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SPACE-TIME FINITE ELEMENT METHODS
FOR SURFACE DIFFUSION WITH APPLICATIONS TO
THE THEORY OF THE STABILITY OF CYLINDERS*

BERNARD D. COLEMANt, RICHARD S. FALKt, AND MAHER MOAKHER

Abstract. A family of space-time finite element approximation schemes is presented for the nonlinear partial
differential equations governing diffusion in the surface of a body of revolution. The schemes share with the partial
differential equations properties ofconservation ofvolume and decrease of area. Numerical experiments are described
showing that the result of the linear theory of small amplitude longitudinal perturbations of a cylinder to the effect that
a long cylinder is stable against all perturbations with spatial Fourier spectra containing only wavelengths less than
the circumference of the cylinder does not hold in the full nonlinear theory. Examples are given of cases in which
longitudinal perturbations with high wave-number spectra grow in amplitude, after an initial rapid decay followed by
a long "incubation period," and result in break-up of the body into a necklace of beads. The results of finite element
calculations are compared with the predictions of a perturbation analysis.

Key words, axially symmetric motion by Laplacian of mean curvature, stability against surface diffusion
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1. Introduction. We are concerned here with the numerical computation of morpholog-
ical changes induced in an isotropic and homogeneous solid body by mass diffusion within the
body’s bounding surface $. We employ a constitutive equation, due to Herring [6], expressing
the mass flux q in $ as a linear function of the gradient in $ of the sum H of the principal
curvatures:

(1.1) q -KVsH.

Here K > 0 is a material constant proportional to the surface self-diffusion coefficient of the
isotropic material of which the body is composed, and we are using a, sign convention for
curvature such that H is positive for a sphere. As was observed and exploited by Mullins [9],
when the only motion is the flux q in S, the mass balance yields the following relation between
the rate v of advance of S along its exterior normal and the surface divergence of q:

(1.2) pv + divsq 0;

here p is the mass density, per unit volume, of the material in the body.
For a given characteristic length L, the theory of (1.1), (1.2) is rendered dimensionless

by replacing quantities x, r, etc., with dimension of length by xL, rL, etc., the time by
pL4t/K, and hence q by Kq/L2 and H by H/L. When this is done, (1.1), (1.2) yield

(1.3) v AsH,

and thus are said to govern the theory of motion by Laplacian ofmean curvature. That theory
has a less-developed literature than the theory of motion by mean curvature, which is based
on the equation

(1.4) v -H.
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SPACE-TIME ELEMENTS FOR SURFACE DIFFUSION 1435

In a recent survey [1], Cahn and Taylor discuss the difficulties encountered when one
attempts to extend techniques employed to develop the theory of motion by mean curvature
to the theory of motion by Laplacian of mean curvature. Whereas H in (1.4) is given by
second-order spatial derivatives of surface coordinates, AsH in (1.3) depends on fourth-order
derivatives of the coordinates, and this elementary fact has the important consequence that a
maximum principle employed in the theory of (1.4) does not hold for (1.3).

Among the papers presenting computational methods for motion by mean curvature are
that of Dziuk [3], giving a semidiscretization scheme based on tangential gradients, and that
of Sethian [11 ], based on a level set formulation of equation (1.4).

Among recent analytical developments in the analysis of the motion of surfaces by mean
curvature are Huisken’s short-time existence and regularity results [8], Soner and Songanidis’s
analysis of the nature of singularities in axially symmetric surfaces [12], and Evans and
Spruck’s theory of viscosity solutions [5] for a level set formulation of (1.4).

Interesting and very recent results in the theory of motion by Laplacian ofmean curvature
in a plane are proofs by Elliott and Garcke [4] of the asymptotic stability of circles and of
global existence of planar solutions with initial data in a neighborhood of a circle.

The numerical methods and results presented here are for initial-value problems arising
in the theory of motion by Laplacian ofmean curvature for axially symmetric surfaces subject
to periodic boundary conditions. In 2 we give various forms taken by the system (1.1), (1.2)
for such surfaces and discuss relevant laws of conservation of volume and decrease of area [2].
A variational formulation presented in 3 is discretized in 4 with space-time finite element
schemes that yield analogues of the laws of conservation of volume and decrease of area that
hold for (1.1), (1.2). Results of numerical experiments are presented in 5.

For an axially symmetric surface, in a natural cylindrical coordinate system with radial
coordinate r and axial coordinate x, the equation (1.3) of motion by Laplacian of mean
curvature becomes

(1.5) rt
r (1 -+-r2x)/ r(1-+-r2x)/ (1-t-r2x)3/ x

The emphasis here is on cases in which this equation is subject to initial data of the form

(1.6) r(x, O) ro(x) + eu(x)

with e > 0 and u an almost periodic function. For simplicity we often take u to have a finite
Fourier spectrum, i.e., to be of the form

(1.7)
M

hi(X) E ci sin(kix + qPi)
i=1

with Ci, ki > 0. (In the numerical calculations of this paper u is assumed periodic and hence
the wave numbers ki in (1.7) are commensurate.) For longitudinal perturbations of a cylinder
ofradius a, (1.5) is obtained from (1.1), (1.2) by putting L a and making the change of units
discussed above. For a given u, the perturbation is small if e is small.compared with 1, and,
in (1.7), ki < 1, 1, or > 1, in accord with whether the corresponding period Pi 2re ki
exceeds, equals, or is less than the circumference of the unperturbed cylinder.

Since the work of Nichols and Mullins [10], in the study of small amplitude longitudinal
perturbations of a cylinder it has been customary to restrict attention to the linearization of
(1.5) about r 1, i.e., to the equation

(1.8) rt + rxxxx + rxx O,
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1436 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

whose solution with the initial condition (1.6), (1.7) is

(1.9)
M

r(x, t) + Ci et(ki)t sin(kix + (t9i)
i=1

where ot obeys the dispersion relation

(1.10) o(k) k2(1 k2).

The maximum value of o(k) is and occurs at k 1/,/-. As the right side of (1.10) is
negative for k > 1, the linear equation (1.8) implies that whenever, in (1.7), ki > 1 for all i,
the perturbation decays to zero as -- ec. We recently presented arguments [2] to the effect
that such is not the case in the theory of the nonlinear equation (1.5).

The arguments given in [2] are based on formal perturbation analyses employing an
expansion of the solution of (1.5), (1.6) in e. A perturbation argument taking into account
terms O (e2) yields the conclusion that if

(1.11a) ki > 1 for 1 M

and, in addition, two distinct wave numbers, ki, kj, have Iki kj] < 1, then, although the
solution of (1.5) will exhibit an initial decay of the perturbation, after a time whose duration
can be estimated, a new sinusoidal term with wave number equal to ]ki kj ], i.e., to that of the
envelope of the ith and jth terms in (1.7), will appear in the solution and grow in amplitude,
taking the surface far from cylindrical shape. When terms O(n) are taken into account the
following generalization of this conclusion is obtained: if (1.11 a) holds, and, in addition, there
is an integer n > 2 and there are M integers mi (positive, negative, or zero) that obey the
relations

M

(1.11b) Z Imil n and 0 <
i=1

miki
i=1

<1,

then, again after an initial decay, the perturbation will grow.
The perturbation analysis given in [2] and discussed here in 5 leads one to expect, but

cannot be employed to prove, that in the cases in which (1.11 a) and (1.11b) hold the growth in
perturbations proceeds until there is a time t* and values x* ofx for which limt__,t, r(x*, t) O.
The numerical methods we present here were developed to see if such is the case and, if so,
to permit precise calculation of the break-up time t* as well as the "incubation time" required
for occurrence of appreciable growth of a perturbation after its initial (and generally rapid)
decay. Numerical experiments confirming expectations based on the perturbation analysis are
described in 5. We also give there an example of a case in which our numerical methods
can be applied to study the evolution of the body for > t*. In general, a topological change
occurs at t*, resulting in the break-up of the original body into separated subbodies. Thus
we refer to t* as the "time of break-up." (In the theory of motion by mean curvature, in which
the volume is not conserved but decreases in time, similar phenomena can occur, and their
times of occurrence are often referred to as times of "pinch-off.")

2. Basic equations. To describe the evolution of the surface of an infinite body of rev-
olution, we continue to use the cylindrical coordinates x and r of equation (1.5). We write
t for the unit tangent to the time-dependent curve r r(x, t) in the (x, r)-plane, and we
define the signed magnitude q of q so that q qt. For axially symmetric surfaces, when the
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SPACE-TIME ELEMENTS FOR SURFACE DIFFUSION 1437

dimensionless units are used, (1.2) and (1.1) become, respectively,

(2.1) rrt -(rq)x,

(2.2) q -(Vs H). t

where

v/1 +rx2

r V/1 +rx2
For numerical calculations we treat the body as one with finite length subject to space-

periodic boundary conditions with, say, period P. The resulting problems have properties of
volume conservation and area decay which we now discuss.

It follows from (2.1) that the volume of material lying between cross-sectional planes
x a and x b with b a P, i.e.,

b

(2.4) V (t) rc re dx,

is constant in time if r and q -Hx/v/1 + rZx are P-periodic. Equations (2.1) and (2.2)
together imply that the surface area (or the free energy) of the portion of the body lying
between these two planes, i.e.,

(2.5) P (t) 27r r + r2 dx,

is a monotone-decreasing function of time, provided that not only r and Hx/v + rZx but also
H and rx /v/ + r2, are P-periodic. The periodicity of r, H, rx /v/1 + rx2, and Hx/v/1 + rx2 are
equivalent to the periodicity of r, H, rx, and Hx. Thus, under boundary conditions implying
such periodicity, V is preserved and q represents a Lyapunov function for the evolution of r.

We put f2 (a, b) and write 2- (0, T) for an interval with T > 0 on which solutions
of (2.1)-(2.3) with r > 0 are defined. Under the conditions of periodicity just described

(2.6) + -2rr
v/1 + rx2

dx- -2re q2rv/1 + r2dx < O,

and hence under the same conditions

(2.7) f0tf (t) (t) + 27r q2(x, r)r(x, r) + r2x(X, r)dx dr

is constant:

(2.8) (t) (0) P(0).

For each initial configuration r0 we seek r(., t) satisfying (2.1.), (2.2), and the periodicity
conditions. The equation of evolution for r, (1.5), which is fourth order in the space variable
x, can be formulated in terms of r and H to yield a coupled system of second order in x.
The resulting fully nonlinear initial-value problem with periodic boundary conditions has a
variational formulation that can be slightly simplified by introducing a function R defined by

(2.9) R(x, t) -rZ(x, t).

In this way we are led to the following problem.
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1438 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

(2.10)

(2.11)

Problem RH. Find (R, H) with R > 0 satisfying

2RHx )x (x,t)f2xZ,Rt
v/2R + RZx

( Rx )x (x, t) f2 x Z,H
v/2R + RZx v/ZR + RZx

with the periodic boundary conditions

R (a, t) R (b, t),

(2.12) H(a, t) H(b, t),

and the initial condition

(2.13)

Rx (a, t) Rx (b, t) Yt 6 2",

Hx (a, t) H (b, t) Yt 6 2-,

,.o(X)R (x, O) Ro (x)

3. Variational formulation. We use standard notation: L2(f2) is the space of square
integrable functions on 2, L (f2) is the space ofessentially bounded functions on , H (f2) is
the Sobolev space of functions in L2 (f2) with distributional derivative in L2 (f2), and Wl,c (f2)
is the Sobolev space of functions in L() with distributional derivative in L(). Of
importance here are subspaces H and W’ of H () and W’(), with (a, b), that
arise from our concern with periodic bounda conditions

{ n(). () (b)},

We also define H as the dual space of H. Let X be a Banach space on with norm
[[" [Ix. We denote by L2(0, T; X) the space of functions f from (0, T) into X such that

(ff []fl]dt)/2 < and by L(0, T; X) the space of functions f from (0, T) into X such
that [[ f[[x is essentially bounded on (0, T).

For brevity we write

(L g) fg dx.

Variational form of Problem RH. Find R 6 L(0, T; W’) with R > 0 and Rt
L2(0, T; H1) and H 6 L2(0, T; H) satisfying

(.) ((., 0), w) (N0, w) w e ().
We note that there e not yet available proofs of existence and uniqueness for solutions

for either Problem RH or (3.1)-(3.3). However, if we are granted existence and uniqueness,
the stated variational fo of Problem RH is a useful formulation for the construction of the
conforming finite element approximation schemes presented in 4.
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SPACE-TIME ELEMENTS FOR SURFACE DIFFUSION 1439

Straightforward arguments show that solutions of (2.10)-(2.13) obey (3.1)-(3.3) and that
solutions of the variational equations (3.1)-(3.3) with sufficient regularity obey (2.10)-(2.13).

Constancy ofvolume and monotone decrease of surface area hold for each solution (R, H)
of (3.1)-(3.3). To show this, we observe that in our present notation

(3.4) f" 2rc(Rt, 1),

and hence by putting u _= 1 in the time interval (0, t) and u -= 0 in the time interval (t, T) in
equation (3.1), we obtain

(3.5) v(t) v(o).

In (3.1) and (3.2) by.putting u H and v Rt in the time interval (0, t) and u -= 0, v _= 0
in the time interval (t, T), both of which are admissible test functions, we obtain

(3.6)

(3.7)

(Rt, H) dt +
v/2R + R2x, H2x dt O,

(H, Rt) dt
v/2R + R2x

g at-1t-
v/2R 4 R2x

gtx dl,

As q 27r(v/2R + Rx2, 1) and hence

(3.8) +--27r
v/2R+Rx2

,Rt +27r
v/R4R2x’Rtx

(3.7) yields fd + dt 27c fd (H, Rt) dt, and, by (3.6),

(3.9) (t)- (0) -27r
v/2R + R2x

H2x dt.

Hence

tp (t) *(0) -2yv

vl2R + R2 H2x dt <_ O.

4. Finite element method. To approximate the variational form of Problem RH, we
here construct a family of mixed finite element methods for which piecewise polynomial
approximations in space and time are used for both R and H. Leta --x0 < xl < < XN b
and 0 o < < < K T be partitions of f2 and 2-, and let hi Xi+l xi,

0 N and kj j+ j, j 0 K 1, be mesh spacings and time
steps. Let S (f2) be the finite element space of continuous functions Q that are piecewise
polynomials of degree p > on each interval of the partition of f and obey the periodicity
condition Q(a) Q(b). We write S (2-) and (2-), respectively, for the finite element
spaces of continuous and discontinuous functions that are piecewise polynomials of degree
q > 0 on each interval of the partition of 2-. The members of the tensor product spaces

Shtq S (a)@ Sc (2-), -p,q p -qSh s (R) s
are functions on f2 x 2-. We consider, for given integers p > 1, q > O, the following.
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1440 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

Finite element approximation of type (p, q) to Problem RH. Find Rhk E Sq+l and
-p,qHhk Sk satisfying

((Rhk)t, Uhk)dt + v/2Rhk + (Rhk)2
(Uhk)x dt 0 -p,qVuh Sh

(Hhl, Vhlc)dt
v/2Rh + (Rhlc)2x,

(Vhk)x dt

+
v/2Rhk -Jr-(Rhk)2x

Uhk dt VUhk q,

(Rhk (’, 0), Whk) (Ro, Whk) VWh S().

We note that Rh is a polynomial of one degree higher in time than Hh and the test
functions uh and Vh. The simplest finite element approximation in this family is that of
type (p, q) with p and q 0, i.e., that for which Rhk is a continuous piecewise linear
polynomial in both space and time and Hh and the test functions Uh and vh are continuous
piecewise linear polynomials in space and piecewise constant in time.

Because the test functions Uhk and vhk are discontinuous in time, finite element solutions
(Rh, Hhk) can be computed by marching through successive time intervals. Let Pq (In) be
the set of polynomials on 2TM [tn, +l] of degree q. On the time-strip I the appropriate
restrictions of Rhk and Hhk belong to S (S2) (R) pq+l (In) and S2 (f2) (R) Pq (In), respectively,
and obey, for each Uh and Vh in S() (R) Pq (In),

f
t"+ ft"+( 2R(Hh)x

((Rhk)t, uhk)dt +
v/2Rhk + (Rhlc)2xdtn dtn (Uh)x) dt O,

(4.2)

(Hhk, Vhk)dt f (Rhk)x

V/2,Rh -[- (Rhk)2
(Vhk)x dt

+
at v/2Rhl -}- (Rh/c)x2, Uhk dt

where Rh at t" is fixed by continuity (or by the initial condition if n 0).
The arguments which gave us (3.4) and (3.8) hold for the spaces to which Rhk, Hh,

Uh, and Vh belong for each finite element approximation, and each approximate solution
(Rh, Hhk) will show constancy of V and (I) and monotone decrease of q.

In the simplest case, p and q 0, we write Rh(x, t) on the time-strip 2- as

Rhk (X, t) [Rhk(X, n+l) Rhk(X, tn)] + Rhk(X, tn),

and Hh1(x, t) reduces to the constant-in-time function Hh(X, t) Hh(X, (t + t+l)/2).
Upon use of the usual expansion in piecewise linear basis functions, (4.1) and (4.2) yield a
system of nonlinear algebraic equations for the coefficients of the basis functions. In our nu-
merical work that algebraic system was solved by an iteration procedure which was initialized
with the choice Rh (x, 1) Rhk (X, ) for the time-strip I [t, and carried forward
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SPACE-TIME ELEMENTS FOR SURFACE DIFFUSION 1441

with the extrapolation

0 ,tn+l ( kn) k
ghk(X q- ghk(X, n) k---(_l ghk(X, n-l)

for the strip 2-n, n _> 1; here Rk denotes the lth iterate of Rhk. At the lth iteration on2-, n _> 0,
Rlhk, and Hh/ are determined by solving the linear system

_ti,,
n+

_jfn+l ( 2Rlhl
(Rhl)x2

(Hh)X
(Uh)x dt O,((Rlhl)t, Uhk)dt +

(Hlh, Vh)dt
j2R_

+ Vh dt

with Uh and Vh as in (4.1), (4.2) and
n

R(x, t) k[R(x, n+) R(x, tn)] + Rh(X, t).

5. Numerical experiments. For the two numerical experiments described below, we
employed a finite element approximation of type (1, 0). The initial data had the form (1.6),
(1.7) with each phase angle, i, zero and, more importantly, each wave-number ki greater than
l, so that (1.10) yields

(5.1) a(ki) < O, i= M,

and hence each exponential term in the solution (1.9) ofthe linear equation (1.8) decays to zero.
The wave-numbers ki were taken to be commensurate, which makes the periodic boundary
conditions (2.12) exact relations.

Let Y be given by

(5.2)

and put

(5.3)

b

Jr(b a)F2 V(0) Jr rdx

g(t) sup Ir(x, t)
X

A cylindrical body can be said to be asymptotically stable against a class 79 ofperturbations,
u, if for each function r0 / u with eu in 79 the solution of Problem RH obeys the two
conditions

(I) r(x, t) > 0 (x, t) e f2 x (0,

and

(II) g (t) --+ 0 as --(I) asserts that "break-up" does not occur; (II) asserts that in the limit as -- cx the body
returns to cylindrical shape with a radius determined by the mean volume V(0)/(b a) of
the perturbed cylinder. (To generalize the condition (II) to initial data that are not periodic,
but instead, say, almost periodic, one may replace V (0)/(b a) in the definition of by the
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1442 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

quantity

(5.4) (Trr2} 2(7r R) lim
7c ’lx+x r2dx

x 2X J-X+xo

which is constant in time and, for almost periodic functions, independent of x0.)
When the function u in (1.6) is specified, the solution r of the nonlinear equation (1.5)

depends on e. For the perturbation analysis given in [2] we made the usual assumption that
the dependence of r (x, t; e) on is sufficiently smooth that for each integer n one can write

(5.5) r(x, t; ) + eSw(O(x, t) + O(en+l).
/=1

By placing (5.5) in (1.5) and using (1.6) with u as in (1.7) we found, using a perturbation
analysis of order 2, i.e., setting n 2 in (5.5), that the term 1 + ew(1)(x, t) is given by the
right-hand side of (1.9), and

(5.6)

where

(5.7a)
3c(ki)

A(i; t)
2[ot(2ki) 2ot(ki)]

(5.7b) A2(i, j; t)

(5.7c) A3(i,j;t)

(e(2ki) e2Ot(ki)t),

CiCj+(ki,kj)
ot(ki -t- kj) ot(ki) ot(kj)

(eot(ki+kj) e(Ot(ki)+(kj))t),

cicj-(ki,kj)
ot(ki kj) (ki) (kj)

(eo(k-kj) e(a(k)+a(kj))t)

with o as in (1.10) and

(5.8a) fl(k) k2(1 -+- k2),

(5.8b) fl+ (ki kj) (ki kj + k + k) (1 -Jr- ki kj

(5.8c) 2fl (ki, kj) (ki kj ki kj)(1 ki kj).

When, as in the numerical experiments, (1.1 la) holds, the quantities ot(ki), ot (2ki), ot(ki -+-
kj) are negative for each and j > i. Hence not only w() but also all the terms in w (2), other
than the constant term a2 /M__, c/2 and possibly some of the form e2f(ki, kj," t)cos((ki
kj)x + Pi (#j with

(5.9) f (ki, kj; t)
cicjfl-(ki, kj) ea(ki_kj)t

ol(ki kj) ot(ki) ot(kj)
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SPACE-TIME ELEMENTS FOR SURFACE DIFFUSION 1443

will decay to zero exponentially with increasing t. The quantity If (ki, kj; t)l is constant in
time when Iki kjl 1; it increases exponentially if and only if

(5.10) 0 < Iki- kjl < 1.

Thus, if (1.11a) holds and in addition Iki kjl > for all distinct pairs (i, j), the second-
order perturbation analysis, like the linear theory, does not yield the existence of times at
which g(t) increases; however, a higher analysis may yield such times. In fact, exponential
growth of g(t), beginning at some time > 0 and proceeding until break-up occurs, i.e., until
a time t* at which there are.values x* of x with r(x*, t*) 0, will be shown in an nth-order
perturbation analysis if (1.11b) holds for an M-tuple (m m mM) with the mi having
(positive, negative, or zero) integral values.

In the numerical experiments reported here (1.1 la) and (5.10) hold for at least one pair
(i, j), < j, and hence although the linear theory based on (1.8) predicts that the cylindrical
body is asymptotically stable against the perturbation studied, the second-order theory predicts
that the body is not stable against the perturbation and suggests that break-up can occur at a
finite time. Specifically, underthe conditions of the experiments, the second-order analysis
yields the conclusion that for short times r(x, t) is approximated by the expression

(?2 M M

+ - Z c2i + e Z ciet(ki)t sifl(kix + q)i)
i=1 i=1

where each ot (ki) is negative, and hence, after a brief time interval, r (x, t) will be close for all
x to the constant

c + c/2 + 0((?4);? --[- -- i=1 /=1

i.e., the body will be essentially indistinguishable from a cylinder. In a subsequent time
interval, however, r (x, t) will be approximated by

52 M

+ - c2i +2 f(ki,kj;t) cos((ki-kj)x -I-q3 --qgj)
i=1 (i,j)eF

where f is as in (5.9) and r’ is the set of pairs (i, j) with 1 _< < j < M and [ki kj[ < 1;
during that interval g(t) will increase monotonically.

Let v be the minimum value that g(t) must have for a departure ofthe body from cylindrical
shape to be easily observable after g(t) has decayed and started to increase. The time t# at
which g(t) attains the value v (after an initial decrease) may be called the "incubation time"
for observable growth of a perturbation which according to the linear theory (1.8) would only
decay. The second-order perturbation analysis gives the following relation for t# in the case
in which there is precisely one pair (i, j) for which (5.10) holds"

(5.11) v 62f (ki, kj; t#).

A reasonable value for v would be 0.05. We note that equation (5.11) implies that t# varies
slowly, i.e., logarithmically, with e.

For large k, or(k) decreases rapidly with k; indeed, as oe(k) -k4. However, on the
interval 0 < k < 1 where or(k) is positive, the maximum value of or(k), ot(1//), is only
1 Hence the incubation time t# can be expected to be orders of magnitude longer than the4"
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1444 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

time required for decay of an initial perturbation that has each ki appreciably greater than 1.
This disparity in time scales requires that time steps be adjusted in numerical calculations in
accord with the rate of convergence of the iterative procedure described at the end of 4, i.e.,
in accord with the rate of evolution of R and H.

For the first numerical experiment the initial data correspond to the function

(5.12) ro(x) q--5 10-2 [sin(5x)+ sin(llx/2)],

which has minimum period 47r. Here kl 5 > 1, k2 11/2 > 1, but ]kl k21 1/2 < 1.
According to the second-order perturbation analysis, the two sinusoidal terms in the initial
data should decay rapidly, and, after this rapid decay, which in the present case lasts until
approximately 2 10-2, r(x, t) should be, for a while, close to a cosine function of x
which has period 47r and an amplitude growing as e(1-/2t with or(l/2) 3/16. In the finite
element scheme, the interval a < x _< b was chosen to have length 87r, i.e., two periods,
and was discretized into 512 equal segments. For the time interval 0 < _< 5 10-2 that
contains the times of rapid decay of g(t), the time step, At, was chosen to be 10-4; during
the early growth phase, i.e., for 5 10-2 < < 28.05, At was set equal to 10-2. For
28.05 _< _< 28.27234 t*, the time steps were refined in such a way that At decreased
rapidly as approached the break-up time t*. (As is common practice, we repeated suspected
critical parts of this and the second numerical experiment using refined spatial and temporal
meshes; the reported mesh densities are such that further refinement produced no change in
results.)

In Fig. l there are graphs of r versus x for various between 0 and t*. The initial data,
(5.12), are shown in Fig. la. The scale of the ordinate r contracts in the sequence from
Fig. lb to Fig. f, but in each case is greater than that of the abscissa x. Figure lb contains
graphs corresponding to 10-2 and t- 1.63 x 10-2. At 10-2 remnants of the terms
5 10-2 sin(5) and 5 10-2 sin(1 lx/2) can be seen perturbing the function 7(., t) given by

(5.13) 7(x, t) ? + e2f(5, 11/2; t) cos(x/2)

.where 2 25 10-4 and f is as in (5.9) with ot 3/16. At 1.63 10-2, g(t) attains its
minimum value, and at that time the difference between r(x, t) and ?(x, t) is not detectable
on the scale employed for r of Fig. lb. Figure l c contains graphs for values of at which
r(x, t) is close to ?(x, t); the earliest time at which the second-order perturbation analysis
gives results (here plotted with dashes) that are distinguishable from the finite element results
(on the scale of Fig. l c) is 15.

In Fig. 2, where we employ equal scales for the ordinate and the abscissa, there are shown
profiles of the axially symmetric body whose surface is given by r r(x, t). The initial
configuration is seen in Fig. 2a. At a time 10-2 the body is of cylindrical shape to within
an error of the order 0.1% in r. If we set v 0.05, the configuration shown in Fig. 2b, i.e.,
that for 20, is very close to one with g(t) v; in fact, the finite element results yield 0.05
for g(t) when 19.55; the second-order perturbation analysis, on the other hand, yields
0.05 for g(t) when 19.72. We think it remarkably fortunate that in this case an elementary
analysis that takes into account only the lowest-order nonlinear terms gives an estimate for
the incubation time t# that is off by only 1%.

There are cases in which the evolution of the subbodies formed at time t* can be studied
for > t* by reparameterizing with spherical coordinates the surface of each connected
subbody. In this procedure one chooses a point on the original x-axis to be the origin of
a spherical coordinate system, and the closed surface of the subbody containing that origin
is described by giving the distance ? from the origin to a point on the surface as a function
of and the colatitude q) measured from the x-axis. A finite element method analogous to
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1.1

1.0

0.9
0 5 10 15 20 25

(a)

1.002

1.001

1.000
0 110 1’5 210 215

1.02

1.00

0.98
0 5 10 15 20 25

(c)

1.05

1.00

0.95
0 5 10 15 20 25

1.2

1.0

0.8
5 10 15 20 25

1.0

0.5

0"00 5 10 15 20 25

FIG. 1. The radius r as a Junction of x ’at various times in the first numerical experiment: (a) 0; (b)
10-2 (wavy line), 1.63 10-2; (c) 0.1, 5, 10, 15 (the dashed curve gives the result ofthe second-order

perturbation analysis at 15); (d) 16, 18, 20; (e) 22, 24, 26; (f) 28, 28.25, 28.27234.

(a)

(b)

(d)

(e)

(c) (f)

FIG. 2. Profiles at selected times in the first experiment: (a) 0; (b) 20; (c) 23; (d) 25.5; (e)
28" (f) t* 28.27234.

that employed for the cylindrical-coordinate formulation gives satisfactory results in cases in
which, for all > t*, the closed surface remains star shaped with respect to a fixed point.
We note that for motion by Laplacian of mean curvature there is no analogue of Huisken’s
theorem [7] in the theory of motion by mean curvature, asserting that if a closed surface
deforming in accord with (1..4) is convex at one time o then it is convex at all subsequent
times.

D
ow

nl
oa

de
d 

10
/2

3/
15

 to
 1

28
.6

.6
2.

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1446 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

FIG. 3. Profiles in thefirst experimentat times t* +for " 0, 10-3, 10-1, 1, 4, 10. Note that at " 0, 10-3,
and O-1 the subbody is convex and that this convexity, which is not present at 1, returns before 4.

In the experiment under discussion here, the subbodies are congruent and for all > t*
are star shaped with respect to the midpoints of successive values of x*. Calculated profiles
of a subbody for several times t* -t-/" with/’ > 0 are seen in Fig. 3. When/" 10 each
component is a sphere in the sense that ?(0, t* / 10) is constant in q) to within six significant
figures; of course, the collection of spheres so obtained is the new equilibrium state of the
original perturbed cylinder.

The initial data for the second numerical experiment correspond to

(5.14)
ro(x) 1 + lO-2[sin(2x) + sin(13x/6) + sin(7x/3)

+ sin(5x/2) + sin(8x/3) + sin(17x/6)].

In this case r0 has minimum period 12zr. For the finite element computation, b- a was chosen
to be 12zr, i.e., one period. As in the previous case, the interval a < x < b was discretized
into 512 equal segments, and the time steps At were chosen to be 10-4 on an interval that
contained the times of initial decay, 10-2 during the early growth phase and much smaller
as approached t*. Numerical results are shown in Figs. 4 and 5. Here, again, albeit only
wave-numbers ki that exceed 1 are present in the initial perturbation, and hence the linear
theory predicts that g(t) should decay to zero exponentially in t. A second-order perturbation
analysis yields the conclusion that new wave-numbers given by Iki kjl will appear and grow.
In the present case there are five distinct values of ]ki kj] obeying (5.10), namely, 1/6, 1/3,
1/2, 2/3, 5/6. Of these, three, 1/2, 2/3, 5/6, have rates of growth, or(l/2) 3/16 0.1875,
oe(2/3) 20/92 0.2469, ot(5/6) 275/362 0.2122, that are close to maximum growth
rate o(1/,/) 0.25. The periods 2zrlki kj1-1 corresponding to these three fast-growing
modes are 4rr, 3rr, 12rr/5. The distances between adjacent local minima of r(x, t*) were
found to be 9.,35115, 9.42478, and 9.57204. One of these values is equal, up to five decimal
places, to 3zr 9.42478, and the other two are much nearer to 37r than to either 4zr or 127r/5.
As c(1/2) and ot(5/6) both are less than ot(2/3), it is not surprising that an examination
of spatial frequencies at t* confirms that the mode with wave-number 2/3 (period 3zr)
dominates the growth.

Whereas in the first experiment the body breaks into congruent subbodies, in this exper-
iment the break-up at time t* yields two distinct equivalence classes C1 and C2 of congruent
bodies. Figure 5d makes this clear. At t*, the bodies in C1 have length 9.57204, and those
in C2 have length 28.12708 2 x 9.33115 + 9.42478. We have found that members of C1
remain star shaped for all > t*, and the spherical-coordinate formulation can be employed
to follow their evolution to a final equilibrium state which is spherical. On the other hand, the
bodies in C2 cease to be star shaped at a finite time, and for them the spherical-coordinate for-
mulation is not applicable without major modification. Here the question arises as to whether
subbodies of class C2 will exhibit further break-up or end up as a single sphere. The search
for a general algorithm to study post break-up behavior is a topic of current research.
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1.05

1.00

0.95

1.002

1.001

1.000

10 20 30
(a)

(b)

1.05

1.00

0.95 110 2’0 3’0’
(d)

1.20

1.00

0.80

0 10 20 30
(e)

1.02

1.00

0.980

1.0

0.5,
1I0 210 310 O. 00 10 20 30

(c) (f)

FIG. 4. The radius r as afunction ofxin the second numerical experiment: (a) 0; (b) 0.7, 4.7, 6.7; (c)
12, 16, 19" (d) 20, 22, 24; (e) 26, 28, 30; (f) 31.5, 31.7, 31.7357.

(a)

(b)

(c)

(d)

FIG. 5. Profiles in the second experiment: (a) 0; (b) 30; (c) 31.5; (d) t* 31.7357.
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