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EQUIVALENCE OF FINITE ELEMENT METHODS
FOR PROBLEMS IN ELASTICITY*

RICHARD S. FALK AND MARY E. MORLEY:

Abstract. Modifications of the Morley method for the approximation of the biharmonic equa-
tion are obtained from various finite element methods applied to the equations of linear isotropic
elasticity and the stationary Stokes equations, by elimination procedures analogous to those used in
the continuous case. Problems with Korn’s first inequality for nonconforming P1 elements and its
implications for the approximation of the elasticity equations are also discussed.
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1. Introduction. It is well known that the biharmonic equation arises in several
contexts in the theory of linear elasticity from the reduction of the equations of linear
isotropic elasticity, in which more variables are initially present, to a single higher order
equation (cf. [4]). For example, starting with the equations of plane strain isotropic
elasticity

Aa (u) in 2, div cr f in ,
where /is a simply connected bounded domain in the plane,

e (u) [grad u + (grad u)t]/2,

5 is the identity, and tr(a) denotes the trace of a, and introducing the variable p

k tr() (k an arbitrary nonzero real number), we may easily eliminate the stresses

obtaining the equations

(1.1)
1 + p

Ek
(1 2)p div u.

and

(1.2) (1 + u----- div (u) + gradp f.
Applying the calculus identity:

div(grad u t) grad(div u)

and the definition of (u), (1.2) may also be rewritten as

E 1
(1.3) 2(1 + )

A u + - gradp f.
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EQUIVALENCE OF FINITE ELEMENT METHODS 1487

In the incompressible case ( ), (1.1) becomes div u 0 and we obtain the

stationary Stokes equations. When div u 0, we may set u curl w. The variable

p may now be eliminated by differentiating and adding the remaining equations. The
resulting equation satisfied by w is the biharmonic equation

#A2w g in

where #- E/J2(1 + )] and g of/Oy- of/Ox.
A second derivation, applicable when the force f grad for some potential ,

procedes by the introduction of the Airy stress function, i.e., the stress cr is written in

the form

+ w -w,. --Wxy Wxx

so that div a grad f. Letting ,4 denote the Airy operator

02/cOy2 -02/cOxOy )_O lOxO o /ox

an easy computation shows that if a is of the above form and satisfies Aa e(u),
then

E

2 2

w + (1 2)A ] E 4ij(A)ij E Jtijeij(u) O.
i,j=l i,j=l

Hence, w satisfies the biharmonic equation"

1- 2pAw= A.1--p

When appropriate boundary conditions are added to each of these equations, it
is then possible to show the equivalence of various boundary value problems for the
equations of elasticity, the stationary Stokes equations, and the biharmonic equation.
These standard results are recalled for the reader in 2. Since this is the case, it is
interesting to determine whether any finite element methods based on these formu-
lations are also equivalent. In particular, we shall show in 3 how a modification of
the Morley method for the biharmonic (cf. [6]-[9]) can be obtained from the standard
continuous piecewise linear approximation of the elasticity equations in the case when
f grad , by elimination procedures analogous to those used in the continuous case.

The key idea is a discrete version of the orthogonal decomposition of symmetric ten-
sors in the form (u) / A(w). In 4, we show how another modified Morley method

for the biharmonic arises from the nonconforming piecewise linear approximation pro-
posed in [3] for the stationary Stokes equations (1.3), (1.1) (with ), by writing
the solution as the discrete curl of a Morley element. In a similar vein, we note that
Arnold and Brezzi [1] have shown that the Hellan-Hermann-Johnson approximation
of the biharmonic equation is also equivalent to a modification of the Morley method.
We then compare the error estimates that can be derived for all these various versions
of the Morley method.
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In 5, we consider what happens when (1.2) rather than (1.3) is used as the
basis of a nonconforming P1 finite element scheme. The analysis then depends on an
appropriate discrete version of Korn’s inequality for nonconforming piecewise linear
elements. We show that such an inequality may not hold in certain cases, and for
other cases in which it does hold, the constant may go to infinity as the mesh size
approaches zero. Finally, in 6, we give a mixed formulation which is equivalent in the
incompressible limit to the nonconforming P1 approximation of the Stokes problem
studied in 4 and compare it to a mixed method developed in [2] using Raviart-
Thomas elements (cf. [10]).

2. Notation and preliminaries. We will use the usual L2-based Sobolev spaces
H8. An undertilde to a space denotes the 2-vector-valued analogue. The undertilde
is also used to denote vector-valued functions and operators, and double undertildes
are used for matrix-valued objects. The letter C denotes a generic constant, not
necessarily the same in each occurrence. We will use various standard differential
operators defined as follows:

(Op/cx) (CTll/OX"l"CT12/Oy)gradp- Op/Oy’ divvy= OV.l/OX+O’r22/Oy’ curlp= -Op/Ox

Ov Ov Ov Ov
div v rot v

Ox Oy’ Oy Ox"

(OVl OXgr2d v Ov. /Oz Ov. /O
and

[grad v + (gd
We also define the constant tensor

(1 0)6=
0 1

and for any tensor

2 2

tr()-’5, wherea’v=EEaijTij.
i=1 j=

We now recall for the convenience of the reader some standard results on the
equivalence of various boundary value problems for the equations of plane linear
isotropic elasticity, the stationary Stokes equations, and the biharmonic equation. To
make matters as simple as possible, while still studying the effects of different bound-
ary conditions, we shall consider the case when the domain is a convex polygon and
F and F2 are disjoint open connected subsets of 0t with ’ N 2 0.

Defining

e

V(F) {v e HI(I) v 0 on F}

V {v e//l(a) v gl on F1},



EQUIVALENCE OF FINITE ELEMENT METHODS 1489

the boundary value problem for the equations of plane strain linear isotropic elasticity
may then be stated in weak form as follows.

Find a 6 HS, u V satisfying

Note this corresponds to the boundary conditions u gl, on F1, an g2, on F2.
When A is invertible, then (2.1) implies that C(u), where

- + tr()C A-I 1 + u 1 2u

Hence, a may be eliminated and we obtain the standard displacement formulation of

elasticity as follows.
Find u V satisfying

To obtain the stationary Stokes equations, set p- k tr(). Choosing - q5 in

(2.1), we get that

(2.4) (l+u) 1-2u/a /aE k
pq dx div q dx Vq L2 (ft).

Using the definition of A, it follows easily from (2.1) that

(2.5) (1 + u)(u)+ pS.

Inserting this result in (2.2), we obtain

(2.6) (1+ u) (u).(v)dx + - pdiv v dx- faf vdx-t- ~g2" ,.v ds

Vv e V(r).

In the case when F. is empty so that v 0 on Oft, we get by twice integrating

by parts and using (2.4), that
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By setting # E/J2(1 + 9)] and k -, and using (2.7), equation (2.6) becomes in
this case

(2.8) it f grad(u)’grad(v)dx- f pdiv v dx f f v dx Vv E V(O)

and (2.4) becomes

(2.9) ffldivqdx 2p-l/fl L2pqdx Vq ()

reduces towhich, in the incompressible limit p- ,
(2.10) f div q dx 0 Vq e L2().

Together, (2.6) and (2.10) are one form of the stationary Stokes equations. When
F2 is empty, another common formulation is (2.8) and (2.10). We note that when
-1 < < 5, P may be easily eliminated from (2.8) to give another displacement
formulation as follows.

Find u V satisfying

(2.11)

f ]divdivvd=-ff.d VveV(O).p grad()" gd() dx +
1 2

To obtain the biharmonic problem, we use (2.10) to write u curlw for some

w W H2(). By defining

W(F) {z e H2() z Oz/On 0 on r},

and choosing v curl z for z G W(F), (2.6) and (2.8) become

(curlw) (curlz)dx f .curlzdx+ g2.curlzds Vz e W(F1)

and

f, grd(cu:lw)’gr:d(cu:Iz)dx , cu:Izdx Vz

These are both weak formulations of the biharmonic equation p A2 w -rot f.
We now turn to second derivation of the biharmonic equation from the equations

of elasticity, applicable when the force f grad for some potential . Inserting this

definition of f in (2.2) and integrating by parts, we obtain

Next define a function wp W satisfying for all v V(F)
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Integrating by parts, we see that this is the weak form of the boundary condition

0(curl wp)

Os =~g n onF.

Hence, a- 5- (wp) satisfies

(2.12) [ ()1 2(v)& 0 ’V V(rl).

Now using the orthogonal decomposition

(2.13) _L(a)
_
(v(r,))+ A(w(r:)),

it follows from (2.12) that

for some w e w(r2). Inserting this result in (2.1) and choosing (z) for

z E W(F2), we find that w w + wp satisfies

Vz e W (r).

Integrating by parts and using the boundary condition, u gl (g11, g12) on F1, we

obtain for all z E W(F2)

fa A(w)" (z)dx _(1 + u)(1 2u)
E /Ft JfF( OgllOzCAzdx + Os Oy

0g12 0z )Os Ox
ds.

This is the weak form of a boundary value problem for the equation

1-- 2uA2w A in ft.

3. From elasticity to the biharmonic via the Airy stress tensor. In this
section, we consider the approximation of the equations of elasticity when f grad ,
where the biharmonic equation arises through the introduction of the Airy stress
tensor. To see how different types of boundary conditions are handled, we consider
the boundary conditions:

u gl on I’l, an g2 on [’2.

We shall assume that ft is a convex polygon and denote by -h a triangulation of ft
into triangles T of diameter _< h. We further assume that F1 and F2 are disjoint open
connected subsets of Of/with ’1 [-J ’2 0, and that the two points of intersection
of f’l CI f’2 are mesh points.



1492 RICHARD S. FALK AND MARY E. MORLEY

Let us now recall the standard approximation of the displacement form of the
elasticity equations by continuous piecewise linear functions. By defining

Z(F1) {v E gh" V 0 on F1),

where Pi(T) denotes the set of polynomials of degree <_ on T, and letting g denote

a suitable interpolant of 91 into ghlrl, the method based on (2.3) is as follows.

Find uh 6 Uh, uh g{ on F such that

Once Uh is computed, an approximation to the stress tensor a is given by h

We now show how this same approximation arises through a nonconforming ap-
proximation of the biharmonic equation using Morley elements.

First define

Hh={’’rijlTePo(T)} and Hs-{eHh’T2=T2},.h ,

Hs satisfies:Note that 0"h 6 ~h

Aa "r dx () "r dx V’r e ,

Next observe that when f grad , the right side may be written

+ (a:~ ~v
The key fact is now the use of a discrete version of the orthogonal decomposition

(2.13). To state this discrete version, define the Morley finite element spaces

Mh {w P.(T), w continuous at vertices

of ’h, Ow/On continuous at midpoints of -h }

and

M(r’2) {w e Mh "w 0 at vertices of ’h N F2,

Ow/On 0 at midpoints of edges of rh F2.}

Let Ah(W) e L2(ft) be defined by dh(W)lT (W)IT, for w e H2(T). We then get

the following discrete version of (2.13).
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THEOREM 3.1.

and this is an L2() orthogonal decomposition.

Proof. Clearly
(u(r)) + A(M(r)) c Hs

To show equality, we now show that the dimensions are the same. Let vi, ei, and eB
denote the number of interior vertices, interior edges, and boundary edges, respectively,
of Th. Let v} and e, 1, 2 denote the number of vertices and edges, respectively, of
Th on f’i. Then eB e +e v +v- 2, since there are two points of intersection
of F1 gl F2. Counting degrees of freedom, we get that

dimAh(M(r2)) dim M2(F=) v, + ei -t- V? -- e 2,

dim (U(F1)) dimoUt(F1) 2vi + 2v 4

(because of duplication of vertices). Letting e, v, and T denote the number of edges,
vertices, and triangles of -h, respectively, and using the identity

2ei + eB 3T (= 4ei + 2eB 6T)

and Euler’s formula

T e + v 1 (= 3 + 3ei 3vi 3T),

we get

dimAh(M(rz)) + dim (u(r,)) 3vt + e, + 2eB 3 aT dimHs

Hence, the spaces are the same.
u(r ), A(w) e A(M(r.))To check the orthogonality condition, let v E ,.oh

Then

]; 0 (OVlOWo;Oy Ov2OW)osOx}2 o,
T ’ T T

since Ovi/Os is a constant on each edge which is continuous across neighboring tri-
angles and Ow/Ox and Ow/Oy are piecewise linear functions which are continuous at
the midpoints. Thus contributions from adjoining triangles cancel and there are no
contributions from boundary edges because of the boundary conditions.

To use this decomposition, we first define a function wPh Mh satisfying for all
U?2 ,oh(rl)

(3.1)

fO fP (OvlOw}2 ex
T T’ " OS Oy

Ov Ow )Os Ox
ds fr (g2 n). vds.

Note that this only involves assigning boundary values of w and a solution may be
found in the following way. Let x and x2 denote the points of intersection of
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and f’2. Let w satisfy Ow/On 0 at midpoints of all interior edges of ’h and of
edges of 7h on F1 and w 0 at all interior vertices of Th and at vertices of ’h on
F1, including xl, but excluding x.. The remaining degrees of freedom of w are the
values of Ow/On at the midpoints of the edges of 7h on Fe and the values of w at
the vertices of rh on Fe, including xe, but excluding x. We now show how these may
be easily determined from (3.1) and the additional equations

Os Oy Os Ox ds=O,

where v p Up span (X, 0), (0, X), with X the piecewise linear function which is one

v(r)at x2 and zero at all other vertices For v h P it is not difficult to see that

O/Os maps onto the space of piecewise constant vectors on Third. Writing

Ovo Ovo
with n and s the unit normal and tangent vectors, respectively, we get that the
average values of Ow/Os and Ow/On are uniquely determined. Since the average
value of Ow/Os is the difference of the values of w at neighboring vertices, the
remaining degrees of freedom of w are easily determined.

We now note that since

HSA(w) P05 e ~h,

we may write it in the form

where hu e U(F)h w e M2(Fe). Inserting this identity into the equation:

h () dx () dx + (g2-)’ds,

it follows immediately that

[() + (w)]. () 0 Vv e (r)
and hence by the orthogonality of the decomposition and Korn’s inequality that
u -0.h

Next, setting Wh w + w and using the equation

with 7 Ah(z),z e M(Fe), we get for all z e M(F)

(3.2) Os Oy Os Ox
ds

(1 + .)(1 .) f z e,
E

T
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where we have used integration by parts and the boundary condition .h gl
(gii, g12). Observing that

aAAh(Wh) Ah(Z) dx

1+, /T(O2WhO2ZE E Ox20x2 2
T

0 w 0 z 0 wt 0 z
OxOy OxOy OY20Y2 u A Wh A Z) dx,

we have thus constructed an approximation to a weak formulation of the partial dif-
ferential equation

Aw= 1-2A.
Note that the approximation of this equation by the standard Morley method

would be slightly different than the method we have derived, since the right-hand side
would have the term ET fT A Cz dx instead of ET fT A z dx, as we have obtained.
It is interesting to compare the error estimates for these two methods and a third
modified Morley method analysed in [1], in which the right-hand side would have the
term T fT A CzI dx, where zi denotes the continuous piecewise linear interpolate of
z. In order to make use of existing estimates in the literature, we shall only consider
the special case when F1 is empty, g2 0, and 0 on 0. These conditions imply
that w satisfies the boundary conditions w Ow/On O.

The error estimates of interest will be those for the approximate stress. Denoting
by w, w, and w the approximate solutions of this problem produced by the standard
Morley method, the Arnold-Brezzi modified Morley method, and (3.2), respectively,
we define corresponding approximations a to a by a Po5 + Ah(W). Sinceh h

1-o I- P0l0 + 1 -1,,
error estimates for a a follow directly from the results of [1] for the cases 1h
and 2. For the case 3 we use the equivalence of if3 and Ce(h) and standard

estimates for the usual finite element approximation of the displacement form of the
elasticity equations. We thus obtain the following estimates, valid on a convex polygon
for 0 < .

2II llo cll ll_,

o Ch[ grd [0.

Note that since 0 on 0, A ]_ and grad [o are equivalent norms and so

the last two estimates are equivalent in terms of the regularity required. Since for
K { r e U(), , Crn 0 on 0},

(a E’ 5) (C[() e(h)], T) (- h, div[CT]) _< ]-
it follows directly from standard L2 estimates for 1- h]O, that

where the negative one norm is the norm in the dual space of K.
estimates in the other two cases are not so obvious.

Negative norm
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4. Nonconforming P1 and the Morley element. We next consider the
relationship of some finite element approximations to the stationary Stokes and bi-
harmonic problems

(4.1)
-#Au+gradp=-f in

divu =0 inft, u =0 on Oft,

and

(4.2) #A2w=g inft, w=0w/0n-0 on OFt,

in the case where (4.2) is derived from (4.1) so that g rot f.
In particular, we shall consider a method analyzed by Crouzeix and Raviart [3],

in which u is approximated by nonconforming piecewise linear functions and p by

piecewise constants. Again assuming that ft is a convex polygon and 7h a triangulation
of 2 into triangles T with diameter _< h, we define

Vh { VilT e PI(T), i- 1, 2, vi continuous at the midpoints of T},

V {v E Vh v 0 at midpoints of T E Oft},

Qh {q" qlT e P0(T)}.

VoThe approximation scheme is: Find ,h ,.,.,h, Ph Q,h such that

#E /Tgdu gdvdx- E IT pdivT T

E fT div uq dx O Vq Qh.
T

v dx-- -j f vdx Vv E V,
T

Defining

Zh { V: E /T diV q dx Vq Qh. }
the above approximation scheme is equivalent to the following problem.

Find Uh h such that

Now consider the Morley nonconforming finite element space Mh defined in 3.
We shall slightly simplify the notation of the previous section by defining M
Mh(OFt), i.e., M {w Mh w 0 at vertices of Z-h N OFt, Ow/On 0 at midpoints
of edges of -h N 0}.

Counting degress of freedom, it is easy to see that dim M the number of
interior vertices (vi) + the number of interior edges (el). We now give a simple
characterization of Zh using the Morley space M. Let curlh IT curllT
(O/Oy,--O2/OX)T. Then we have the following theorem.
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THEOREM 4.1. Zh curlh M.
Proof. We first show that curlh M C_ Zh. For E M, let v curlh . Then

curl. s -0/0n is continuous at midpoints of T and curl, n 0/0s is also,
since its value along an edge of T is the difference in the values of at the vertices
determining that edge. Hence v s and v n and thus v are continuous at midpoints

V0of Th. A similar argument shows that v 0 at midpoints lying on 0. Thus v E h"
Since

div dx 0 V
T

v Zh" We now show equality by proving that the dimensions of the two spaces

are the same. Again let T, e, and v denote the number of triangles, edges, and
vertices, respectively, in the triangulation -h, and eB denote the number of boundary
edges. First observe that dimcurlh M dimM ei + vi. Using Euler’s formula

v e T + 1 and the fact that v vi eB, we get that dimcurlh M 2ei T + 1.

Now note that dim Zh > dim Vh--(T-- 1) 2ei-T+ 1, since the divergence condition

involves one constraint per triangle and at least one of these is redundant, i.e.,

E IT div v dx
T

v.nds-O.
T T’

Next observe that

dim Zh dimN’(div V) dimV dim T4(div V) 2ei dim Tg(div V),

where N" and 7 denote the null space and range respectively. Hence, to complete
the proof, we need only show that dim T(div Vh) >-- T-1. This is easily done by

induction on T. When T 2, let u be zero at the midpoints of boundary edges and

u be one of the unit normal vectors at the midpoint of the common edge. A simple

computation shows that div u 0. Assuming the result is true for some T1 _> 2, add

another triangle in such a way that the number of interior edges increases by at least
one. Now take u 0 at all midpoints except the midpoint of the new interior edge,

where we again take it to be one of the unit normals to this edge. Again div u 0

and div u is not contained in the range of the divergence operator on T1 triangles.

Hence the range of div has increased by at least one, and the result now follows by
induction. [

Using this result, we may substitute u curl w, v curl z in the equation

thus obtaining
(4.3)

# Ox20x
T
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Note that this is a slight modification of the usual Morley method for the biharmonic
problem. In the usual Morley method, the right-hand side of (4.3) is replaced by

f (O x(4.4)
\ Oy Ox

z dx.
T

For z E M, these are not the same.
Once again, it is interesting to compare the error estimates for these two methods

and the modified Morley method analysed in [1], in which the function z in (4.4) is
replaced by its continuous piecewise linear interpolate. Denote by w, w, and w, the
approximate solutions produced by the standard Morley method, the Arnold-Brezzi
modified Morley method, and (4.3), respectively. Then we have for the cases 1, 2
from [1] and for 3 from [3] and the fact that Uh curlh Wh, the following error

estimates valid on a convex polygon.

w wll2,h _< Ch(I rot fll-I + hll rot fllo),

IIw wll2,h Chll rot fll-1,

I[w w[12,h Chllfllo,

IIw wlll,h Ch2(ll rot fll-1 + rot fll0),

IIw wllx,h Ch=(ll rot fll-x + rot

IIw wl[1,h Ch211fllo,
where

-g2x OxO ]T

f grad w 19. dx.
T

To compare these, we note that by the Helmholtz decomposition, f may be

rot fll-1 zx qll-1 curlqllo,

while
curl qllg + grad

If we are given the function f, then the I1" II.,h estimate for w is somewhat better

than that for w, and definitely better than the corresponding estimate for w. In
the I1" IIl,t, however, the estimate for w is the best in terms of regularity required
for the data. If we think of the function g as given, then by setting f curl q, where

q E H satisfies A q g in Ft, we may replace [Ifll0 by Ilgll-1 in the error estimates for

w. This would make the estimates for w the best in both cases. The problem with
this, of course, is that it requires the exact solution of Poisson’s equation. In fact, it is
not difficult to show that if q is approximated by its Ritz projection into continuous
piecewise polynomials of degree >_ 2, then the same estimates hold. This extra work
may only be worthwhile if f L9(2), but rot f t L2(f).

written in the form f curl q + grad r, where q e H(a) and r e H(ft), and

that this is an orthogonal decomposition in L2 (ft). Hence,
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5. Nonconforming P1 approximation of the equations of elasticity. In
the previous section, we considered the approximation of the Stokes problem by non-
conforming P1 elements. If we view this equation as having arisen as the incompressible
limit of the equations of elasticity, then it is important to note that the form of the
Stokes equations we considered in 4 was dependent on the choice of pure displace-
ment boundary conditions. If we had considered pure traction or mixed boundary
conditions instead, the the natural bilinear form would have been

/n C(u) (v)dx instead of ] grad u grad, v dx.

Although this distinction is not crucial for conforming finite element methods, it is
crucial for nonconforming P elements. In this section, we show why this is so by con-
sidering the nonconforming piecewise linear approximation of the equations of linear
isotropic elasticity, subject to the boundary conditions u 0 on F1, an g on F2. A
natural method is as follows.

HS V such thatFind (7h E ~h, h E ,,,h

Aah 7 dx E (Uh) v dx V7 e h,
T

T

Vv V

where now Vh {v Vh v 0 at midpoints of T on F}. When A is invertible,
this system is easily seen to be equivalent to the pure displacement method as follows.

V such thatFind .h ,..h

E ] C(h)~ (v) dx=-/nf.vdx+~ ] g.vds~ VvE Vh

it is also equivalent to the following approximation of the Stokes equa-When u 3,
tions.

V0Find Uh ,,,h, Ph Qh such that for all v V0,h and q Qh

E/T divq dx O.
T

The key step in the analysis of any of these equivalent formulations is a proof of
a discrete version of Korn’s inequality, i.e.,

(5.1) Ellgradu]l 2 <KE[I(u)]I2
T T

Unfortunately, this inequality does not always hold. In particular, consider the case
when F is empty so that no boundary conditions are imposed on u. On the continuous
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level, Korn’s inequality holds if we factor out the three-dimensional space (a + by, c-
bx) of rigid motions. On the discrete level, the dimension of {u E Vh (u)
0 on each T} is greater than or equal to 2e- 3T _> eB, where e, T, and eB are defined
as in the previous sections. Hence, removing global rigid motions is not enough for
the inequality to be satisfied. A more thorough discussion of Korn’s inequality in this
case for nonconforming piecewise linear, quadratic, and cubic finite elements may be
found in [5].

If we consider the case when u 0 on the boundary, then the situation is more

complicated. The following example shows that for some meshes, Korn’s inequality
fails. Consider the triangulation in Fig. 1.

(0,1)

T
(-1, 0) (1,0)

T

(0,-1)

FIG. 1

Then it is easy to check that u of the form-- /2+ 1/2
(1/2+y (--1/2 xY) in T4u- \-1/2-x]

in T3, u- \-1/2+
satisfies u E V, grad u # 0, but h(U) 0. Hence, Korn’s inequality fails.

A second possibility is that Korn’s inequality may hold, but the constant will
approach infinity as h approaches zero. To see an example of this, consider the case of a
uniform mesh of isosceles right triangles of minimum side h defined on ft (0, 1) x (0, 1)
(see Fig. 2).

FIG. 2
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For this mesh, we shall first prove the following theorem.
THEOREM 5.1. If u E V satisfies h() O, then u O.

Proof. The proof follows inductively from the following two lemmas, starting from
the triangle in the upper left-hand corner of the square.

LEMMA 5.2. If (u) --0 in a triangle T and u vanishes at the midpoints of two

edges ofT, then u 0 in T.

Proof. Since (u) 0, u is a rigid motion, i.e., it has the form

A simple calculation shows that if u vanishes at two distinct points, it must be iden-

tically zero. [
LEMMA 5.3. Let T1 and T2 be two triangles with a common edge e. Let P3

denote the midpoint of e and P (x,y) and P2 (x2,y2) denote the midpoints
of a noncommon edge of T1 and T2, respectively. Suppose u is a function defined on

T1 [9 T2 that is continuous at P3, vanishes at P and P2, and satisfies h(U) 0 in

T t2 T2. If the points P, P2, P3 do not lie on a line, then u 0 in T k)T2.

Proof. To simplify the computation, we may take (without loss of generality) the
midpoint P3 of e to be (0, 0). First note that the equation of the line through the
points P3 and P is given by -ylx + xy O. Since the point P2 is not on this line,
-xy2 + x2y O.

Now since (u) 0 on each triangle, u will have the form

+ by
in T, u inu bx dx

The constants a and c are the same on the two triangles, since u is continuous at Pa.
Since u 0 at P1 and P.

a + by1 O, c bXl 0, a + dy2 O, c dx2 O.

Hence,
bx dx2 0, by-dy2 =0.

Since it was shown above that the determinant -xlY2 + x2Yl 0, b d 0. This
implies that a c 0 and so u 0 in T t2 T2. [

V Since all normsFrom Theorem 5 1 it follows that II(u)ll0 is a norm on h"
are equivalent on the finite-dimensional space V (5 1) holds for the uniform meshh,

under consideration for some constant K. We now show that for this uniform mesh,
the constant K is at least O(h-/2) and hence tends to infinity as h tends to zero.
Setting

xi (i + 1/2)h, yj -(j + 1/2)h, i,j 0, 1,... ,N- 1,

we define

u (--1)i+j+ (Y YJ,
\xi x/
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for ih <_ x <_ (i + 1)h, jh <_ y <_ (j + 1)h, i,j 1,2,... ,N- 2 and u 0 at all

remaining degrees of freedom.
Then, for example, u 0 on the triangle with vertices (ih, 0), ([i + 1]h, 0), (ih, h),

and u (-1)i+1 (Y-0h/2) on the triangle with vertices ([i + 1]h, 0), (ih, h), ([i + 1]h, h).
An explicit computation shows that

2 dx 4h2(N- 2) 4h(1 2h)

and

Hence,
grd hU [[0-_ (1 h)l/2IIh(U)ll0 2h

6. A nonconforming mixed approximation of the elasticity equations. In
the case of pure displacement boundary conditions, we may easily avoid the difficulty
of the last section by basing our nonconforming P1 finite element approximation of
the elasticity equations on the weak formulations (2.8) or (2.11) rather than (2.3) or
(2.6). The method based on (2.8) would be as follows.

V0Find ,.h E ,.,oh’ Ph Qh such that

(6.1)

#EfTgradh, "gdvdx-E/TPhdivvdx--/a vdx Vv VOh
T T

(6.2) fTdivqdx2U-lPhqdx VqQh.
T

We note that when -1 < u < 7, Ph may be easily eliminated as in the continuous
case to give the pure displacement approximation of (2.11).

V such thatFind h h

p gradh’gradvdx divuhdivvdx-- f.vdx Vv h"1--2p .....
T T

The incompressible limit of the first of these approximations is the approximation
considered in 4. This approximation is also equivalent to a mixed finite element
approximation of the elasticity equations, which is similar to the one developed in [2]
for the purpose of alleviating the requirement of symmetric stress tensors. We end the
paper by deriving this equivalent mixed mrmulation beginning from (6.1), (6.2) and
comparing it to the method of [2].

Define a variable

(6.4) h grad~ ,,,.,U h Ph ,5
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Taking the trace of this equation, we get that tr(h) #div Uh 2ph. Since (6.2)
implies that on each triangle T, div ,.h [(2u--1)/#]ph, we obtain tr(h) (2u--3)ph.
Using this result and (6.4), we find that gradh Bh, where

B- tr(E)
# 3- 2u

Taking the weak form of this equation, and inserting (6.4) in (6.1), we see that h,
Uh satisfies the following mixed formulation.

V such thatFind h E Hh, Uh E ,,h

T

(6.6) V e V,.

To obtain (6.1), (6.2) from the mixed formulation (6.5), (6.6), we define Ph - Qh
by Ph tr(h)/(2u- 3). Then on every triangle T, (6.5) implies that gr2du
Bh --[h + Phi]l#, SO

(6.7) h P grdh Ph6"
Inserting this result in (6.6), we obtain (6.1). Now taking the trace of (6.7) and using
the definition of Ph, we find that on each triangle T, div Uh [(2u- 1)/#]ph. This

equation is equivalent to (6.2).
Although a is not a variable in any of these formulations, an approximation to r

may be easily recovered based on the formula (2.5), i.e.,

It is easy to check that this is equivalent to obtaining h from h by the formula

_p + + 2(1 u) tr(ph)5
2u--3 "

We now compare (6.5), (6.6) to the method of [2] in the special case where the
lowest order Raviart-Thomas-Nedelec elements are used. To do so, we define the
lowest order Raviart-Thomas spaces

RTo(T) { q (a + bx, c + by)" a, b, c R},

RTl(’rh) {q e [L2(t)]2" qlT e RTo(T), VT e Th},

RTg(Th) { q e RT-I (Th) q n continuous across interelement boundaries},

MI(Th) {V e Le(ft) VlT e Po(T), VT e "rh}.
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We then define R RT(rh) RTo(rh) R- RT-I(rh) RT-I(rh) and Shh
M(Th) M(rh). The method of [2] using these spaces may then be stated as
follows.

R um satisfyingFind e h’ h e h

(6.8) /aB "" um div r dx O gr Rhh T dx + ,h

f f
To show the relationship to (6.5), (6.6), we use the ideas of [1] for the second-

order scalar problem to give an equivalent formulation of (6.8), (6.9). Following [1],
we introduce piecewise constant Lagrange multipliers h to eliminate the interelement

V U B3continuity on Rh and then define a function ch h (Vh) satisfying

for each edge e and every triangle T of 7h, where B3(mh) denotes the space of cubic

bubble functions. Inserting these definitions and integrating by parts, we find that, satisfyh h

TTh

gr.dd of . dx V. ()
Th

here/ol denotes the L projection of I into pieceise constants.

We next observe that R- + L, where L is the set of r which on each

triangle T hve the for

(b,(x-2) /l(y ))- (_) (-)
where b and b are constants and 2 and denote the average values on T of x and y,
respectively. We note further that this decomposition is orthogonal in L2(). Hence,
we may write

V and B3withHh, pLh,h, (Vh) Since forV gradHh
and Te fT grad T dx 0 for B3(vu) and v Hh, it is easy to check that

h,C satisfy (6.5), (6.6), with f replaced by Pof. Ifwe define p tr(p)/(2-3)
then by our previous analysis, , p satisfy (6.1), (6.2) and satisfies (6.3) with

f again replaced by Pof. This is exactly anMogous to the result derived in [1] for the

scalar case. The computations of and may then be carried out independently,

although the system is somewhat more complicated than the scalar case, due to the
presence of the tr() term.
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