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Summary. We propose a new mixed variational formulation for the equations 
of linear elasticity. It does not require symmetric tensors and consequently 
is easy to discretize by adapting mixed finite elements developed for scalar 
second order elliptic equations. 
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1. Introduction 

In this paper  we present a new mixed variational formulation for the problem 
of linear elastostatics. Our formulation is very similar to the classical Hellinger- 
Reissner formulation, but appears superior for finite element discretization. To 
make plain the relation between the Hellinger-Reissner formulation and the 
present one, we consider first an elastic body occupying a region g? in Euclidean 
n-space ( n = 2  or 3) subject to given body forces f and whose displacement 
g on F - 0 R  is known. The Hellinger-Reissner principle seeks a saddle-point 
of the quadratic functional 

J ( ~ , v ) =  ~ [ � 8 9  ~ g-~n. 
g? 0~ 

(1.1) 

The variables ~ and v range over spaces of suitably smooth functions on 
Q with values in ~,+, the space of symmetric n x n tensors, and ~ = IR", respective- 
ly. The fourth order tensor A is the compliance tensor, which characterizes 
the elastic properities of the material. Further notations are explained in Sect. 2. 
Under reasonable assumptions there is a unique saddle-point (if, u) of (l.1) and, 
moreover, ~ is the stress field and u the displacement field. The Euler-Lagrange 
equations associated with (1.1) form an elliptic system of order 2 n. 

The present formulation also seeks a saddle-point of a quadratic functional 
of the form (1.1). The functional differs only in that the compliance tensor is 
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replaced by a different fourth order tensor, which depends on A in a simple 
fashion. A more essential difference is that in our formulation the variable 
ranges over all suitably smooth functions with values in IR (all n x n tensors~ 
rather than ~ s  (symmetric tensors). Again there is a uniquesaddle-point,  (e, u). 
The vector-valued component u is again the displacement field, but the tensor- 
valued component e does not coincide with the stress field 4" This "pseudostress" 
field contains more information than o- in that a may be determined from p 
simply as a linear combination of its components, but cr does not determin~ 
p.~ In fact from ~ one may determine the gradient of tt~e displacement while 

only determines its symmetric part. 
The construction of effective finite elements for the Hellinger-Reissner princi- 

ple has proven to be very difficult and has not yet been accomplished in a 
completely satisfactory manner for plane elasticity problems (see [3] for a discus- 
sion on this point). For  three dimensional problems no useful stable elements 
are known. For  the simpler problem of the discretization of a mixed formulation 
of second order elliptic problems, a number of excellent finite elements have 
been devised and thoroughly studied, but these elements cannot be simply 
adapted to the Hellinger-Reissner formulation in order to solve the elasticity 
problem. The crux of the difficulty is the requirement that the tensors occurring 
in the Hellinger-Reissner formulation be symmetric. Our formulation eliminates 
this requirement and so enables the direct adaptation of these elements to the 
elasticity problem. 

Another alternative to the Hellinger-Reissner variational formulation has 
been presented by Arnold et al. [-2] for the case of plane elasticity. They also 
sought a mixed variational formulation of elasticity which avoided the necessity 
of constructing symmetric tensor elements for discretization. However the formu- 
lation they proposed is quite different from the one presented here. They retained 
the basic stress and displacement variables, ~ and u, but instead of seeking 
a saddle-point of the functional .J(z, v) in (1.1) with the tensor T constrained 
to be symmetric (the usual Hellinger-Reissner formulation), they added a 
Lagrange multiplier to the functional and then sought a saddle-point without 
a symmetry constraint on _~. The effect of the Lagrange multiplier is to enforce 
the symmetry of the tensor variable. Thus in their formulation there are three 
variables: the stress, the displacement, and the Lagrange multiplier, which is 
scalar-valued and turns out to coincide with the rotation of the displacement. 
To discretize one must construct finite element spaces for each of these variables 
satisfying appropriate conditions. In contrast to the present formulation, it is 
not obvious how to do this even in light of good elements for the second order 
problem. In [2], Arnold et al. constructed one such family of spaces and proved 
stability and convergence. 

An outline of the paper is as follows. In the next section we collect the 
notation to be used in the remainder of the paper and in Sect. 3 derive the 
new variational principle. Because the stress is not a fundamental unknown 
in this formulation, it is not obvious how to modify it in case the traction 
rather than the displacement is given on part of the boundary. In Sect. 4 we 
present such a modification and discuss its discretization. An analysis of a partic- 
ular method of discretization is then given in Sect. 5. Finally in Sect. 6 we discuss 
the application of our formulation to incompressible elasticity. 
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2. Notations and Preliminaries 

We shall consider the system of elasticity on a smoothly bounded domain 
~ c ~ = ] R " ,  n = 2  or 3. We use the following notational conventions. Lower 
case letters and names of spaces are underscored by ~ and ~ to denote n-vectors 
and n • n tensors respectively. Fourth order tensors are denoted by boldface 
capital letters. The components  of vectors and tensors are denoted by the corre- 
sponding subscripted lower case letters. The product of a fourth order tensor 
and a second order one is second order; thus z = Aa  means 

Tij = ~, aijkl a k l  , 1 <= i,j < n. 
k , l = l  

We shall also use the notations 

n 

~ : $ =  ~ aklrkt and I~1=(~:~) 1/2 
k , l = l  

If X is a space of scalars (or scalar-valued functions), we use X to denote 
the space of vectors with components  in X. If Y is a space of vectors, Y denotes 
the space of tensors with rows in Y and Ys the subspace consisting of symmetric 
tensors. 

In addition to the usual Sobolev spaces H'(O) and Hs(F), we will use the 
space H (div, O) of square integrable functions on (2 with square integrable diver- 
gence and the corresponding spaces H(div, f2) and Hs (div, Q). Norms in H~(Q), 
H'(~2), and H'(f2) will be denoted by II'lls (the choice will be clear from the 
context) and norms in HS(/) and H~(F/) (F/a subset of F = (?g2) by I']s,r,- 

A linearly elastic material (possibly anisotropic and inhomogeneous) is char- 
acterized by its compliance tensor A = A ( x )  whose components  are functions 
in ~2 satisfying 

a i j k l = a k l i j = a j i k l  , 1 <i,j ,  k, l<n.  

This condition means that for each xef2, A(x) is a self-adjoint linear operator  
on ~ which annihilates antisymmetric tensors and maps ~.~ into itself. We 
assume (except in Sect. 6) that the restriction of A(x) to ~ s  is positive definite 
and bounded uniformly in x, so that there exist positive constants 70 and c o 
with 

7ol !12<~:A(x)Z<Colr  2 . . . .  I ,  ~ , ,  x ~ .  (2.1) 

Consequently we may define the elasticity tensor C(x) by the equations 

r = A C T  CAr, ~]R~,  
and 

Cijkl:Cl, uj=Ciikt, 1 <=i,j, k, l<=n. (2.2) 
Clearly 

yll~12<~:C(x)=T=<c, Iz,[ 2, N ~ , ,  x~f2, (2.3) 

with 7~ = c o t ,  c~ = ? o t -  
We shall be considering in the following sections the equations of elasticity 
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A~=~(u) in f2, 

divg = f  in ~2, 

where ~(u)= [grad u +(grad uJ]/2 and grad u is the Jacobian matrix, subject to 
the boundary conditions 

u=  D on G,  

~ = g 2  on V2, 

where F~ and /'2 are disjoint closed subsets of F with F 1 w F 2 = F. In Sect. 3, 
F 2 will be empty and in Sects. 4 and 5 both F~ and F2 nonempty. 

3. The New Mixed Formulation 

The Euler-Lagrange equations associated with the Hellinger-Reissner principle 
(cf. (1.1)) are 

A~=~(u) in Q, (3.1) 

d i v g = f  in f2, (3.2) 

u = g  on F. (3.3) 

The constitutive Eqs. (3.1) can also be stated in terms of the elasticity tensor 
and displacement gradient 

= C grad u (3.4) 

(by (2.2) Cgrad u = C~(u)). We define the pseudostress ~ by the equation 

= (C + riD) ~ a d  u, (3.5) 

where fl is a positive constant and 

D g = t r  (~)~ - z='. (3 .6)  

(In the above, tr(g) is the trace of g, g' the transpose of ~, and ~ the 3 x 3 identity 
matrix.) From the calculus identity 

div [(div u)~] = grad (div u) = ~v(grad u9 

and the equilibrium Eq. (3.2) it follows that 

div p = f (3.7) 

We shall now show that if fl is chosen appropriately, C + fl D defines an invertible 
operator on ~ (for each xef2) and hence (3.5) may be inverted to give 

Bp = grad u. (3.8) 

In contrast, C does not define an invertible operator  on ~ and (3.4) may not 
be inverted in this way. 
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There is some freedom in the choice of ft. Taking fl =7 j 2  where ~1 is any 
constant for which (2.3) holds, we now show 

(C+flD)r=:I_>-yl 1~12/2, s  

Indeed by (2.2) and (2.3) 

C ~1~ = C [-(~ -t- ~t)/2]" [ ( I  -1- ~ t)/2] ~ "~ 11(2 + ~')/212 = 'l, (1~ I ~ + ~: _-ct)/2, 

and by (3.6) 
D i :2  = trQ) 2 - 2 : r '  > - r:2'. 

Thus C(x)+f lD is positive definite on ~ (not just ~s), and denoting by B(x) 
its inverse we have (3.8). Moreover since tDII <21s for all ~elR, we also have 

(C+flD)r=:~<(c, +y~)[~[ z. 
Thus 

')~2 1 s  B ( x ) ~ c 2  [~[ 2, s  (3.9) 

with "/2 =(cl + 7 0 - l ,  C2 =2/71. 
To summarize the foregoing considerations, we propose to discretize the 

boundary value problem (3.8), (3.7), (3.3) rather than the classical problem (3.1)-- 
(3.3). Alternately we propose in place of the classical Hellinger-Reissner principle 
to seek a saddle-point (p,u) in H(div, f2) x b2(O) of the quadratic functional 

S (~ ,v )=  5 [1B~:=r+d iv2 - f -v ] - -  5 g-2n. (3.10) 
f2 gf2 

Existence and uniqueness of the saddle-point follow from the theorem of 
Brezzi [-9] once we verify the conditions 

Br:_~_>_~, r 2 
_ _ I I _ I I o ,  

f2 

div~-v 

(3.1t) 

f~ 
inf sup (3.12) 

0 ,~r2  o,~W<v~ IIs 112110 2 >  

for some 7>0- The first condition follows immediately from (3.9). The second 
follows from the equality divH(div, O)=L2(O), itself an obvious consequence 
of the equality divH(div, g2)=L2(O). Thus the pseudostress and displacement 
are the unique solution of the saddle-point problem associated with LP or of 
the Euler-Lagrange equations (3.8), (3.7), (3.3). In light of (3.4) and (3.8), the 
stress ~ may be recovered (without differentiating) from the relation 

~=CBp=p-flDBp. 

A mixed finite element for our formulation defines an approximate solution 
(Ph, Uh) as the saddle-point of A ~ restricted to a finite-dimensional space S, x V h 
with Sh~ H(div, f~), VhcLZ(f2) finite element spaces. It is well known that unless 
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the subspaces Sh and V h are chosen appropriately, the restriction of 5(' need 
not have a unique saddle-point and even if it does, good approximability of 
(~, u) by Sh X ~ need not insure accurate approximation by (Ph, Uh). Various 
siability conditions have been proposed which, together with good 
approximability by Sh and V h, insure the existence and uniqueness of (Ph, Uh) 
and good approximation of (p, u). For example [9] if there exists a pdsitive 
constant ? such that 

div?.~ 
g2 

inf sup >~, (3.13) 
o , ~ v ~  o , ~ s , ,  II~ll~div~ II~vllo 

one obtains existence, uniqueness, and the quasioptimal estimate 

!lco--cohll,,div~+ II_u--uhll0<C[inf IIp-r_lrmd~v~+ inf !lu-_VHo] (3.14) 
. . . .  ~ e ~ ; , ,  ~ ~ -  - , 2 e V h  

with C depending on the stability constant 7- Scalar analogues of the following 
additional stability properties have also been used by a number of authors: 

There exists a projection operator /Th: H l 4 S h having the property 

I d iv(~-n,~).v=0, ve~,  (3.15) 
f~ 

divS, c ~ .  (3.16) 

Using these hypotheses and usual approximation properties, a variety of esti- 
mates including L 2 estimates, negative norm estimates, interior estimates, L ~' 
estimates, etc., may be established by basically standard techniques (cf. [3, 12 t 5, 
19, 22]). 

For our formulation (in contrast to the Hellinger-Reissner formulation) it 
is straightforward to construct finite element spaces Sh and V h satisfying all 
the stability conditions (3. t 3), (3.15), and (3.16). To see this we recall the solution 
by mixed finite element methods of a second order elliptic problem. Here we 
seek to approximate the unique saddle-point (co, u) in H(div, f2) x L2(g2) of the 
functional 

J ( z , v ) =  5 [ � 8 9  ~ gz .n ,  
f2 O~ 

where f e  L z (~), g E H 1/2 (c?f2), and the n x n matrix A are given. An approximation 
is found by selecting finite dimensional subspaces _Shc H(div, ~2), Vh c L 2 (~2) and 
determining the approximate solution (Ch, Uh) as the unique saddle-point of 
restricted to S h x Vh (if this exists). Several families of finite element spaces have 
been constructed which satisfy the analogues of the stability conditions (3.13), 
(3.15), (3.16), afford good approximability, and can be efficiently implemented. 
The best known of these are the spaces of Raviart and Thomas [19, 22], and 
Nedelec [16]. In the case of a two dimensional domain, Raviart and Thomas 
constructed for each triangulation Jhh and each nonnegative order k, spaces 
S h and Vh and verified the analogue of the stability condition (3.13) with ? 
independent of the triangulation (depending only on a lower bound for the 
minimal angle). They also derived quadrilateral elements. Nedelec [16] simplified 
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their elements and extended them to three dimensions. The Raviar t -Thomas-  
Nedelec elements have been thoroughly analyzed both from the point of view 
of accuracy and implementation I-l, 11-15, 20, 21]. For the two dimensional 
case, a second family of spaces satisfying the Brezzi conditions has been recently 
introduced by Brezzi et al. [10]. Their spaces are also defined for arbitrary 
triangulations (and for quadrilateral subdivisions) and arbitrary order. In all, 
one may say that excellent mixed finite element methods for second order elliptic 
problems are known and well understood. 

Returning to our formulation of the elasticity problem, it is easy to see 
that conditions (3.13), (3.15), and (3.16) are satisfied if we take 

& -  S~ x ~&, F~ = v~ x v~, 

where S a c / / ( d i v ,  f2), V h c L2(f2), satisfy the analogous conditions for discretiza- 
tion of the mixed second order problem. We may use, for example, the Raviart-  
Thomas-Nedelec or Brezzi-Douglas-Marini elements with our formulation. 

4. Traction Boundary Conditions 

In this section we show how to modify our formulation in case the displacement 
boundary condition is replaced by a traction boundary condition on part of 
the boundary. Thus the boundary conditions we consider are 

u = g  1 on  FI, 

O-~ = g2 o n  r 2 ,  (4.1) 

where G and Fz are disjoint nonempty closed subsets of F with F1 w F2 = F .  
Note that we have assumed that the displacement and traction boundary condi- 
tions are given on separated boundary curves or surfaces. This (rather strong) 
assumption is made to avoid various technicalities. Since the stress ~ has been 
eliminated from our formulation, it is not obvious how to include the condition 
(4.1). In order to do this we first define the tangential gradient of u by gradru  
= g r a d u - ( g r a d u ) n n ' .  Note that the i-th row of gradru(x)  is the orthogonal 
projection of grad ui(x ) onto the tangent space of F at x. Consequently, gradru  
depends only on Ulr, so grad r may be viewed as a bounded map of H*/Z(F2) 
into 6 -  1/2(F2)- For  ~ff/j1/2(F2) define 

b(~) = - f lD(gradr~)n.  

For u e H '  (~2) we write b(u) in place of b( ! It2). 

Lemma 4.1. The operator b: H1/2(F2)--* ~ -  1/2(F2) is bounded and self-adjoint. 
Moreover, for u e H '  (f2), 

b(u) = - flD (g~rad u) n. (4.2) 

Proof. The second statement follows from the identity 

D(~n n') = tr(~n n')n -Cn'~n)n =0,  
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which holds for any zelR. To  prove the first statement,  we define (q, u, p) and 
(I, v, 7) by 

A~-~(u)=O, A~-~Cv)=O, 
div a = O, div z = O, 

u = 0  on F, ,  v = 0  

u = u  on r2, v_=2 

on /71, 

o n  /"2 ,  

p = a +  f lD(grad u), ~ = 2  + f lD(grad  v). 

Then B~ = grad u, B~ = grad v, div p = 0, div q = 0. Hence 

0 = ~ [(B p - grad u): t l + div p. v -  (B q - grad v): p - div r/. u] 

= ~ (~-~-~-~). 
F2 

Also 
0 = ~ [(Aa - e(u)): ~ + div ~- v--  (A z - ~(v)): a -- d iv ~- u] 

f2 

= ~ (~_,.~_-~_~.,)= ~ {[__p_~+_b(_~)]._~-[__,_,,+_b(_~)].~} 
F2 F2 

= I [-b(0"~--b(~)'_~]. 
F2 

This establishes the self-adjointness. [ ]  

It follows from (4.2) that the boundary  condi t ion (4.1) may be restated as 

p n + b ( u ) = g 2  on r 2. (4.3) 

For  the t ract ion problem we seek a critical point  (p, u, 2 )oH(d  iv, f2)x L2(f2) 
x/2/1/2(F2) of  the functional 

.~'(_z, v , p ) =  ~ [ � 8 9  ] 
12 

-- ~ _g~-In-  ~ ( �89  (4.4) 
F1 F2 

A weak form of this problem is: 
Find (=p, u, 2 ) E H ( ~ v ,  ~) x L2(g?) x (tl/2(Fz) such that 

[ B p : z + d i v r - u ] -  ~ 2 . z n =  ~ g~.~n, reH(div ,  O), 
(~ 1"2 Ft  

f d i v p - v =  l f - v ,  veL2(O), 

(4.5) 

(4.6) 

[ p n + _ b ( 2 ) ] . # =  ~ g2"_g, #6  -H'/Z(F2) . (4.7) 
F2 F2 
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Note that 2=Ulr~ and (4.7) is a weak statement of the traction boundary condi- 
tion (4.3). 

This formulation may be discretized in the usual way: the approximate solu- 
tion is determined as a critical point of 2 over a finite dimensional subspace 
Sh x ~ X Oh of H(div, f2) x/_,2(~) x H1/2(F2). For S n and V h we choose the same 
spaces as for the Dirichlet problem. In the next section we present a way to 
choose dn so that the finite dimensional problem admits a unique solution 
and derive error estimates for the three variables. First we discuss an approach 
to the computation of the discrete solution. We wish to compute (Ph, ~Uh, 2h)eSh 
X ~ X dh satisfying 

[B~h:~+div~'Uh]-- ~ 2h'Z=n= ~ 8,'#n, 2eSh, 
f2 F2 F1 

(4.8) 

dive,,-v = ~f-v ,  veb , ,  (4.9) 
f2 f~ 

[~DhQ-t-~b(~h)]'# = ~ g2"o,  t[,.~ffdh- (4.10) 
1"2 F2 

A direct solution of (4.8~(4.10) involves a relatively large number of unknowns, 
so we indicate an alternative formulation in which only 2~, is solved for directly. 
For v e H  l/2(F2) , define Y v ~ (Ph (~), UhY(V))eSh X V~ by 

I [Bp{(v):$h+U{(v)'diVlh]= ~ ~ji "~hn+ f V'Ihn' r=heSh' (4.11) 
FI F2 

div L)/(v)" G = ~ f G ,  Vne ~Vh- (4.12) 

Clearly (4.8) and (4.9) may be written equivalently as 

= (~h E , ) .  u{(&)).  (p~, u.) i ). 
and (4.10) becomes 

i [e / (&)~+~b(& l ] 'e  = I ~ # ,  
F2 Fe 

~edh.  (4.13) 

Via choice of a basis for dh, (4.13) is reduced to a system of linear equations 
for the coefficients of 2 h. For  an appropriate choice of elements this system 
is positive definite, as will be shown in the next section. In order to solve the 
system efficiently, one could employ a preconditioned conjugate-gradient itera- 
tion. The major cost of the iteration wilI be the repeated evaluation of the 
operator on the left hand side of (4.13), which in turn consists mainly of the 
solution of a displacement problem in order to evaluate g[(~) for given Lt. Note 
that for all these displacement problems the operator ]'s the same, and only 
the load is varied. To construct a preconditioner for this iteration, one can 
follow the ideas in Bramble [7]. Since the description of these results is fairly 
complicated, we do not include them here. 



22  D.N.  A r n o l d  a n d  R.S. Fa lk  

5. Stability for the Mixed Boundary Value Problem 

To discretize our formulation (4.5)-(4.7) of the mixed boundary value problem 
we must select subspaces Sh, .Vh, and A h. We shall suppose that Sh and V h 
are chosen to be spaces which are effective for the Dirichlet problem in the 
sense that (3.13) holds, and determine A h SO that the discrete problem (4.8)-(4.10) 
admits a unique solution which satisfies the quasioptimal estimate (cf. (3.14)) 

II=p-chll~(div) + Ilu--_uhll0 + 1_2--&la/.,r= 
__<C[inf [[D--2llH(div)-I-- inf Hu-vl]o+ infl~-~Ulwz.r2]. (5.1) 

~es~, -- r e g h  ~eA,  

As is well-known, a necessary and sufficient condition for this, is that the method 
be stable in the sense that the bilinear form 

@(~, u, 2; ~, v,#)= ~ [Bp:~+div  ~=-u+divf-v] - ~ {~n-)o+ [pn +0(~2)] .•} 
D F2 

defined on (Sh X V h x Ah) 2 satisfy the inf-sup condition [5]. We now give a simple 
sufficient criterion for stability. To state it we first define for each veH1/2(Fz) 
the pair (s U~h(V))eSh X V h as the solution of the discrete Dirichlet problem 
(4.11), (4.1~2) with f anc~ $ i replaced by 0. 

Lemma 5.1. Assume that Sh and ~ satisfy (3.13) and that dh is chosen so that 

I [Ph(~)n+b~(~)]'l~>Tl~l~/2,rz forall ~edh.  (5.2) 
i-2 

Then (4.8)-(4.10) defines a stable Galerkin method for the mixed boundary value 
problem. 

Proof. It is enough to show (cf. [5]) that for any (G, F, ~)eH(div, Q)*x L2(O) * 
x//a/2 (/-2). ' the discrete variational problem: 

Find (Ph, U~h, 2~h)eSh X V h X Oh such that 

~(e, .  u,. &; ~.v. ~)= (q.  ~) + (g. v) + (~. ~) 
for all (Z,V,#)eSh X V h x dh (5.3) 

has a unique solution, and that this solution satisfies 

IlPhlf~t~dlv) + Ilu, ll0 + [2~hla/2,r~<= C [11GIl~e<d!v)* + II ~FI[~<~). + I ~1,,.,~,-~).] 

where C is a constant independent of h. 
Define (p~, u~)e Sa x ~ by 

~(g~',u~,0;;,~,0)=(q,~)+(F,~> for all ( i ,v)eSax ~ .  (5.4) 

From the results of Sect. 3 there is a unique solution to this discrete Dirichlet 
problem and 

1 [l~h IIH(ai~+ IlUh IIto =< C [llGIImai~)*+ [Ifl[i ~(~e)*]" 
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Upon subtracting (5.4) from (5.3) we see that it suffices to show that there 
is a unique (e~, u~, 2h)eSh X Vh X A~ such that 

N'(P~,, u2~h , 2h;r, v ,y)=  (~ ,  ~ ) - =  ~ ~ C,~, n.~ for all (r, t2,/~)eSh • ~VhxA~~ (5.5) 
F2 

and that the estimate 

2 2 II ~,,, H ,j ~,~i.,~ + Huh II o + I L,, 1~/2. r2 < C [I ~ I,j,,2,:.,-2~. + II Ph ~ II xJ ~d~,,:,l 

holds with C independent of h. Clearly 

(~2h 2 , u~)= (Ph(gh), Uh(~h)) (5.6) 

so we get using (5.2) and (5.5) that 2 h is uniquely defined and 

F2 

I '2 

Thus 
+ IIch H~F~au~- 

The proof is completed by invocation of (5.6). []  

We have attacked the traction boundary condition by modifying the Lagran- 
gian for the Dirichlet problem through the addition of the variable 2; cf. (3.10) 
and (4.4). This is a technique commonly used when applying a Galerkin method 
to a problem with essential boundary conditions which cannot easily be imposed 
on the Galerkin subspace. For  example, to solve a traction problem on a nonpo- 
lygonal domain using mixed finite elements based on the usual Hellinger- 
Reissner principle, one likely possibility would be to use a multiplier method. 
For all such methods one must determine a suitable subspace in which to seek 
the new variable and a stability condition analogous to (5.2) must be verified 
implicitly or explicitly. In the particular case of scalar elliptic equations, there 
are a number of papers concerned with the choice of subspaces. See, e.g., [4, 
7, 8, 17, 18]. Many of the approaches developed there could be adapted to 
our case. In the interest of brevity we will discuss only one, related to that 
of [4 t and [71. 

For definiteness we shall assume that Sh and V h are chosen to be (Cartesian 
products) of the Raviart-Thomas-Nedelec elements of order I. Other subspaces 
with similar stability and approximation properties (e.g., those of Brezzi et al. 
[101) could also be used with only small changes in the analysis. For the Raviart- 
Thomas-Nedelec elements, the approximation results 

inf Hq --~][/J(div)~ ChZ+ i ]lq]J,, ,,t~) for all q e H  l+ 1 ((2), 

inf I l z -v l l o<Ch  ~+~ ) [z l l . , ,  ,(~) for all ze/ / l+l(f2)  
v~Vh 
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hold. In view of these results and in anticipation of the estimate (5.1), we assume 
that the space Oh satisfies 

inf]v--LZll/Z.Fz~Clhl+l[V[l+3/z,v2 for all V@/J/+ 3/2 (F). (5.7) 

This is satisfied, e.g., if 4h consists of continuous piecewise polynomials of degree 
at least 1 with respect to a quasiuniform mesh of maximum element size h. 
The same choice guarantees the inclusion 

AhC Hi(F2) (5.8) 

and the inverse inequality 

hl/2I~ll,F2~C2]~]l/2,r2 for all ~ ff/S/1 (F2) (5.9) 

for some constant C2. The approach of [4] and [7] requires the inverse inequali- 
ty (5.9) not merely for any C2 but for a value sufficiently small. This can be 
achieved by taking Oh to consist of piecewise polynomials subordinate to a 
mesh of elements which are not of size h, but rather of size hie. By selecting 

sufficiently small, (5.9) can be achieved with any desired constant C2. With 
this choice (5.8) of course still holds and so does (5.7) with C1 replaced by 
Cl/e/+1 

To summarize: we assume that dhcH~(F2) satisfies (5.9) for a value of C2 
to be specified and (5.7) for some value of CI. Now we prove (5.2). 

The verification of (5.2) relies on the fact that the analogous condition holds 
in the continuous limit. That is, there is a positive constant ~0 > 0 such that 

S I-r b(~)]'~>_-70 II~ll~,2,r~ for all ~/EH1/2(F2), (5.10) 
F2 

where (~(~), u(o)) is the solution of the displacement problem 

Bp =c=(u) in O, (5.11) 

d[v ~ = 0  in f2, (5.12) 

u = 0  on F1, (5.13) 

u = ~  on F2. (5.14) 

To prove (5.10) let a(/~)=p(/0--flD(grad u(Lt)). Then the pair (=a(~), u(~))solves 
the homogeneous eq-uatior~s of elasticity (with compliance tensor A) and displace- 
ment boundary conditions (5.13), (5.14). From standard estimates ~ ~.=o(~)n 
> 2 =TO IL/II/2, F2, and (5.10) now follows from Lemma 4.1. r~ 

Next we bound the difference between the left hand sides of (5.10) and (5.2). 
By the Schwarz inequality and the trace inequality in H(div, ~), 

j" t~. E~(~)-eh(~)]  ~n < I~l~/~.~ [l=p(~)- ~,,(~)ll~,d~-,~- (5.15) 
F2 
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Using the fact that dx~ve(~)=divph(~)=0, standard estimates for the Raviart- 
Thomas-Nedelec elemeffts ~, and e~lergy estimates for (5.11)-(5.14), we have 

lip (~)-/_.~h (Lt)I[ ~ d ~ ) =  II~ (cu)- ~h(fl)llo ~ Chl/2 II p(~)ll x/2 _-< C3 hl/2 tflI,, r2 .(5.16) 

Combining (5.15), (5.16), and (5.9) gives 

F2 

Finally, choosing C2 = 7o/(2 C3) and combining with (5. t0) gives (5.2). 
Using the quasioptimal error estimate (5.1) and the approximation properties 

of the subspaces Sh, ~ ,  and dh, we get the error estimate 

Using techniques developed for mixed and multiplier methods for scalar prob- 
lems, it is possible to improve this estimate somewhat in the regularity required 
and also to derive estimates in other norms. Since the derivation of such results 
would be quite lengthy and only require minor modifications of the techniques 
for scalar problems, we do not include them here. 

6. Incompressible Elasticity 

We now consider the case of a homogeneous incompressible elastic material. 
Such a material with compliance tensor A is incompressible if A 6 =0 .  In this 
case the displacement field satisfies d ivu=0 ,  as follows by taking the inner 
product of (3.1) with 6. Since the compliance tensor is not positive definite 
on Rs for an incompressible material, the derivation of our formulation given 
in Sect. 3 does not apply. In this section we extend the results of Sect. 3 to 
the incompressible case. To do so we first note that the Dirichlet problem (3.1)- 
(3.3) for an incompressible material admits a solution if and only if 

g-n=O. (6.1) 
F 

When (6.1) holds, the solution is uniquely specified by imposing the side condi- 
tion 

tr(_a)=O. (6.2) 

Our derivation is most easily understood for an isotropic material and so 
we consider that case first. For  such a material the compliance tensor satisfies 

+ [  2 tr(r)6] zelR~, 
A~= ~ 2/~+n2 "- ~ ' -- ~ 

Using the definitions of ph(10 and PtlO, it follows easily that IIP(/J) -L~h(I*}llo ~ C !l~*(lJ)ll o- Interpolating 
between this estimate an~d the st~ndard estimate II~](!0 {~,,(~)llo<('hlLL~(#)[Ll gwes I[~(/j)-/]h(~)llo 
< C h  ~,,2 IIg(~)llx/2 
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where/~, 2 > 0 are the Lam6 constants  and n = 2 or 3, the case n = 2 corresponding 
to plane strain. For  an incompressible isotropic material 2 = + ~ ,  i.e., 

A+=;[+ 

The least constant  Co for which the upper  bound in (2.1) holds is co = 1/(2/0. 
Following the procedure  of Sect. 3 at this point, we therefore choose f l=# .  
For  2 < oo, we have 

C ~ = 2p ~ + 2 tr (~) =6, ~E~,~, 

(C + f lD)~==p ~ + ( p  + 2)tr(r=)6=, ~N= , 

++ 
B ~ =  z ( n +  l ) p + n 2  ' ~ = 

The last equat ion is also valid for 2 = + oo, giving 

Br -= l [ r~- - l~  pl_ ~ n tr(=r)6], =relR,= (6.3) 

in the incompressible case. The equat ion for the stress in terms of the pseudo- 
stress is 

2 p + 2  
= p + p' tr(p)6 

= (n+  l ) /~+n2  -- 
for 2 <  oo or 

, 1 t r(p)b 
~ = P + P  - - n  = "~ 

for 2 = + oo. Note  that  in both  the compressible and the incompressible cases, 
tr(~) is a positive multiple of  tr(p), so the side condi t ion (6.2) holds if and 
only if 

S trig)=0. 
#2 

Let ~(div ,  (~)= { ~ H ( d i v ,  ~2): ~ tr(~=)=0}. Then  our  formulat ion of isotropic in- 

compressible elasticity seeks (8, u)eO(div ,  ~ ) x  L2(Q) as a saddle-point  of the 
functional (3.10) with B definec[by (6.3). 

We shall now show that  in fact there is a unique saddle-point.  Recalling 
again Brezzi's theorem [9], we must verify two conditions.  The second condi t ion 
is identical with (3.12) except that the supremum is over 0 + ~ e ~ ( d i v ,  ~2), and 
is again obvious.  Condi t ion  (3.11) does not  hold for any positive ,/, since B,5 = 0. 
However  Brezzi's theorem only requires that  

where 

B U N ~  Jl~l[o a , ~eZ,  (6.4) 
f2 

Z = { ~  0 (div, •): div ~= = 0}, 
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and this is in fact so. For by a simple calculation 

1 2, (6.5) 

1 
where =z~ = T - -  tr(z)6 is the deviatoric of z and it can be shown that 

II~llo~Cll~rlo, ~ez ,  (6.6) 

where C depends only on fL The bound (6.6) is well-known, at least when 
~eZm~.~, but the usual proof does not require symmetry of z=. See, e.g., [3, 
Lemma 3.t]. 

In the compressible case we defined the pseudostress and displacement as 
a critical point of ~ over H(d~v, O) x L2(O) rather than ~(div, O) x L2(~2). Actu- 
ally the latter choice of spaces may be used also for a compressible isotropic 
material when the Dirichlet data satisfies (6.1) since then 

(~. t2)e H(div, f2) x L2 (S'2). 

The coercivity condition (6.5) holds uniformly for /le[0, 09]. From this one 
can easily derive continuous dependence of~, u, and g on 2, up to and including 
2=o0 .  

A Galerkin discretization of our formulation with subspaces S h c / q ( d i v  , Q), 
~cL2(~?) is stable if the discrete Brezzi conditions hold, i.e., if tl~e inequalities 
(3.13) and 

j" B~:r=>TIl~ll~, ~eZh, (6.7) 

hotd for some 7 > 0. In (6.7), 

Zh={a Sh: I dive-e=0 foran Vh}. 

Condition (6.7) holds if (3.16) does, since then Z h c Z .  
Finally we consider an anisotropic homogeneous incompressible material. 

For an incompressible material the identity ~ is an eigenvector of the compliance 
tensor with eigenvalue 0. In order to extend our formulation to this case we 
first consider a material whose compliance tensor is positive definite on ~,~ 
and for which the identity is an eigenvector with eigenvalue ~:>0. It is useful 
to introduce some notations for specific subspaces of ~ :  

~ , ,  = {~eN: tr(~)= 0}, 
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Then ~ = ~ + ~ = ~sD + lR~ + ~,, = ~ o  + IR~ and the summands in each 
decomposition are mutually orthogonal. If the identity is an eigenvector of the 
compliance tensor, then the subspace ~ D  is mapped by the compliance tensor 
into itself and the restriction A0=A]r ~,o--'~so is positive definite. In the 
incompressible case we shall also assume that A 0 is positive definite, i.e, that 
0 is a simple eigenvalue of A [~. The action of A may be described by 

It follows that 

Ao2, if ~e~,,o,  
A~=  ]e,~, if r=r 

[0, if T=eN,,. 

[A ~ 1 ~, if I s~ . ,D ,  

C~ = to- 1 ~, if r=elR6, 

tO, if ~ N , .  

Now 

l 
-~ ,  if r=e~,D, 

D z =  2r if ~+IR~, 

tT, if ~ x  a . 

SO 

[(Ao ~ - f l I ) ! ,  if ~+~:o ,  

( C + f l n ) ~ =  {(c -* + 2 f i ) ;  if _T+1R~, 

[fiE, if ~+~ : .  

where, as before, fl is taken as 1/(2Co) where co is an upper bound for the 
eigenvalues of A and I is the identity. Thus 

[ ( A o ~ - f l I ) -  1 ~, if ~e~so ,  

B~=I~:(1 +2f l s ) -  1L if ~eNfi,  (6.8) 

This last formula is also valid for c=0,  and we use it in the incompressible 
case. A unified formula for the tensor B, valid for compressible and incompress- 
ible materials, is 

B = (A t + riD) t, (6.9) 

where the dagger denotes the Moore-Penrose inverse. This follows directly from 
the Moore-Penrose equations (see I-6], p. 7). 

Let us summarize these considerations. For an incompressible material, we 
assume that Ao=AIRs~, is positive definite, and let fl be half the reciprocal 
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of its largest eigenvalue. Then B is well-defined by (6.8) with ~: = 0 or equivalently 
by (6.9), and (p, u) is defined as the saddle-point of A ~ (given again by (3.10)) 
on ~(div, O) x~L2(O). The saddle-point exists and is unique since (6.5) and hence 
(6.4) holds. The pseudostress is related to the true stress by 

p = g + fl D (grad u). 

The pseudostress satisfies the constitutive equation Bp = grad u, so the true stress 
may be recovered without differentiating as 

~ = p - f l D B p .  
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