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Summary. We propose a new mixed variational formulation for the equations
of linear elasticity. It does not require symmetric tensors and consequently
1s easy to discretize by adapting mixed finite elements developed for scalar
second order elliptic equations.

Subject Classifications: AMS(MOS): 65N30; 73C35; 73K25; CR: G1.8.

1. Introduction

In this paper we present a new mixed variational formulation for the problem
of linear elastostatics. Our formulation is very similar to the classical Hellinger-
Reissner formulation, but appears superior for finite element discretization. To
make plain the relation between the Hellinger-Reissner formulation and the
present one, we consider first an elastic body occupying a region Q in Euclidean
n-space (n=2 or 3) subject to given body forces f and whose displacement
g on I'=9Q is known. The Hellinger-Reissner principle seeks a saddle-point
of the quadratic functional

Fo)={HAs+dive-o—f-v]1— | g-zn (1.1

2 o

The variables ¢ and p range over spaces of suitably smooth functions on
Q with values in IR, the space of symmetric n x n tensors, and R =IR", respective-
ly. The fourth order tensor A is the compliance tensor, which characterizes
the elastic properities of the material. Further notations are explained in Sect. 2.
Under reasonable assumptions there is a unique saddle-point (g, u) of (1.1) and,
moreover, g is the stress field and u the displacement field. The Euler-Lagrange
equations associated with (1.1) form an elliptic system of order 2 n.

The present formulation also seeks a saddle-point of a quadratic functional
of the form (1.1). The functional differs only in that the compliance tensor is
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replaced by a different fourth order tensor, which depends on A in a simple
fashion. A more essential difference is that in our formulation the variable ¢
ranges over all suitably smooth functions with values in R (all nxn tensors)
rather than IR, (symmetric tensors). Again there is a unique > saddle-point, (g u).
The vector- Valued component y is again the displacement field, but the tensor-
valued component g does not coincide with the stress field g. This “pseudostress™

field contains more information than ¢ in that ¢ may be determined from p
51mp1y as a linear combination of its components, but g does not determine
p- In fact from g one may determine the gradient of the displacement while
é only determines its symmetric part.

The construction of effective finite elements for the Hellinger-Reissner princi-
ple has proven to be very difficult and has not yet been accomplished in a
completely satisfactory manner for plane elasticity problems (see [3] for a discus-
sion on this point). For three dimensional problems no useful stable elements
are known. For the simpler problem of the discretization of a mixed formulation
of second order elliptic problems, a number of excellent finite elements have
been devised and thoroughly studied, but these elements cannot be simply
adapted to the Hellinger-Reissner formulation in order to solve the elasticity
problem. The crux of the difficulty is the requirement that the tensors occurring
in the Hellinger-Reissner formulation be symmetric. Our formulation eliminates
this requirement and so enables the direct adaptation of these elements to the
elasticity problem.

Another alternative to the Hellinger-Reissner variational formulation has
been presented by Arnold et al. [2] for the case of plane elasticity. They also
sought a mixed variational formulation of elasticity which avoided the necessity
of constructing symmetric tensor elements for discretization. However the formu-
lation they proposed is quite different from the one presented here. They retained
the basic stress and displacement variables, g and u, but instead of seeking
a saddle-point of the functional .#(z, ) in (1. 1) with the tensor 7 constrained
to be symmetric (the usual Hellinger-Reissner formulation), they added a
Lagrange multiplier to the functional and then sought a saddle-point without
a symmetry constraint on 1. The effect of the Lagrange multiplier is to enforce
the symmetry of the tensor variable. Thus in their formulation there are three
variables: the stress, the displacement, and the Lagrange multiplier, which is
scalar-valued and turns out to coincide with the rotation of the displacement.
To discretize one must construct finite element spaces for each of these variables
satisfying appropriate conditions. In contrast to the present formulation, it is
not obvious how to do this even in light of good elements for the second order
problem. In [2], Arnold et al. constructed one such family of spaces and proved
stability and convergence.

An outline of the paper is as follows. In the next section we collect the
notation to be used in the remainder of the paper and in Sect. 3 derive the
new variational principle. Because the stress is not a fundamental unknown
in this formulation, it is not obvious how to modify it in case the traction
rather than the displacement is given on part of the boundary. In Sect. 4 we
present such a modification and discuss its discretization. An analysis of a partic-
ular method of discretization is then given in Sect. 5. Finally in Sect. 6 we discuss
the application of our formulation to incompressible elasticity.
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2. Notations and Preliminaries

We shall consider the system of elasticity on a smoothly bounded domain
QcR=R" n=2 or 3. We use the following notational conventions. Lower
case letters and names of spaces are underscored by ~ and ~ to denote n-vectors
and nxn tensors respectively. Fourth order tensors are denoted by boldface
capital letters. The components of vectors and tensors are denoted by the corre-
sponding subscripted lower case letters. The product of a fourth order tensor
and a second order one is second order; thus 1=Ag means

n
= Z A;jk1 Oki» 1£i,j<n.
KI=1

We shall also use the notations

Z 04T and l£|:(

Ilﬁ

g)l/z

llﬁ

If X is a space of scalars (or scalar-valued functions), we use X to denote
the space of vectors with components in X. If Y is a space of vectors, Y denotes
the space of tensors with rows in Y and Y, the subspace consisting of symmetric
tensors.

In addition to the usual Sobolev spaces H*(Q) and H*(I'), we will use the
space H (div, Q) of square integrable functions on  with square integrable diver-
gence and the corresponding spaces H(div, Q) and H, (div, Q). Norms in H*(€Q),
H*(Q), and H*(Q) will be denoted by ||- |, (the choice will be clear from the
context) and norms in H*([}) and H*(I}) (I; a subset of I' =0Q) by ||, r,.

A linearly elastic material (possibly anisotropic and inhomogeneous) is char-
acterized by its compliance tensor A =A(x) whose components are functions
in Q satisfying

i1 = Qi = Ajika» 16, ),k 1Zn.

This condition means that for each x€Q, A(x) is a self-adjoint linear operator
on R which annihilates antisymmetric tensors and maps IR, into itself. We
assume (except in Sect. 6) that the restriction of A(x) to R, is positive definite
and bounded uniformly in x, so that there exist positive constants y, and ¢,
with

PlIPSTAX) IS0 lz)?  1eR,, x€Q. 2.1)

Consequently we may define the elasticity tensor C(x} by the equations

1=ACz=CAz  reR,,
and
Cijk1 = Crtij= Cjirt» 1<),k I1<n 2.2)
Clearly
g2 Clz=ce )’ 1eR,, x€Q, (2.3)

withy, =co' e; =y 1.
We shall be considering in the following sections the equations of elasticity
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A
div

¢(y) in Q,

= in £,

IS
Il

uQ

where g(u)=[grad u+(grad 4)]/2 and gradu is the Jacobian matrix, subject to
the boundary conditions
u=g, on [,

gn=g, on I,

where I} and I, are disjoint closed subsets of I" with I ul,=TI. In Sect. 3,
I will be empty and in Sects. 4 and 5 both I and I, nonempty.

3. The New Mixed Formulation

The Euler-Lagrange equations associated with the Hellinger-Reissner principle
{cf. (1.1)) are

Ag=¢(w) in (3.1)
divg=f in Q, (3.2)
u=g on [I. (3.3)

The constitutive Egs. (3.1) can also be stated in terms of the elasticity tensor
and displacement gradient
g=Cgraduy (3.4)

(by (2.2) Cgrad u = Cg(y)). We define the pseudostress p by the equation
p=(C+pD)grady, (3.5)

where f is a positive constant and

Dr=tr(y)d—1" (3.6)

A,

s

(In the above, tr(g) is the trace of
matrix.) From the calculus identit

% g‘ the transpose of T and Q the 3 x 3 identity
y

div[(divu)¢]=grad(divy)=div(grad u)
and the equilibrium Eq. (3.2) it follows that

=/ (3.7)

We shall now show that if §§ is chosen appropriately, C+ D defines an invertible
operator on R (for each xe) and hence (3.5) may be inverted to give

div

"~

Bp=gradu. (3.8)

In contrast, C does not define an invertible operator on R and (3.4) may not
be inverted in this way.
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There is some freedom in the choice of f. Taking f=y,/2 where y, is any
constant for which (2.3) holds, we now show

(C+BD)z:z=y12)%/2, zeR.

Indeed by (2.2) and (2.3)
Crz=CL+)2]: [z+ )21z 1+ )27 =y, (lz)* + 2:2)/2,

and by (3.6)
Drz=tr@’-rr'z-pt

Thus C(x)+ D is positive definite on R (not just R,), and denoting by B(x)
its inverse we have (3.8). Moreover since }Dr|<2|t] for all teR, we also have

(C+p5D)¢:

£§(C1+)’1)'£I .

Thus
AP sSB@Isalzl’,  eR, (3.9)

with yy=(c; +71) 71, c2=2/7;.

To summarize the foregoing considerations, we propose to discretize the
boundary value problem (3.8), (3.7), (3.3) rather than the classical problem (3.1)-
(3.3). Alternately we propose in place of the classical Hellinger-Reissner principle
to seek a saddle-point (p, u) in Ij(div, Q) x 1?(€) of the quadratic functional

2Lz, v)*f [(4Br:z+divi~f-v]— | g-zn (3.10)
a2

Existence and uniqueness of the saddle-point follow from the theorem of
Brezzi [9] once we verify the conditions

fBriz=ylicld, e, (3.1
0

fdivz-u
inf sup LA —2>, (3.12)

0+pel? 0% e H(div) ”T“u(dm lzlo

for some y>0. The first condition follows immediately from (3.9). The second
follows from the equality div H(div, Q)= L*(Q), itsell an obvious consequence
of the equality div H(div, Q)= L*(€). Thus the pseudostress and displacement
are the unique solution of the saddle-point problem associated with & or of
the Euler-Lagrange equations (3.8), (3.7), (3.3). In light of (3.4) and (3.8), the
stress g may be recovered (without differentiating) from the relation

gZCBBZE—BDBB-

A mixed finite element for our formulation defines an approximate solution
(Pn» uy) as the saddle-point of & restricted to a finite-dimensional space Six Vi
with S, H(div, Q), ¥, L*() finite element spaces. It is well known that unless
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the subspaces §, and I}, are chosen appropriately, the restriction of % need
not have a unique saddle-point and even if it does, good approximability of
(g ) by §,x 1, need not insure accurate approximation by (p,, u,). Various
stability “conditions have been proposed which, together with good
approximability by §, and Vj, insure the existence and uniqueness of (p,,, U,
and good approximation of (p, u). For example [97 if there exists a positive

constant y such that
f divz-p

inf  sup ———_y, (3.13)

O+yeVy, O+1e$n ”T“H(dlv) ”UHO
one obtains existence, uniqueness, and the quasioptimal estimate

Hp Ph”u(dlv)+ lu— uh”OSC[lnf HB Ty vy T inf lz—1vllo] (3.14)

re ; rveVy

with C depending on the stability constant y. Scalar analogues of the following
additional stability properties have also been used by a number of authors:
There exists a projection operator IT,: H' — §, having the property

fdiv(z—11,2)-0=0, pel;, (3.15)
02

div S, < Vi (3.16)

Using these hypotheses and usual approximation properties, a variety of esti-
mates including [? estimates, negative norm estimates, interior estimates, L*
estimates, etc., may be established by basically standard techniques (cf. 3, 1215,
19, 227).

For our formulation (in contrast to the Hellinger-Reissner formulation) it
is straightforward to construct finite element spaces §, and V, satisfying all
the stability conditions (3.13), (3.15), and (3.16). To see this we recall the solution
by mixed finite element methods of a second order elliptic problem. Here we
seek to approximate the unique saddle-point (p, u) in H(div, Q) x 12() of the
functional

F@o)= [ [Fdvz+diviv—fo]—- | gz-n,

Q 002

where feL*(Q), ge H'/*(0Q), and the n x n matrix 4 are given. An approximation
is found by selecting finite dimensional subspaces S, < H(div, ), V,< L*(£2) and
determining the approximate solution (p,, u,) as the unique saddle-point of ¢
restricted to S, x V, (if this exists). Several families of finite element spaces have
been constructed which satisfy the analogues of the stability conditions (3.13),
(3.15), (3.16), afford good approximability, and can be efficiently implemented.
The best known of these are the spaces of Raviart and Thomas [19, 227, and
Nedelec [16]. In the case of a two dimensional domain, Raviart and Thomas
constructed for each triangulation J, and each nonnegative order k, spaces
S, and V¥, and verified the analogue of the stability condition (3.13) with y
independent of the triangulation (depending only on a lower bound for the
minimal angle). They also derived quadrilateral elements. Nedelec [ 16] simplified
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their elements and extended them to three dimensions. The Raviart-Thomas-
Nedelec elements have been thoroughly analyzed both from the point of view
of accuracy and implementation [1, 11-15, 20, 21]. For the two dimensional
case, a second family of spaces satisfying the Brezzi conditions has been recently
introduced by Brezzi et al. [10]. Their spaces are also defined for arbitrary
triangulations (and for quadrilateral subdivisions) and arbitrary order. In all,
one may say that excellent mixed finite element methods for second order elliptic
problems are known and well understood.

Returning to our formulation of the elasticity problem, it is easy to see
that conditions (3.13), (3.15), and (3.16) are satisfied if we take

§h:§hx‘§h7 Vi=Vax Vs,

where S, < H(div, ), V,c L*(Q), satisfy the analogous conditions for discretiza-
tion of the mixed second order problem. We may use, for example, the Raviart-
Thomas-Nedelec or Brezzi-Douglas-Marini elements with our formulation.

4. Traction Boundary Conditions

In this section we show how to modify our formulation in case the displacement
boundary condition is replaced by a traction boundary condition on part of
the boundary. Thus the boundary conditions we consider are

Il

u=g, onlj,

Q)

n=g, on [, 4.1

u

where I'7 and I, are disjoint nonempty closed subsets of I' with I ulL,=T.
Note that we have assumed that the displacement and traction boundary condi-
tions are given on separated boundary curves or surfaces. This (rather strong)
assumption is made to avoid various technicalities. Since the stress g has been
eliminated from our formulation, it is not obvious how to include the condition
(4.1). In order to do this we first define the tangential gradient of 4 by gradru
=grady—(gradu)nn'. Note that the i-th row of gradru(x) is the orthogonal
projection of grad y;(x) onto the tangent space of I" at x. Consequently, grad,ru
depends only on ul;, so grad, may be viewed as a bounded map of H'*(I3)
into H™'2(I,). For pe H''*(I3,) define

b(w)=—pD(grad pn.
For ue H'(Q) we write b(y) in place of b(z|r,).

Lemma 4.1. The operator b: H'*(I,)— H ™ Y*(I},) is bounded and self-adjoint.
Moreover, for ue H'(Q),
b(w)= —pD(grad u)n. (4.2)

Proof. The second statement follows from the identity

D(znn) =tr(znn)n—(n'zn)n=0,
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which holds for any teR. To prove the first statement, we define (g, 4, p) and

Lumb

Ag—¢(w)=0, At—¢(p)=0,
divg=0, divz=0,
u=0 on I, v=0 on Iy,
y=p on Iy, pv=4 on [},
p= g+ pD(gradu), n= =1+ BD(grady).

Then Bp=graduy, By =grady, divp =0, divy=0. Hence
0= [ [(Bp—gradu):n+divp-v—(By—grady):p —divy-u]

= flpn-d—

N

s
o
it

Also

= f(g[ﬁ _
r, r,

= [ [b(w)- 2~ b(2)-41.

[
e
=
=
=
[l
—~—
[l
ey
=
+
el
o~
R
=
—
[P
|
eyl
[
+
o~
—
)
=
=
=
N

This establishes the self-adjointness. [
It follows from (4.2) that the boundary condition (4.1) may be restated as

Q’J+b(£‘)=gz on I;. (4.3)

For the traction problem we seek a critical point (p, u, e H(div, Q) x ()
x H'2(I,) of the functional b

L= [Brz+dive-o—[-o]
o
5 o= | Gbw+zn—gy)-u (4.4)
Iy r
A weak form of this problem is:
Find (p, u, HeH(div, Q) x L*(Q) x H**(I';) such that
fBp:z+divi-ul— [ A-zn= [ go1n geHdiv, Q) 4.5)
o = r.  r._ o7
fdivp-o={fv vel?(Q), (4.6)
e = Q
lpn+bW]-p= [ go-pp,  peH'(I). (4.7)
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Note that A=u|r, and (4.7) is a weak statement of the traction boundary condi-
tion (4.3).

This formulation may be discretized in the usual way: the approximate solu-
tion is determined as a critical point of Z over a finite dimensional subspace
Spx Vax A4y of H(div, Q) x L*(Q)x H'/*(I;). For §, and ¥, we choose the same
spaces as for the Dirichlet problem. In the next section we present a way to
choose 4, so that the finite dimensional problem admits a unique solution
and derive error estimates for the three variables. First we discuss an approach
to the computation of the discrete solution. We wish to compute (p,,, U, AES,
x V, x 4, satisfying

j[Bph t+diveu]— | dezn= f ‘10, I€Sh (4.8)
T ry

jdivewv=1{f1v vel, (4.9)
0 Q

§ lown+bGal-p= [ g2, ueds (4.10)
I> I

A direct solution of (4.8)-{4.10) involves a relatively large number of unknowns,
so we indicate an alternative formulation in which only 4, is solved for directly.
For ve HY2(I,), define ( 1), uf (v))eS,, = V, by

FBpl:mtuf(v-divgd= | gvmot [ vonn  wes, @11
03 Iy I

§ divpl(v) vh—u-ym 04 € Vi (4.12)
Q

Clearly (4.8) and {4.9) may be written equivalently as

(o1 ) = (0f (), th (Z0)),
and (4.10) becomes - )

f [g{(%h)’!+l2(£bh)]£‘: f 8274 HELy. (4.13)
T2

T2

Via choice of a basis for A, (4.13) is reduced to a system of linear equations
for the coefficients of A,. For an appropriate choice of elements this system
is positive definite, as will be shown in the next section. In order to solve the
system efficiently, one could employ a preconditioned conjugate-gradient itera-
tion. The major cost of the iteration will be the repeated evaluation of the
operator on the left hand side of (4.13), which in turn consists mainly of the
solution of a displacement problem in order to evaluate g,,( ) for given u. Note
that for all these displacement problems the operator is the same, and only
the load is varied. To construct a preconditioner for this iteration, one can
follow the ideas in Bramble [7]. Since the description of these results is fairly
complicated, we do not include them here.
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5. Stability for the Mixed Boundary Value Problem

To discretize our formulation (4.5)H4.7) of the mixed boundary value problem
we must select subspaces S,, ¥, and 4,. We shall suppose that §, and [,
are chosen to be spaces which are effective for the Dirichlet problem in the
sense that (3.13) holds, and determine /4, so that the discrete problem (4.8)-(4.10)
admits a unique solution which satisfies the quasioptimal estimate (cf. (3.14))

||g"‘£hHg(div)+||'4‘£‘h||o+l'i”2~hi1/2,rz
<Clinf llg—£‘|g<div>+ inf lu—~vllo+inf|A—plinr,] (5.1

E9n vely Tedn

As is well-known, a necessary and sufficient condition for this, is that the method
be stable in the sense that the bilinear form

Blp.u, bz o )= [Bp:g+divy-u+divp-v]— | {zn i+ [pn+b()] u}
= ~ P = = = = = = ~

rs

defined on (S, x V; x 4,)* satisfy the inf-sup condition [5]. We now give a simple
sufficient criterion for stability. To state it we first define for each ve H'2(I})
the pair (p,(y), 4, (v))€S, X V;, as the solution of the discrete Dirichlet problem
(4.11), (4.12) with { and g, replaced by 0.

Lemma S.1. Assume that §, and V, satisfy (3.13) and that 4, is chosen so that

f [Qh(E)Q'*'b(H)]'EZVIH[%/Z,I} forall ped,. (5.2)
I

Then (4.8)(4.10) defines a stable Galerkin method for the mixed boundary value
problem.

Proof. It is enough to show (cf. [5]) that for any (G, F, ®)e H(div, Q)* x L*(Q)*
x HY?(I,)*, the discrete variational problem:
Find (ps, 4p, 4) €Sk X Vi X 4, such that

B(Pns tns bns LU W =G, 1 +<{E, 00 +{(D, >
for all (1,0, we S, x Vi x 4 (53)
has a unique solution, and that this solution satisfies
||£h||lj(d;v)+ lunllo +[L1hll/2.l"2§ C[”g“}_{(div)*+ ”E”I:I(Q)*'*_ | (PIH!/Z(FZ)J

where C is a constant independent of A.
Define (p}, u})e Sy x ¥, by

Blpnun>0:1,0,00=(G,>+<{(F,p forall (z,v)e§, x V. (54)

From the results of Sect. 3 there is a unique solution to this discrete Dirichlet
problem and

”Q;l; ”g(dm + HE;‘: lo=CLlI Qll Ll(div)*+ IEI L}(Q)*]-
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Upon subtracting (5.4) from (5.3) we see that it suffices to show that there
is a unique (p7, 4y, €S, X, x 4, such that

B tns A Lo, =P, p>— | pan-p forall (z,v.weS,x V,x 4, (5.5)
= = ~ ~ I = ~ = ~ =

and that the estimate

”Q;%”Ludiv) +llurlo +14nli2.r, £CII Plyizr,y+ ”g;‘. g agn]

holds with C independent of h. Clearly

(gl% > L‘ﬁ) :(Qh(%h)» Uyl 25) (5.6)

so we get using (5.2) and (5.5} that 2, is uniquely defined and

V”'ih”%/z.rzé j [Qh(%h)&—*"b(%h)]'%h
I

=P, by — f Qli K"%hé([@(nwurﬂ*‘HQ; 1121, |Z»h11/2,rr
I

Thus
[4nlyy2.r, S Pl + ”g;‘. i

The proof is completed by invocation of (5.6). [

We have attacked the traction boundary condition by modifying the Lagran-
gian for the Dirichlet problem through the addition of the variable 4; cf. (3.10)
and (4.4). This is a technique commonly used when applying a Galerkin method
to a problem with essential boundary conditions which cannot easily be imposed
on the Galerkin subspace. For example, to solve a traction problem on a nonpo-
lygonal domain using mixed finite elements based on the usual Hellinger-
Reissner principle, one likely possibility would be to use a multiplier method.
For all such methods one must determine a suitable subspace in which to seek
the new variable and a stability condition analogous to (5.2) must be verified
umplicitly or explicitly. In the particular case of scalar elliptic equations, there
are a number of papers concerned with the choice of subspaces. See, e.g., [4,
7, 8, 17, 18]. Many of the approaches developed there could be adapted to
our case. In the interest of brevity we will discuss only one, related to that
of [4] and [7].

For definiteness we shall assume that §, and V;, are chosen to be (Cartesian
products) of the Raviart-Thomas-Nedelec elements of order I Other subspaces
with similar stability and approximation properties {e.g., those of Brezzi et al.
[107) could also be used with only small changes in the analysis. For the Raviart-
Thomas-Nedelec elements, the approximation results

’L’I“l”g(div)éc}l”rl “L’IHQ! L) for all gelj” H(9),

inf 2= 0o < CH* fizlgirie,  forall zeH' ' (Q)

veln
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hold. In view of these results and in anticipation of the estimate (5.1), we assume
that the space 4, satisfies

inf|¥‘£‘|1/2.r2§clhl“'![us/z.rz for all ye H'* ¥2(I). (5.7
pedn

This is satisfied, e.g., if 4, consists of continuous piecewise polynomials of degree

at least I with respect to a quasiuniform mesh of maximum element size h.
The same choice guarantees the inclusion

Anc HU(TY) (5.8)
and the inverse inequality
hl/z}y|1.r2§C2|H|1/2.r2 for all HGHI(FZ) (5.9

for some constant C,. The approach of [4] and {7] requires the inverse inequali-
ty {5.9) not merely for any C, but for a value sufficiently small. This can be
achieved by taking A, to consist of piecewise polynomials subordinate to a
mesh of elements which are not of size A, but rather of size h/ec. By selecting
¢ sufficiently small, (5.9) can be achieved with any desired constant C,. With
this choice (5.8) of course still holds and so does (5.7) with C, replaced by
CI/SI + 1'

To summarize: we assume that 4, H'(I3) satisfies (5.9) for a value of C,
to be specified and (5.7) for some value of C,. Now we prove (5.2).

The verification of (5.2) relies on the fact that the analogous condition holds
in the continuous limit. That is, there is a positive constant y,> 0 such that

§ lp(wn+bw] pzyollulte r,  forall peHYA(D), (5.10)
r,

where (E(E)’ u()) is the solution of the displacement problem

Bg:g(g) in 5.1
divg=0 in Q, (5.12)
u=0 on I3, (5.13)
U=y on [,. (5.14)

To prove (5.10) let g(u)=p(p)— BD(grad u(y)). Then the pair (g(u), u(w)) solves
the homogeneous equations of elasticity (with compliance tensor A) and displace-
ment boundary conditions (5.13), (5.14). From standard estimates f w-g(in
270 lulis2, r,» and (5.10) now follows from Lemma 4.1. o

Next we bound the difference between the left hand sides of (5.10) and (5.2).
By the Schwarz inequality and the trace inequality in H (div, ),

j u- [Q(H)_Qh(lj)]ﬂgl/j[uz,n [lg(y)—gh(y)llmdw (5.15)
I>
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Using the fact that div p(p)=div p, (1) =0, standard estimates for the Raviart-
Thomas-Nedelec elements ', and energy estimates for (5.11)~5.14), we have

lp () = pu() gy = 0 @) — pallo S CR 2 p ()1l 12 < C3 B2 |y, (5.16)
Combining (5.15), (5.16), and (5.9) gives

[

jlj[g(#) Ph(/i)] = 2C31L11%/2.r2-
r;

Finally, choosing C, =7,/(2 C;) and combining with (5.10) gives (5.2).
Using the quasioptimal error estimate (5.1) and the approximation properties
of the subspaces §,, V,, and 4,, we get the error estimate

||£—£h“y(div>+ l|1i—klh”0+|Z~—%hl1/2.r2§Chl+l lullgr 20

Using techniques developed for mixed and multiplier methods for scalar prob-
lems, it is possible to improve this estimate somewhat in the regularity required
and also to derive estimates in other norms. Since the derivation of such results
would be quite lengthy and only require minor modifications of the techniques
for scalar problems, we do not include them here.

6. Incompressible Elasticity

We now consider the case of a homogeneous incompressible elastic material.
Such a material with compliance tensor A is incompressible if AJ=0. In this
case the displacement field satisfies divy=0, as follows by taking the inner
product of (3.1) with §. Since the compliance tensor is not positive definite
on R, for an incompressible material, the derivation of our formulation given
in Sect. 3 does not apply. In this section we extend the results of Sect. 3 to
the incompressible case. To do so we first note that the Dirichlet problem (3.1}~
(3.3) for an incompressible material admits a solution if and only if

[ g-n=o0. (6.1)

When (6.1) holds, the solution is uniquely specified by imposing the side condi-
tion
| tr(g)=0. (6.2)

0

Our derivation is most easily understood for an isotropic material and so
we consider that case first. For such a material the compliance tensor satisfies

Agzi[

o R
2,u+n/l (g)z} e

! Using the definitions of py(p) and p (1), it follows easily that Hp(u p,,(;z)llnf( ||/)(u}||0 Interpolating
between this estimate and the standard estimate et p,,(u Mo C th Wi gives p( = putiillo
<Ch1 H,{) #)“1/2
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where p, >0 are the Lamé constants and n=2 or 3, the case n=2 corresponding
to plane strain. For an incompressible isotropic material A= + o0, i.e.,

Ar= : [t—ltr(z)é].

The least constant ¢, for which the upper bound in (2.1) holds is ¢, =1/2p).
Following the procedure of Sect. 3 at this point, we therefore choose f=pu.
For A<, we have

Cr=2uz+Atr(y)g,

Red
m
s

(CH+BD)r=pr+u+Ntr(m)g,

1 u+i
B -t o1,
L u[f (1t Dutni r(”] i

ey
m
0]

uﬁ

The last equation is also valid for A= + oo, giving

s,

Br= l[r—ltr(g)] zelR, (6.3)
S L el

in the incompressible case. The equation for the stress in terms of the pseudo-
stress is
2u+l

+plm
(n+Du+ni

(e
e

tr(p)g

for A< oo or

1
T, )

l
nb
[

=

for A=+ 0. Note that in both the compressible and the incompressible cases,
tr(g) is a positive multiple of tr(p) so the side condition (6.2) holds if and
only if

{ tr(p)=
o

Let H(le Q) =1i1e

H(d, Q): j tr(z)=0}. Then our formulation of isotropic in-
2

compressible elasticity seeks (p, w)e H(div, Q) x L*(Q) as a saddle-point of the

functional (3.10) with B defined by (6.3).

We shall now show that in fact there is a unique saddle-point. Recalling
again Brezzi’s theorem [9], we must verify two conditions. The second condition
is identical with (3.12) except that the supremum is over O#geg(div, Q), and
is again obvious. Condition (3.11) does not hold for any positive y, since Bd=0.
However Brezzi’s theorem only requires that

fBg 2yleld. 1%, (6.4)

where
Z={1eH(div, Q):divy=0},
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and this is in fact so. For by a simple calculation

Briz> . |z,/%  1eR, (6.5)

1
l =R
1 . . , .
where 7,,=1—— tr(g)9 i1s the deviatoric of 7 and it can be shown that
o= DG L

lzho=Cllznlo, €4, (6.6)

where C depends only on Q. The bound (6.6) is well-known, at least when
teZnR,, but the usual proof does not require symmetry of 1. See, e.g., [3,
Lemma 3.1].

In the compressible case we defined the pseudostress and displacement as
a critical point of % over H(div, Q) x L*(Q) rather than H(div, Q) x L*(). Actu-
ally the latter choice of spaces may be used also for a compressible isotropic
material when the Dirichlet data satisfies (6.1) since then

:f(;—F jtr(;)Jé, g)gs’(g,y), (z. e H (div, @) x [2(Q).

ng -

The coercivity condition (6.5) holds uniformly for A¢[0, co]. From this one
can easily derive continuous dependence of 2R 8 and g on 4, up to and including
A=00.

A Galerkin discretization of our formulation with subspaces S,,CH(dw ),
V,c I2() is stable if the discrete Brezzi conditions hold, ie., if the inequalities
(3.13) and

[ Brizzylzlls, ez, (6.7)
E 15€
hold for some y>0. In (6.7),
Z,={zeSy: [ divz-v=0 for all ye ¥, }.
Q

Condition (6.7) holds if (3.16) does, since then Z, <= Z.

Finally we consider an anisotropic homogencous incompressible material.
For an incompressible material the identity d is an eigenvector of the compliance
tensor with eigenvalue 0. In order to extend our formulation to this case we
first consider a material whose compliance tensor is positive definite on R,
and for which the identity is an eigenvector with eigenvalue ¢>0. It is useful
to introduce some notations for specific subspaces of R:

R,={reR:g'=—1},
113 ={zeR: tr(z)=0},
R,, :H}Dmlgs,
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Then R=R;+R,=R,,+RJé+R,=R,+RJ and the summands in each
decomposmon are mutually orthogonal. If the identity is an eigenvector of the
compliance tensor, then the subspace IR, is mapped by the compliance tensor
into itsell and the restriction AO—A|,R b IRYD—>1R3,) is positive definite. In the
incompressible case we shall also assume that A, is positive definite, i.e, that
0 is a simple eigenvalue of A [ . The action of A may be described by

Aoz, if gelgw,
Ar=4¢g, if geIRQ‘,
0, if zeR,.

It follows that

Ag'lt, if 1€Rp,

Cr=1¢""'y,  if zeRy,
o, if zeR,.
Now
-1 if zeRy,,
Dr=:2g if zeRg,
I, if geﬂ}a.
so

(Aalhﬁl)g’ lf gEI:,Rs[)’
(C+BD)z= (8_1+2ﬁ)£, if ge]Ré,
ﬁg, if gelzRa.

where, as before, f is taken as 1/(2¢,) where ¢ is an upper bound for the
eigenvalues of A and I is the identity. Thus

( ‘1_ﬂl)—l£, ]f £EIBSD’
Br=le(14+288) 'z, if zeRS, (6.8)
B 11, if zeR,.

This last formula is also valid for e=0, and we use it in the incompressible
case. A unified formula for the tensor B, valid for compressible and incompress-
ible materials, is

B=(AT+ D), {6.9)

where the dagger denotes the Moore-Penrose inverse. This follows directly from
the Moore-Penrose equations (see 6], p. 7).

Let us summarize these considerations. For an incompressible material, we
assume that A,=A|g , is positive definite, and let f be half the reciprocal
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of its largest eigenvalue. Then B is well-defined by (6.8) with ¢=0 or equivalently
by (6.9), and (p, u) is defined as the saddle-point of £ (given again by (3.10))
on H(div, Q) x L?(Q). The saddle-point exists and is unique since (6.5) and hence

{6.4) holds. The pseudostress is related to the true stress by

p=g+BD(grady).

The pseudostress satisfies the constitutive equation B p=grad u, so the true stress
may be recovered without differentiating as -

g=p—fDBp.
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