\ such that for all v £ w\ ,

ß \la^h) ' *{~)dX + T^2T ¡Jk~x dÍV"A Pfc-> aiYVJx

= if -v dx +       g -vds,
Ja~  ~ Jaa~  ~

where

WX= ( v £ Mk + Bk+X : I vdx= f row dx = 0}
[~ Ja~ Ja J

The approximate stress ah in each case is then defined by

(7.1) ah=p l^ + YZ^pk-idiyiihi

To get optimal-order error estimates for these schemes, we first introduce

an approximate pressure ph = --xé2¡;Pk_x di\uh and write the schemes in a

form analogous to Problem Sh , where q £ Gh< for k = 0 and G M~x for

k = 2, 3, and we use the spaces W. for the velocities. Following the proof of

Theorem 5.1 (without the extra term to account for the use of nonconforming

elements) and using a slightly modified form of Lemmas 4.2 and 6.2 (since now
-~^ L- °    1 Z.

v £ Wh instead of MQ or Wh ) to replace (5.1), we obtain a result analogous

to Theorem 5.1. Optimal-order error estimates for u-uh and a - ah follow

directly from this result, (7.1), and standard approximation theory.

Finally, we compare the number of unknowns used by these methods with

the nonconforming methods of the same order. Let v , e, and T denote the

number of vertices, edges, and triangles in the triangulation ^, respectively. In

the case of linears, the conforming method has 2u - 3 unknowns as compared to

2^-3 unknowns for the nonconforming method. Since by Euler's formula, e -

v = T - 1, the conforming method is simpler. The projection into Gh, involves

the same amount of work for both methods. In the case of quadratics, it is a
2 . T

choice of adding to M0 the nonconforming space Bt or adding the conforming

space B   and then using the projection Px . The number of unknowns is the

same. In the case of cubic elements, the conforming method has 2(v+2e+3T)-

3 unknowns, while the nonconforming method has 2(3e + T) - 3 unknowns.

Using Euler's formula, we find that the nonconforming method uses 2(T + 1)

fewer unknowns. Since no projection is required, the cubic nonconforming

method seems simpler.
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