
www.elsevier.com/locate/cma

Comput. Methods Appl. Mech. Engrg. 196 (2007) 3660–3671
Locking-free Reissner–Mindlin elements without reduced integration q

Douglas N. Arnold a,*, Franco Brezzi c,e, Richard S. Falk d, L. Donatella Marini b,c

a Institute for Mathematics and its Applications, University of Minnesota, MN 55455, United States
b Dipartimento di Matematica, Università di Pavia, Italy
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Abstract

In a recent paper of Arnold et al. [D.N. Arnold, F. Brezzi, L.D. Marini, A family of discontinuous Galerkin finite elements for the
Reissner–Mindlin plate, J. Sci. Comput. 22 (2005) 25–45], the ideas of discontinuous Galerkin methods were used to obtain and analyze
two new families of locking free finite element methods for the approximation of the Reissner–Mindlin plate problem. By following their
basic approach, but making different choices of finite element spaces, we develop and analyze other families of locking free finite elements
that eliminate the need for the introduction of a reduction operator, which has been a central feature of many locking-free methods. For
k P 2, all the methods use piecewise polynomials of degree k to approximate the transverse displacement and (possibly subsets) of piece-
wise polynomials of degree k � 1 to approximate both the rotation and shear stress vectors. The approximation spaces for the rotation
and the shear stress are always identical. The methods vary in the amount of interelement continuity required. In terms of smallest num-
ber of degrees of freedom, the simplest method approximates the transverse displacement with continuous, piecewise quadratics and both
the rotation and shear stress with rotated linear Brezzi–Douglas–Marini elements.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the Reissner–Mindlin model of a clamped plate, one
seeks to determine the rotation vector h and the transverse
displacement w which minimize over H1

0ðXÞ � H 1
0ðXÞ the

plate energy
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gwdx;
where the coefficients C and k depend on the material prop-
erties of the plate, g is the scaled load, and t is the plate thick-
ness. If one minimizes the energy over subspaces consisting
of low order finite elements, then the resulting approxima-
tion suffers from the problem of locking. This problem is
most easily described by noting that as t tends to 0, the solu-
tion ðh;wÞ of the minimization problem approaches ðh0;w0Þ,
where h0 ¼ $w0. If we discretize the problem directly by
seeking hh 2 Hh and wh 2 W h minimizing Jðh;wÞ over
Hh � W h, then as t vanishes, ðhh;whÞ will converge to some
ðh0;h;w0;hÞ where, again, h0;h ¼ $w0;h. The locking problem
occurs because, for low order finite element spaces, this last
condition is too restrictive to allow for good approximations
of smooth functions. In particular, if continuous piecewise
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linear functions are chosen to approximate both variables,
then h0;h � $w0;h would be continuous and piecewise con-
stant, with zero boundary conditions. Only the choice
h0;h ¼ 0 can satisfy all these conditions. For t very small,
the quantity hh � $wh, although not necessarily zero, must
be very small, and hence hh will be very close to zero, instead
of being close to h. We can also see the problem from the
point of view of approximation: for small t, one cannot find
hI and wI that are close to h and w, respectively, if one re-
quires hI � $wI to be of the order of t2.

A number of approaches have been developed to avoid
the locking problem. One successful idea has been to intro-
duce an additional finite element space Ch and a reduction
operator Ph : Hh ! Ch, and then seek approximations
hh 2 Hh and wh 2 W h minimizing

J hðh;wÞ¼
1

2

Z
X
CeðhÞ : eðhÞdxþ1

2
kt�2

Z
X
j$w�Phhj2 dx�

Z
X

gwdx:

A key assumption is that $W h is a subset of Ch, and in par-
ticular of the image of Ph. As t tends to 0, the limiting con-
dition will now be

Phh0;h ¼ $w0;h: ð1:1Þ
The introduction of the operator Ph adds flexibility: if this
operator and the finite element subspaces are chosen prop-
erly, then one can obtain good approximations which still
satisfy the limiting condition (1.1). A number of locking-
free individual finite elements and finite element families
(e.g. [5,10,15,18,19,16,20,17]) have been obtained in this
way.

In a recent paper of Arnold et al. [4], the techniques of
discontinuous Galerkin (DG) methods were used to
develop two families of locking-free elements. DG solu-
tions are not required to satisfy the standard interelement
continuity conditions of conforming finite element methods
(that is, continuous elements in the case of the Reissner–
Mindlin plate problem). Hence DG methods allow a
greater flexibility, that we shall exploit.

As noted in [4], there are many variations of the DG
approach. The starting point for all the methods consid-
ered in [4] is a fully discontinuous approach in which for
k odd, the spaces Hh and Wh are chosen to be piecewise
polynomials of degree 6 k, and Ch is chosen to be piecewise
polynomials of degree 6 k � 1. Various degrees of interel-
ement continuity can then be added, provided suitable bub-
ble functions are added to Hh. Error estimates are obtained
for two cases: first, when all finite element spaces are fully
discontinuous, and, second, when Hh is a continuous finite
element space augmented by bubble functions, Wh is a non-
Fig. 1. Simplest elements with w discont
conforming space (i.e., moments of order k � 1 are contin-
uous across interelement boundaries), and Ch is
discontinuous. The second case coincides when k = 1 with
the Arnold–Falk element [6], in which Hh consists of the
continuous piecewise linear functions augmented by cubic
bubble functions, Wh consist of the nonconforming piece-
wise linear functions, and Ch consists of the piecewise
constants. A possible advantage of the first, fully discontin-
uous case, is that it allows the same degrees of freedom for
the rotations and transverse displacement. This condition is
considered by some engineers to simplify the implementa-
tion in the context of the commonly used conforming or
nonconforming methods (and, especially, for the extension
to shell problems). It might prove less important when dis-
continuous elements are used. Since there is still very lim-
ited experience in the practical use of discontinuous
elements for plates (and for their extension to shell prob-
lems), we consider this question as yet unresolved. It might
well turn out, for example, that the greater flexibility of DG
methods enables the treatment of some particularly difficult
shell problems, compensating for other difficulties in imple-
mentation. Much more research and experimentation are
needed to fully understand the practical interest of all these
possible developments, and we shall not consider this issue
further here.

In this paper, the starting point for all the methods con-
sidered is to choose Wh to be piecewise polynomials of
degree 6k (with k P 2), and Hh ¼ Ch to be piecewise poly-
nomials of degree 6 k � 1. The motivation comes from the
desire to eliminate the reduction operator Ph, and also is
suggested by issues arising from approximation theory, in
which it is natural to have the polynomials in Wh of one
higher degree than those in Hh. Within this framework,
various amounts of interelement continuity are possible,
and we derive error estimates for several natural choices.
These include fully discontinuous cases, and also the cases
when Wh is continuous. In the former situation, Wh con-
sists of all the piecewise polynomials of degree at most k
for some k P 2, and Hh ¼ Ch is made of all the piecewise
polynomials of degree 6 k � 1. The element diagram in
the lowest order case, k = 2 is shown on the left of
Fig. 1. In the case of when Wh is continuous, it coincides
with the usual space of continuous piecewise polynomials
of degree at most k, and the smallest of several possible
choices for Hh ¼ Ch is the rotated Brezzi–Douglas–Marini
elements of order k � 1, BDMR

k�1, [13]. With k = 2 this
gives the element choice indicated on the right of Fig. 1.
However, other choices of Hh ¼ Ch are possible with the
same choice of Wh. In fact any space which contains
inuous (left) and continuous (right).
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BDMR
k�1, e.g., the rotated Raviart–Thomas elements of

order k � 1 [21] ðRTR
k�1Þ, or the space of the discontinuous

piecewise polynomials of degree 6 k � 1 could be used.
There are some differences between the fully discontinu-

ous methods and the methods with continuous Wh, that
become apparent in the derivation of error estimates.
One difference is the regularity required on the solution
to achieve a certain rate of convergence. This may have
some added importance in the approximation of the Reiss-
ner–Mindlin plate problem, since the rotation vector has a
boundary layer and thus higher norms are not bounded
independently of the plate thickness t. For example, for
the clamped plate, khk2 is bounded, while khk3 behaves like
t�1=2 as t tends to 0.

An outline of the paper is as follows: in the next section
we introduce the notation for the spaces to be used, and
recall some basic notation and useful formulae to deal with
discontinuous approximations. In Section 3 we introduce
the discretized problem and recall some known results con-
cerning DG approximations. Specific methods are dis-
cussed in the last two sections. In particular, Section 4
deals with the cases in which functions in Wh are continu-
ous, and Section 5 with the totally discontinuous case.

2. Notations and preliminaries

2.1. Functional spaces

We begin by adopting the notation employed in [4]. Let
X � R2 denote the domain occupied by the middle surface
of the plate. For simplicity, we assume that X is a convex
polygon.

We shall use the usual Sobolev spaces such as Hs(T),
with the corresponding seminorm and norm denoted by
j � js;T and k � ks;T , respectively. When T ¼ X, we just write
j � js and k � ks. By convention, we use boldface type for
the vector-valued analogues: H sðXÞ ¼ ½H sðXÞ�2. Occasion-
ally we shall use calligraphic type for symmetric-tensor-val-
ued analogues: HsðXÞ ¼ ½H sðXÞ�2sym. We use parentheses
ð�; �Þ to denote the inner product in any of the spaces
L2ðXÞ, L2ðXÞ, or L2ðXÞ.

We denote by Th a decomposition of X into triangles T

and by Eh the set of all the edges in Th. For piecewise poly-
nomial spaces, we use the notation

Ls
kðThÞ ¼ fv 2 H sðXÞ : vjT 2 PkðT Þ; T 2Thg; ð2:1Þ

with PkðT Þ the set of polynomials of degree at most k on T.
(Note that in (2.1), calligraphic font does not refer to ten-
sor-valued quantities.)

Some of our finite elements will be discontinuous and so
not contained in the space H 1ðXÞ, but rather in a piecewise
Sobolev space

H 1ðThÞ :¼ fv 2 L2ðXÞ : vjT 2 H 1ðT Þ; T 2Thg:

Differential operators can be applied to this space only
piecewise. We indicate this by a subscript h on the opera-
tor. Thus, for example, the piecewise gradient operator
$h maps H 1ðThÞ into L2ðXÞ and the piecewise symmetric
gradient (or infinitesimal strain) operator eh maps H1ðThÞ
into L2ðXÞ. The space H 1ðThÞ is equipped with the semi-
norm jvj1;h ¼ k$hvk0 and the corresponding norm

kvk2
1;h ¼ jvj

2
1;h þ kvk

2
0. More generally, a subscript such as

k � ks;h will be used to indicate the broken (element by ele-
ment) Hs-norm (for s a nonnegative integer).

A particular role will be played, for discontinuous
approximations, by the set Eh of all the edges of the given
decomposition Th. In particular, we shall use the symbol
h�; �i to denote L2-inner product (of functions or vectors)
on Eh. Hence, for instance, if w and v are functions defined
on Eh we have

hw; vi :¼
X
e2Eh

Z
e

wvds:
2.2. Averages and jumps

As is usual in the DG approach, we define the jump and
average of a function in H 1ðThÞ as a function on the union
of the edges of the triangulation. Let e be an internal edge
of Th, shared by two elements T+ and T�, and let n+ and
n� denote the unit normals to e, pointing outward from T+

and T�, respectively. If u belongs to H 1ðThÞ (or possibly
the vector- or tensor-valued analogue), we define the aver-
age u on e as usual:

fug ¼ uþ þ u�

2
:

For a scalar function u 2 H 1ðThÞ we define its jump on e

as

½�u½� ¼ uþnþ þ u�n�;

which is a vector normal to e. The jump of a vector
u 2 H1ðThÞ is the symmetric matrix-valued function given
on e by

½�u½� ¼ uþ � nþ þ u� � n�;

where u� n ¼ ðu	 nþ n	 uÞ=2 is the symmetric part of
the tensor product of u and n.

On a boundary edge, the average {u} is defined simply
as the trace of u, while for a scalar-valued function we
define ½�u½� to be un (with n the outward unit normal),
and for a vector-valued function we define ½�u½� ¼ u� n.

It is easy to check that

X
T2Th

Z
oT

u � nT vds ¼ hfug; ½�v½�i; u 2 H1ðXÞ; v 2 H 1ðThÞ:

ð2:2Þ
Similarly,

X
T2Th

Z
oT
SnT �gds¼hfSg; ½�g½�i; S2H1ðXÞ; g2H1ðThÞ:
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It is not difficult to see that both the above relations hold
in more general situations. For instance, (2.2) also holds
for u 2 Hðdiv; XÞ, where Hðdiv;XÞ is the space of vectors
u 2 L2ðXÞ with divu 2 L2ðXÞ.

2.3. The Reissner–Mindlin equations

Introducing the shear stress c ¼ kt�2ð$w� hÞ, the Reiss-
ner–Mindlin plate problem may also be described by the
Euler equations for the minimization of the plate energy.
These are

� divCeðhÞ � c ¼ 0 in X; ð2:3Þ
� divc ¼ g in X; ð2:4Þ

$w� h� t2c ¼ 0 in X; ð2:5Þ
h ¼ 0; w ¼ 0 on oX: ð2:6Þ

Note that (2.5) should actually be $w� h� k�1t2c ¼ 0,
where k is the shear correction factor. Here however, to sim-
plify the presentation, we set k = 1. We are now going to
introduce the variational formulation of Eqs. (2.3)–(2.6)
(or, actually, of a more general case, that we shall need la-
ter on while applying a duality argument). We set, for h

and g in H1ðXÞ
aðh; gÞ ¼ ðCeðhÞ; eðgÞÞ
and we consider the following problem:

Given g 2 L2ðXÞ and G 2 L2ðXÞ, find h 2 H1
0ðXÞ,

w 2 H 1
0ðXÞ and c 2 L2ðXÞ such that

aðh; gÞ þ ðc;$v� gÞ ¼ ðg; vÞ þ ðG ; gÞ

8ðg; vÞ 2 H1
0ðXÞ � H 1

0ðXÞ; ð2:7Þ

ð$w� h; sÞ � t2ðc; sÞ ¼ 0 8s 2 L2ðXÞ: ð2:8Þ

It is clear that the Reissner–Mindlin equations (2.3),
(2.1)–(2.6) are obtained for G ¼ 0. For the generalized
problem (2.7) and (2.8), we recall the following result (see
[5,6]).

Theorem 1. Let X be a convex polygonal domain, and
assume that the coefficient C is smooth. Then problem (2.7)

and (2.8) has a unique solution that satisfies

khk2 þ kwk2 þ kck0 þ tkck1 6 Cðkgk�1 þ tkgk0 þ kGk0Þ;
ð2:9Þ

where C is a constant depending only on X and on the coef-

ficients in C.
3. Discontinuous Galerkin discretization

3.1. Discontinuous variational formulation of the continuous

problem

To derive a finite element method for the Reissner–
Mindlin system based on discontinuous elements, we test
(2.3) against a test function g 2 H2ðThÞ and (2.4) against
a test function v 2 H 1ðThÞ, integrate by parts, and add.
Since g and v may be discontinuous across element bound-
aries, we obtain terms at the interelement boundaries that
we manipulate using (2.2). The net result is

ðCehðhÞ;ehðgÞÞ�hfCehðhÞg; ½�g½�iþðc;$hv�gÞ�hfcg; ½�v½�i ¼ ðg;vÞ;

ðg;vÞ 2H2ðThÞ�H 1ðThÞ;

ð$hw�h;sÞ� t2ðc;sÞ¼ 0; s2H1ðThÞ:
ð3:1Þ

Note that we could as well have written eðhÞ and $w instead
of ehðhÞ and $hw, respectively, due to the continuity proper-
ties of the exact solution. The second and fourth terms in
(3.1) involve integrals over the edges and would not be pres-
ent in conforming methods. They arise from the integration
by parts and are necessary to maintain consistency.

We now proceed as is common for DG methods (for a
different point of view on this type of derivation see [11]).
First, we add terms to symmetrize this formulation so that
it is adjoint-consistent as well. Second, to stabilize the
method, we add interior penalty terms pHðh; gÞ and
pW ðw; vÞ in which the functions pH and pW will depend only
on the jumps of their arguments. Since ½�h½� ¼ 0 and
½�w½� ¼ 0, we find that h, w, and c satisfy

ðCehðhÞ;ehðgÞÞ�hfCehðhÞg; ½�g½�i�h½�h½�;fCehðgÞgiþðc;$hv�gÞ
�hfcg; ½�v½�iþpHðh;gÞþpW ðw;vÞ¼ ðg;vÞ; ðg;vÞ 2H2ðThÞ�H 1ðThÞ;
ð$hw�h;sÞ�h½�w½�;fsgi� t2ðc;sÞ¼ 0; s2H1ðThÞ:

ð3:2Þ
3.2. Abstract discretization

To obtain a DG discretization, we have to choose finite
dimensional subspaces Hh � H2ðThÞ, W h � H 1ðThÞ, and
Ch � H1ðThÞ. The method then takes the form:

Find ðhh;whÞ 2 Hh � W h and ch 2 Ch such that

ðCehðhhÞ; ehðgÞÞ � hfCehðhhÞg; ½�g½�i � h½�hh½�; fCehðgÞgi
þ ðch;$hv� gÞ � hfchg; ½�v½�i þ pHðhh; gÞ
þ pW ðwh; vÞ ¼ ðg; vÞ; ðg; vÞ 2 Hh �W h; ð3:3Þ

ð$hwh � hh; sÞ � h½�wh½�; fsgi � t2ðch; sÞ ¼ 0; s 2 Ch: ð3:4Þ
For any choice of the finite element spaces Hh, Wh, and Ch,
and any interior penalty functions pH and pW depending
only on the jumps of their arguments, this gives a consis-
tent finite element method. Note that in contrast to the
methods proposed in [4], we do not introduce a reduction
operator Ph.

To complete the specification of the method, we need
only choose the finite element spaces Hh, Wh, and Ch and
the interior penalty forms pH and pW. For the finite element
spaces, the starting point for all our methods is to choose
Wh to be either L0

k or L1
k (with k P 2), and Hh ¼ Ch to

be subspaces of L0
k�1. As stated earlier, the motivation

comes from the desire to eliminate the reduction operator
Ph and also issues arising from approximation theory, in
which it is natural to have the polynomials in Wh of one
degree higher than those in Hh.
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We make a standard choice for the interior penalty
terms pH and pW:

pHðh; gÞ ¼
X
e2Eh

jH

jej

Z
e
½�h½� : ½�g½�ds;

pW ðw; vÞ ¼
X
e2Eh

jW

jej

Z
e
½�w½� � ½�v½�ds; ð3:5Þ

so that pHðg; gÞ; ðpW ðv; vÞ, resp.) can be viewed as a measure
of the deviation of g (v, resp.) from being continuous. The
parameters jH and jW are positive constants to be chosen;
they must be sufficiently large to ensure stability. In the
case when Wh consists of continuous elements, the penalty
term pW will not be needed.

Throughout the paper, C will denote a generic constant
that depends only on the minimum angle of the decompo-
sition, on the degree k of the polynomials, and on the val-
ues of jH and jW (for discontinuous Wh).
3.3. DG norms and basic inequalities

For the error analysis which follows in the subsequent
sections, it will be convenient to have additional notation.
We first define norms

jjjgjjj2H :¼ kgk2
1;h þ

X
e2Eh

1

jej k½�g½�k
2
0;e þ jejkfCehðgÞgk2

0;e

� �
;

g 2 H2ðThÞ;

jjjvjjj2W :¼ jvj21;h þ
X
e2Eh

1

jej k½�v½�k
2
0;e; v 2 H 1ðThÞ;

jjjsjjj2C :¼ ksk2
0 þ

X
e2Eh

jejkfsgk2
0;e; s 2 H1ðThÞ:

A useful result, that we will need in our analysis (see [1,2])
is the following: let T be a triangle, and let e be an edge of
T. Then there exists a positive constant C only depending
on the minimum angle of T such that

kuk2
0;e 6 Cðjej�1kuk2

0;T þ jejjuj
2
1;T Þ; u 2 H 1ðT Þ: ð3:6Þ

Clearly, (3.6) also holds for vector-valued functions
u 2 H1ðThÞ. Using (3.6) it is not difficult to check that

jjjgjjj2H 6 C
X

T2Th

h�2
T kgk

2
0;T þ jgj

2
1;T þ h2

T jgj
2
2;T

 !
;

jjjvjjj2W 6 C
X

T2Th

h�2
T kvk

2
0;T þ jvj

2
1;T

 !
;

jjjsjjj2C 6 C
X

T2Th

ksk2
0;T þ h2

T jsj
2
1;T

 !
:

ð3:7Þ

Let

ahðh; gÞ ¼ ðCehðhÞ; ehðgÞÞ � hfCehðhÞg; ½�g½�i
� h½�h½�; fCehðgÞgi þ pHðh; gÞ; ð3:8Þ

jðs; vÞ ¼ hfsg; ½�v½�i: ð3:9Þ
Clearly we have (see [2]) for h; g 2 H2ðThÞ, v 2 H 1ðThÞ,
and s 2 H1ðThÞ:

ahðh; gÞ 6 CjjjhjjjHjjjgjjjH; ð3:10Þ

jðs; vÞ 6 CjjjsjjjC
X
e2Eh

1

jej k½�v½�k
2
0;e

 !1=2

6 CjjjsjjjCpW ðv; vÞ
1=2
6 CjjjsjjjCjjjvjjjW : ð3:11Þ

Proofs of the two following lemmata, giving discrete
Korn’s inequality and a coercivity estimate, can be found
in [9,4].

Lemma 1

kgk2
1;h 6C

X
T2Th

keðgÞk2
0;T þ

X
e2Eh

1

jej k½�g½�k
2
0;e

 !
; g 2H1ðThÞ:

Lemma 2. There exist positive constants j0 and a depending
only on the polynomial degree k and the shape regularity of

the partition Th, such that: if the constant jH P j0 (where

jH is the penalty parameter appearing in (3.5)), then

ahðg; gÞP ajjjgjjj2H; g 2 Hh: ð3:12Þ
3.4. Compact formulation of the continuous and discretized

problems

With the above notation, we may rewrite (3.2) as

ahðh; gÞ þ ðc;$hv� gÞ � jðc; vÞ þ pW ðw; vÞ ¼ ðg; vÞ;
ðg; vÞ 2 H2ðThÞ � H 1ðThÞ; ð3:13Þ

ð$hw� h; sÞ � jðs;wÞ � t2ðc; sÞ ¼ 0; s 2 H1ðThÞ; ð3:14Þ

and (3.3) and (3.4) as

ahðhh; gÞ þ ðch;$hv� gÞ � jðch; vÞ þ pW ðwh; vÞ ¼ ðg; vÞ;
ðg; vÞ 2 Hh � W h; ð3:15Þ

ð$hwh � hh; sÞ � jðs;whÞ � t2ðch; sÞ ¼ 0; s 2 Ch: ð3:16Þ
4. Continuous w and discontinuous h

4.1. General setting of the methods with continuous w

In this section we shall consider methods in which the
space W h � H 1

0ðXÞ and the spaces Hh ¼ Ch � H1ðThÞ
satisfy

$W h 
 Hh ¼ Ch: ð4:1Þ

Note that (4.1) forbids the use of a space Hh consisting of
continuous functions. However, it allows choices where the
tangential component is continuous (as well as choices
where Hh consists of totally discontinuous elements).

Since the space Wh is continuous, the general method
given by Eqs. (3.15) and (3.16) simplifies to
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ahðhh; gÞ þ ðch;$v� gÞ ¼ ðg; vÞ; ðg; vÞ 2 Hh � W h; ð4:2Þ
ð$wh � hh; sÞ � t2ðch; sÞ ¼ 0; s 2 Ch: ð4:3Þ

Note that, using (4.1), Eq. (4.3) can be written as

ch ¼ t�2ð$wh � hhÞ: ð4:4Þ

We start by stating a basic abstract error estimate.

Theorem 2. Assume that W h � H1
0ðXÞ and that assumption

(4.1) is satisfied. Let ðh;w; cÞ be the solution of (2.3)–(2.6),
and let ðhh;wh; chÞ be the solution of (3.3) and (3.4). Let hI

and wI be any elements in Hh and Ch (respectively) and set

cI ¼ t�2ð$wI � hIÞ: ð4:5Þ

Then we have

jjjh� hhjjjH þ tkc� chk0 6 Cðjjjh� hI jjjH þ tkc� cIk0Þ:
ð4:6Þ

Proof. For the choice of spaces in this section, and in par-
ticular by the continuity of Wh, Eq. (3.13) becomes

ahðh; gÞ þ ðc;$v� gÞ ¼ ðg; vÞ 8ðg; vÞ 2 Hh � W h:

Subtracting (4.2), we obtain the error equation

ahðh� hh; gÞ þ ðc� ch;$v� gÞ ¼ 0 8ðg; vÞ 2 Hh � W h:

ð4:7Þ
Choosing g ¼ hI � hh and v ¼ wI � wh in (4.7), and using
(4.4) and (4.5), this becomes

ahðh� hh; h
I � hhÞ þ t2ðc� ch; c

I � chÞ ¼ 0: ð4:8Þ

Hence, adding and subtracting h and c, and then using (4.8)
to cancel the first and third terms, we have

ahðhh � hI ; hh � hIÞ þ t2ðch � cI ; ch � cIÞ

¼ ahðhh � h; hh � hIÞ þ ahðh� hI ; hh � hIÞ

þ t2ðch � c; ch � cIÞ þ t2ðc� cI ; ch � cIÞ

¼ ahðh� hI ; hh � hIÞ þ t2ðc� cI ; ch � cIÞ:

From this, (3.12), and (3.10), we easily obtain

jjjhh � hI jjj2H þ t2kch � cIk2
0 6 Cðjjjh� hI jjj2H þ t2kc� cIk2

0Þ:

The result (4.6) then follows by the triangle inequality. h

We now proceed to the choice of the spaces Hh, Ch, and
Wh and the interpolants hI and wI (which determine cI). We
shall then apply Theorem 2 to obtain error estimates.

4.2. Choice of Wh and wI

For any k integer P 2, we take

W h ¼L1
k ; ð4:9Þ
where L1
k is defined in (2.1). For the interpolant we shall

use wI ¼ pW w where pW is the natural projection onto
Wh, i.e., classical choice for the interpolant on Wh, i.e.,
pW z 2 W h ¼L1

k is determined by

pW zðaiÞ ¼ zðaiÞ 8 vertices ai;Z
e
ðz� pW zÞq ds ¼ 0 8q 2 Pk�2ðeÞ 8e 2 Eh;Z

T
ðz� pW zÞqdx ¼ 0 8q 2 Pk�3ðT Þ 8T 2Th: ð4:10Þ

It is well known that this standard interpolant satisfies the
error estimate

kw� wIks;h 6 Chkþ1�skwkkþ1; 0 6 s 6 k þ 1: ð4:11Þ
4.3. Choice of Hh ¼ Ch and of the interpolants

With Wh given by (4.9), our first choice of Hh ¼ Ch will
be close to the minimum choice that makes (4.1) hold true.
More precisely we take

Hh ¼ Ch ¼ BDMR
k�1; ð4:12Þ

where BDMR
k�1 denotes the rotated Brezzi–Douglas–Mari-

ni space of degree k � 1, i.e., the space of all piecewise poly-
nomial vector fields of degree at most k � 1 subject to
interelement continuity of the tangential components. With
this choice, the inclusion (4.1) is clearly satisfied.

We define hI ¼ pHh, where pH : H1ðXÞ ! Hh is deter-
mined locally by the following degrees of freedom:Z

e
ðs� pHsÞ � tqds ¼ 0 8q 2 Pk�1ðeÞ; ð4:13ÞZ

T
ðs� pHsÞ � q dx ¼ 0 8q 2 RTk�3; ð4:14Þ

where RTk�3 is the usual (unrotated) Raviart–Thomas
space of index k � 3. In the framework of [7,8], pH is seen
to be the natural projection into BDMR

k�1 (and, in particu-
lar, well-defined), although the degrees of freedom in (4.14)
are not the ones which were used in the original reference
(cf. [13]). Moreover, it is related to the natural projection
operator pW into Wh by the commutativity condition

pH$z ¼ $pW z: ð4:15Þ
This can be checked by using the definition of the projec-
tion operators and integration by parts, and is a special
case of the commutativity properties of projections pre-
sented, e.g., in [7,8].

As a consequence of the choices wI ¼ pW w and hI ¼ pHh

and (4.15), we have

cI :¼ t�2ð$wI � hIÞ ¼ t�2ð$pW w� pHhÞ ¼ t�2pHð$w� hÞ
¼ pHc:

This puts us into the framework of [18] where the key con-
dition is that cI :¼ t�2ð$wI � hIÞ is an interpolant of c.

Using standard techniques, we then have the following
interpolation estimates:
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kh� hIks;h 6 Chl�skhkl; kc� cIks;h 6 Chl�skckl;

0 6 s 6 l; 1 6 l 6 k: ð4:16Þ
4.4. Basic error estimates for h and c

We can now apply Theorem 2 to obtain the correspond-
ing order of convergence estimates.

Theorem 3. With the choices (4.9) and (4.12) for Wh and
Hh ¼ Ch, let ðh;w; cÞ be the solution of (2.3)–(2.6), and let

ðhh;wh; chÞ be the solution of (3.3) and (3.4). Then we have

jjjh� hhjjjH þ tkc� chk0 6 Chk�1ðkhkk þ tkckk�1Þ:

Proof. This follows immediately from Theorem 2, (3.7),
and (4.16). h
4.5. L2 error estimates for h and w

In this section, we establish the following improved esti-
mate for kh� hhk0 and also a basic estimate for kw� whk0.

Theorem 4. Under the assumptions of Theorem 3,

kw� whk0 þ kh� hhk0 6 Chkðkhkk þ tkckk�1Þ:

Proof. We establish this result by a standard duality argu-
ment. Let ðu; z; fÞ 2 H1

0ðXÞ � H 1
0ðXÞ � L2ðXÞ be the solu-

tion of

aðu; gÞ þ ðf;$v� gÞ ¼ ðh� hh; gÞ þ ðw� wh; vÞ
8ðg; vÞ 2 H1

0ðXÞ � H 1
0ðXÞ; ð4:17Þ

ð$z� u; sÞ � t2ðf; sÞ ¼ 0 8s 2 L2ðXÞ: ð4:18Þ
From the regularity result in Theorem 1, we have on con-
vex polygons,

kuk2 þ kfkHðdivÞ þ tkfk1 6 Cðkh� hhk0 þ kw� whk0Þ:
ð4:19Þ

Using a derivation analogous to that used earlier, we get
that ðu; z; fÞ also satisfies:

ahðu; gÞ þ ðf;$v� gÞ ¼ ðh� hh; gÞ þ ðw� wh; vÞ
8ðg; vÞ 2 H1ðThÞ � H 1ðThÞ:

Choosing g ¼ h� hh, v ¼ w� wh, and using the definitions
of c and ch, given by (2.5) and (4.4), we get

kh� hhk2
0 þ kw� whk2

0

¼ ahðu; h� hhÞ þ ðf;$ðw� whÞ � ðh� hhÞÞ

¼ ahðu; h� hhÞ þ t2ðf; c� chÞ: ð4:20Þ

Let zI ¼ pW z and uI ¼ pHu. Then

jjju� uI jjjH 6 Chkuk2 6 Chðkh� hhk0 þ kw� whk0Þ:
ð4:21Þ
Defining fI ¼ t�2ð$zI � uIÞ, we have fI ¼ pHf, and apply-
ing (4.16) and the regularity result (4.19), we obtain

tkf� fIk0 6 Chðkh� hhk0 þ kw� whk0Þ: ð4:22Þ

Now from (4.7) with g ¼ uI , v ¼ zI , we then have (using the
symmetry of the bilinear form ah)

ahðuI ; h� hhÞ ¼ �t2ðc� ch; f
IÞ:

Adding and subtracting uI in (4.20), we thus obtain

kh� hhk2
0 þ kw� whk2

0

¼ ahðu� uI ; h� hhÞ þ t2ðf� fI ; c� chÞ
6 Cjjju� uI jjjHjjjh� hhjjjH þ t2kf� fIk0kc� chk0:

Applying (4.21) and (4.22), we get

kw� whk0 þ kh� hhk0 6 Chðjjjh� hhjjjH þ tkc� chk0Þ:
The result now follows directly from Theorem 3. h
4.6. Error estimates for $w

We next obtain two error estimates for k$ðw� whÞk0.

Theorem 5. Under the assumptions of Theorem 3,

k$ðw� whÞk0 6 kh� hhk0 þ t2kc� chk0

6 Cðhk þ thk�1Þðkhkk þ tkckk�1Þ: ð4:23Þ
k$ðw� whÞk0 6 Chkðkhkk þ tkckk�1 þ kwkkþ1Þ: ð4:24Þ

Proof. The first estimate is easily obtained through the
relation $ðw� whÞ ¼ t2ðc� chÞ þ ðh� hhÞ and the esti-
mates for h and c in Theorems 3 and 4.

In view of Theorem 4 and the interpolation estimate
(4.11), to establish the second estimate it suffices to show
that

k$ðw� whÞk0 6 Cðk$ðw� wIÞk0 þ kh� hhk0Þ: ð4:25Þ
From the error equation (4.7) with g = 0 we have

ðc� ch;$vÞ ¼ 0 8v 2 W h:

Consequently, from the definitions (2.5) and (4.4) of c and
ch (respectively), we get

ð$ðw� whÞ � ðh� hhÞ;$vÞ ¼ 0 8v 2 W h: ð4:26Þ
Adding and subtracting $w, and then using (4.26) with
v ¼ wI � wh, we have

k$ðwI � whÞk2
0 ¼ ð$ðwI � wÞ;$ðwI � whÞÞ
þ ð$ðw� whÞ;$ðwI � whÞÞ
¼ ð$ðwI � wÞ;$ðwI � whÞÞ
þ ðh� hh;$ðwI � whÞÞ;

so

k$ðwI � whÞk0 6 k$ðw� wIÞk0 þ kh� hhk0;

and (4.25) follows using the triangle inequality. h
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Remark 1. Even for the lowest order case k = 2, estimate
(4.24) involves kwk3. Since from (2.4) and (2.5), it easily fol-
low that w satisfies Dw ¼ divh� t2g, on a smooth domain,
standard a priori estimates for Poisson’s equation and (1)
give

kwk3 6 Cðk/k2 þ t2kgk1Þ 6 Cðkgk�1 þ tkgk0 þ t2kgk1Þ:

Hence, in this case, one obtains a uniform bound for
0 6 t 6 1. On a convex polygon however, one can only ex-
pect H2 – regularity for w. In this case, an alternative esti-
mate is provided by (4.23).

Remark 2. We have shown that k$ðw� whÞk0 achieves the
same order, k, of approximation as kh� hhk0 and one
order higher than jjjh� hhjjjH. Although wI converges to
w with order k + 1, we have not been able to establish that
higher order for the convergence of wh.
4.7. Other possible choices

Still taking W h ¼L1
k as in (4.9), we have other possible

choices for Hh ¼ Ch. Indeed, we can take any finite element
space which contains BDMR

k�1, and continue to use for hI the
natural projection onto BDMR

k�1 (not onto the larger space
Hh). This leaves unchanged the approximation results
(4.11) and (4.16) and then the error estimates for the method.

Some reasonable such choices for Hh ¼ Ch are Hh ¼
Ch ¼ RTR

k�1 or Hh ¼ Ch ¼L0
k�1 where RTR

k�1 denotes the
rotated Raviart–Thomas spaces of degree k � 1, and
L0

k�1 the space of discontinuous piecewise polynomials of
degree k � 1. In the first choice, the space BDMR

k�1 is
extended by adding local shape functions on each element.
In the second, the space is extended by relaxing the interel-
ement continuity.

The analysis can also extend to other choices of spaces
Wh and Hh ¼ Ch for which $W h � Hh and which admit
projections satisfying

$pW z ¼ pH$z:

One such possibility is to take Wh to be the space obtained
by augmenting L1

k by the bubble functions of degree k + 1,
and choosing Hh to be the Brezzi–Douglas–Fortin–Marini
space of degree k � 1 [12,14]. It is not clear that using these
larger spaces offers any advantages over the choice of
W h ¼L1

k and Hh ¼ Ch ¼ BDMR
k�1, since they involve more

degrees of freedom without producing higher convergence
rates, and we will not pursue them here.
5. Discontinuous w and discontinuous h

5.1. Choice of the spaces and of the interpolants

In this section we shall examine the choice of totally dis-
continuous elements, that is,

W h ¼L0
k ; Hh ¼ Ch ¼L0

k�1; k P 2: ð5:1Þ
Our analysis will start from the totally discontinuous weak
formulation of the continuous problem (3.13) and (3.14)
and the corresponding formulation of the discrete problem
(3.15) and (3.16).

In order to obtain ch in an explicit form from Eq. (3.16),
it is convenient to introduce the lifting operator
J : H1ðThÞ ! Ch defined (as in [3]) byZ

X
Jð½�v½�Þ � sdx ¼ �jðs; vÞ; s 2 Ch: ð5:2Þ

From (3.11) and the equivalence of the norms k � k0 and
jjj � jjjC on Ch, it easily follows that

jjjJð½�v½�Þjjj2C 6 CpW ðv; vÞ v 2 W h: ð5:3Þ
Since the condition $hW h 
 Ch is satisfied, we then have
from (3.16):

t2ch ¼ $hwh � hh þ Jð½�wh½�Þ: ð5:4Þ
Although the space Wh imposes no interelement conti-

nuity, we shall use wI ¼ pW w where pW is still the natural
interpolant into the continuous finite element space L1

k

defined in (4.10). Similarly, since BDMR
k�1 
L0

k�1, we
can choose hI ¼ pHh where pH is still the natural interpo-
lant into BDMR

k�1 as defined in (4.13) and (4.14). We then
continue to have

cI :¼ t�2ð$wI � hIÞ ¼ pHc: ð5:5Þ
In short, although we are using larger spaces Wh, Hh, and
Ch, than in the previous section, we use the same interpo-
lants. As a result, the interpolation estimates (4.11) and
(4.16) continue to hold.

5.2. Error estimates

Theorem 6. Let ðh;w; cÞ be the solution of the continuous

problem (3.13) and (3.14), and let ðhh;wh; chÞ be the solution

of the discrete problem (3.15) and (3.16) with the choice of

spaces (5.1). Then we have

jjjh� hhjjjH þ tkc� chk0 þ ½pW ðw� wh;w� whÞ�1=2

6 Chk�1ðkhkk þ kckk�1Þ; ð5:6Þ

jjjw� whjjjW 6 Chk�1ðkhkk þ kckk�1 þ kwkkÞ: ð5:7Þ

Proof. From (3.13) and (3.15), we immediately have the
first error equation

ahðh� hh;gÞ þ ðc� ch;$hv� gÞ � jðc� ch; vÞ � pW ðwh; vÞ ¼ 0

8ðg; vÞ 2Hh�W h; ð5:8Þ

while subtracting (5.4) from (2.5), we have the second error
equation

t2ðc� chÞ ¼ $hðw� whÞ � ðh� hhÞ � Jð½�wh½�Þ: ð5:9Þ
Setting now

hd ¼ hh � hI ; wd ¼ wh � wI ; cd ¼ ch � cI ;

and using (5.4) and (5.5) we immediately obtain
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t2cd ¼ $hwd � hd þ Jð½�wh½�Þ: ð5:10Þ
Choosing g ¼ hd and v ¼ wd in (5.8) we have

ahðh� hh; hdÞ þ ðc� ch;$hwd � hdÞ � jðc� ch;wdÞ
� pW ðwh;wdÞ ¼ 0:

Using (5.10), and the continuity of wI (in the penalty term
and in J), we then have

ahðh� hh; hdÞ þ t2ðc� ch; cdÞ � ðc� ch; Jð½�wd½�ÞÞ
� jðc� ch;wdÞ � pW ðwd;wdÞ ¼ 0: ð5:11Þ

Owing to the definition (5.2) of J, and to the fact that
ch 2 Ch, we have ðch; Jð½�wd½�ÞÞ þ jðch;wdÞ ¼ 0. Using this
in (5.11) we deduce

ahðh� hh; hdÞ þ t2ðc� cI ; cdÞ � t2ðcd; cdÞ � ðc; Jð½�wd½�ÞÞ
� jðc;wdÞ � pW ðwd;wdÞ ¼ 0: ð5:12Þ

On the other hand, using (3.12) and adding and subtracting
h, we have

ajjjhdjjj2H 6 ahðhd; hdÞ
¼ ahðhh � h; hdÞ þ ahðh� hI ; hdÞ: ð5:13Þ

Combining (5.12) and (5.13), we obtain

ajjjhdjjj2H þ t2kcdk
2
0 þ pW ðwd;wdÞ

6 ahðh� hI ; hdÞ þ t2ðc� cI ; cdÞ � ðc; Jð½�wd½�ÞÞ � jðc;wdÞ:

It will be convenient, also for future use, to isolate the most
difficult term to bound in the above equation. We set

N ¼ ðc; Jð½�wd½�ÞÞ þ jðc;wdÞ: ð5:14Þ

Using the continuity (3.10) of ah and the arithmetic-geo-
metric mean inequality, one easily obtains

jjjhdjjj2H þ t2kcdk
2
0 þ pW ðwd;wdÞ

6 Cðjjjh� hI jjj2H þ t2kc� cIk2
0 þ jNjÞ: ð5:15Þ

In order to bound the term N, we use again the definition
(5.2) of J , and note that, for every s 2 Ch we have

N ¼ ðc; Jð½�wd½�ÞÞ þ jðc;wdÞ
¼ ðc� s; Jð½�wd½�ÞÞ þ jðc� s;wdÞ: ð5:16Þ

Choosing s ¼ cI in (5.16), we easily have from (5.3) and
(3.11)

jNj 6 kc� cIk0kJð½�wd½�Þk0 þ jjjc� cI jjjC½pW ðwd;wdÞ�1=2

6 Cjjjc� cI jjjC½pW ðwd;wdÞ�1=2
:

Inserting this estimate in (5.15), and again using the arith-
metic geometric mean inequality, we get

jjjhdjjj2H þ t2kcdk
2
0 þ pW ðwd;wdÞ

6 Cðjjjh� hI jjj2H þ ð1þ t2Þjjjc� cI jjj2CÞ; ð5:17Þ
and the estimate (5.6) follows from the triangle inequality
and the interpolation bounds (4.16). Finally, to get esti-
mate (5.7), we use first (5.10) and (5.3) to obtain

k$hwdk0 ¼ kt2cd � Jð½�wd½�Þ þ hdk0

6 Cft2jjjcdjjjC þ jjjhdjjjH þ ½pW ðwd;wdÞ�1=2g:
ð5:18Þ

Then (5.7) follows by (5.17) and the triangle inequality. h
5.3. Estimates of N using the Helmholtz decomposition

The estimates (5.6) and (5.7) obtained in the previous
section have one undesirable feature, i.e., the norm kckk�1

appearing on the right hand side of the estimates does
not contain a factor of t, as was the case for the estimates
obtained for continuous approximations of w. Since this
norm behaves like t�ðk�3=2Þ as t! 0, the extra factor of t

helps control the size of this term and for k = 2 insures that
it remains bounded. In this subsection, we will show that
error estimates with better regularity properties can be
obtained if we assume the Helmholtz decomposition for c

is sufficiently smooth.
Looking at the derivation of error estimates in the pre-

vious section, we see that the problem comes from the esti-
mation of the term N appearing in (5.14). We now show
how use of the Helmholtz decomposition can lead to an
improved estimate of this term. Since in the subsequent sec-
tion we will introduce an appropriate dual problem to
obtain L2 estimates, and need to estimate a similar term,
we work now in a more general framework and define,
for any element v 2 H1ðXÞ, the quantity

N ¼NðvÞ :¼ ðv; Jð½�wd½�ÞÞ þ jðv;wdÞ:

We assume that v has a smooth Helmholtz decomposi-
tion satisfying

v ¼ $sþ curl q; s 2 HkðXÞ \ H 1
0ðXÞ; q 2 HkðXÞ=R:

ð5:19Þ

We shall assume that

ðksk2
k þ kqk

2
kÞ

1=2
6 CkvkHk�1 ;

ðksk2
k þ kqk

2
k�1Þ

1=2
6 CkvkHk�2ðdivÞ; ð5:20Þ

where Hk�2ðdivÞ is the space of vectors in Hk�2ðXÞ having
the divergence in Hk�2ðXÞ. Note that since Ds ¼ divv, (5.20)
holds if we have H k regularity for the Dirichlet problem for
Poisson’s equation, and so for X a convex polygon it holds
at least for k = 2.

As in (5.16), the basic instrument for estimating N will
be the property (based on the definition (5.2) of the opera-
tor J):

N ¼ ðv; Jð½�wd½�ÞÞ þ jðv;wdÞ
¼ ðv� s; Jð½�wd½�ÞÞ þ jðv� s;wdÞ; s 2 Ch: ð5:21Þ
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This time, however, we choose a different s. Namely, we let
sI 2L1

k \ H 1
0ðXÞ and qI 2L1

k=R be interpolants of s and q,
respectively, satisfying

ks� sIk0 þ hjs� sI j1 6 Chjjsjj; j ¼ 1; . . . ; k; ð5:22Þ
kq� qIk0 þ hjq� qI j1 6 Chjjqjj; j ¼ 1; . . . ; k: ð5:23Þ

We then define vI 2 Ch as

vI ¼ $sI þ curlqI : ð5:24Þ

It follows immediately that

kv� vIk0 6 Chk�1ðjsjk þ jqjkÞ 6 Chk�1kvkHk�1 : ð5:25Þ

Inserting s ¼ vI in (5.21), and using (5.10) to eliminate
Jð½�wd½�Þ, we have

N ¼ t2ðv� vI ; cdÞ þ ðv� vI ; hdÞ � ðv� vI ;$hwdÞ
þ jðv� vI ;wdÞ: ð5:26Þ

The first term in (5.26) is easily bounded using (5.25):
t2jðv� vI ; cdÞj 6 t2kv� vIk0kcdk0

6 Ct2kcdk0hk�1kvkHk�1 : ð5:27Þ
The second term in (5.26), using the expression (5.24) for
vI , becomes

ðv� vI ; hdÞ ¼ ð$ðs� sIÞ þ curlðq� qIÞ; hdÞ: ð5:28Þ

All the terms appearing in (5.28) can be treated in the same
way. For example, if w is in H 2ðXÞ and h is one of the two
components of hd, we have
ðow=ox; hÞ ¼ �
X

T2Th

Z
T

woh=oxdx�
Z

oT
whnx ds

� �
: ð5:29Þ
The first term in the right-hand side of (5.29) is easily
bounded by kwk0khk1;h. For the second term, recalling that
w is continuous and that h is one of the two components of
hd, we have

X
T2Th

Z
oT

whnx ds

�����
����� 6

X
e2Eh

ðjej1=2kwk0;eÞðjej
�1=2k½�hd½�k0;eÞ:

Using (3.6) we can collect the total estimate for (5.29) in the
form

jðow=ox; hÞj 6
X

T2Th

kwk2
0;T þ h2

T jwj
2
1;T

 !1=2

jjjhdjjjH:

Applying the same argument to all the terms and then
using the approximation properties (5.22) and (5.23), we
obtain

jð$ðs� sIÞ þ curlðq� qIÞ; hdÞj
6 Chk�1ðjsjk�1 þ jqjk�1ÞjjjhdjjjH: ð5:30Þ
The third and fourth terms in (5.26), always using the
expression (5.24) for vI , become

�ð$ðs� sIÞ þ curlðq� qIÞ;$hwdÞ þ jð$ðs� sIÞ
þ curlðq� qIÞ;wdÞ: ð5:31Þ

Let us consider first the terms appearing in (5.31) and con-
taining s � sI. Using (5.18) and (3.11) we have

jð$ðs� sIÞ;$hwdÞj þ jjð$ðs� sIÞ;wdÞj

6 Cðk$ðs� sIÞk0k$hwdk0 þ jjj$ðs� sIÞjjjC½pW ðwd;wdÞ�1=2Þ

6 Cjjj$ðs� sIÞjjjCft2jjjcdjjjC þ jjjhdjjjH þ ½pW ðwd;wdÞ�1=2g:

ð5:32Þ

To estimate the terms involving curlðq� qIÞ, we integrate
by parts to obtain:

ðcurlðq� qIÞ;$hwdÞ ¼
X

T2Th

Z
oT

curlðq� qIÞ � nwd ds

¼ hfcurlðq� qIÞg; ½�wd½�i:

It follows immediately from the definition (3.9) of j that

�ðcurlðq� qIÞ;$hwdÞ þ jðcurlðq� qIÞ;wdÞ ¼ 0: ð5:33Þ
Collecting the estimates (5.27), (5.30), (5.32), and (5.33) of
all the terms appearing in (5.26), and using the interpola-
tion estimates, we obtain:

jNðvÞj 6 Chk�1ðtkvkHk�1 þ kvkHk�2ðdivÞÞ

� ftkcdk0 þ jjjhdjjjH þ ½pW ðwd;wdÞ�1=2g: ð5:34Þ
Inserting the above estimate for v ¼ c into (5.15), we have
then established the following theorem.

Theorem 7. Let ðh;w; cÞ be the solution of the continuous

problem (3.13) and (3.14), and let ðhh;wh; chÞ be the solution

of the discretized problem (3.15) and (3.16) with the choice of

spaces (5.1). Assume further that we have the Helmholtz
decomposition (5.19) for c. Then we have
jjjh� hhjjjH þ tkc� chk0 þ ½pW ðw� wh;w� whÞ�1=2

6 Chk�1ðkhkk þ tkckk�1 þ kckHk�2ðdivÞÞ; ð5:35Þ

jjjw� whjjjW 6 Chk�1ðkhkk þ tkckk�1 þ kckHk�2ðdivÞ þ kwkkÞ:

ð5:36Þ

Remark 3. We point out that in our assumptions (and in
particular for a convex domain X) the Helmholtz decom-
position (5.19) for c will always hold for k = 2. Hence, in
particular, estimates (5.34), (5.35), and (5.36) will hold
for k = 2.
5.4. L2 error estimates

In this final section, we use a duality argument to derive
an optimal L2 estimate for h� hh and an improved estimate
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for kw� whk0. We show that both of these are of order hk

provided the solution is sufficiently smooth.
To do so, we again use the dual problem of the previous

section, i.e., in which ðu; z; fÞ is the solution of (4.17) and
(4.18) and hence satisfies the regularity estimate (4.19).
As we did for the direct problem, we define the interpolants
zI ;uI and fI by

zI ¼ pW z 2L1
2;

uI ¼ pHu;

fI ¼ t�2ð$zI � uIÞ ¼ pHf:

ð5:37Þ

From the regularity result (4.19), and the previous approx-
imation properties (4.16), we easily obtain

tkf� fIk0 þ jjju� uI jjjH 6 Chðkh� hhk0 þ kw� whk0Þ:
ð5:38Þ

With a derivation analogous to that used previously, we
see that ðu; z; fÞ also satisfies, for all ðg; vÞ 2
H1ðThÞ � H 1ðThÞ,
ahðu; gÞ þ ðf;$hv� gÞ � jðf; vÞ ¼ ðh� hh; gÞ þ ðw� wh; vÞ:

ð5:39Þ
Taking g ¼ h� hh, v ¼ w� wh, in (5.39), and using (5.9) we
have

kh� hhk2
0 þ kw� whk2

0

¼ ahðh� hh;uÞ þ ð$hðw� whÞ � ðh� hhÞ; fÞ � jðf;whÞ
¼ ahðh� hh;uÞ þ t2ðc� ch; fÞ �Nd ; ð5:40Þ

where, in analogy with (5.14), we have set

Nd �NdðfÞ :¼ ðf; Jð½�wh½�ÞÞ þ jðf;whÞ:
With the choice (5.37), from the error Eq. (5.8) for the di-

rect problem with g ¼ uI ; v ¼ zI , we deduce:

ahðh� hh;u
IÞ ¼�ðc� ch;$zI �uIÞþ jðc� ch; z

IÞþ pW ðwh; zIÞ
¼�t2ðc� ch;f

IÞ: ð5:41Þ

Adding and subtracting uI in (5.40), and then using (5.41)
and the interpolation estimates (5.38), we obtain:

kh�hhk2
0þkw�whk2

0

¼ ahðh�hh;u�uIÞþahðh�hh;u
IÞþ t2ðc� ch;fÞ�Nd

¼ ahðh�hh;u�uIÞþ t2ðc� ch;f� fIÞ�Nd

6Chðkh�hhk0þkw�whk0Þðjjjh�hhjjjHþ tjjjc�chjjj0Þ�Nd :

ð5:42Þ

At this point, we can use the estimates of the previous sub-
section. As already pointed out, estimate (5.34) will surely
hold for k = 2. Using this and the regularity results (4.21)
we have:

jNd j 6 Chðtkfk1 þ kfkHðdivÞÞ

� ftkcdk0 þ jjjhdjjjH þ ½pW ðwd;wdÞ�1=2g
6 Chðkh� hhk0 þ kw� whk0Þ
� ftkcdk0 þ jjjhdjjjH þ ½pW ðwd;wdÞ�1=2g:
Hence, (5.42) becomes:

kh� hhk0 þ kw� whk0

6 Chfjjjh� hhjjjH þ tjjjc� chjjj0 þ tkcdk0 þ jjjhdjjjH
þ ½pW ðwd;wdÞ�1=2g:

Applying our previous estimates, we immediately obtain
the following result.

Theorem 8. Let ðh;w; cÞ be the solution of the continuous

problem (3.13) and (3.14) and let ðhh;wh; chÞ be the solution

of the discretized problem (3.15) and (3.16) with the choice of
spaces (5.1). Then we have

kh� hhk0 þ kw� whk0 6 Chkðkhkk þ kckk�1Þ:
If moreover c has a smooth Helmholtz decomposition of the

type (5.19), then we have

kh� hhk0 þ kw� whk0 6 Chkðkhkk þ tkckk�1 þ kckHk�2ðdivÞÞ:

Remark 4. We remark that for the lowest order case
(k = 2) all our error estimates, namely Theorems 3–5,
and subsequent Remark, and Theorems 7 and 8, use
norms of the exact solution ðh;w; cÞ that are uniformly
bounded with respect to t, according to the regularity
results (2.9).
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