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Abstract. We summarize several techniques of analysis for finite element methods for linear
hyperbolic problems, illustrating their key properties on the simplest model problem. These
include the discontinuous Galerkin method, the continuous Galerkin methods on rectangles
and triangles, and a nonconforming linear finite element on a special triangular mesh.

1 Introduction

Let Ω be a bounded polygonal domain and consider the simple linear hyperbolic
problem:

α · ∇u = f in Ω, u = g on Γin(Ω),

whereα = (α1, α2) is a constant vector and Γin(Ω) is the portion of the boundary
ofΩ on which α ·n < 0, with n denoting the unit outward normal to ∂Ω.

In this paper, we review several finite element methods proposed for this model
problem, and discuss the key ingredients of their analysis. At the most basic level, all
of the numerical analysis tries to follow in some way the basic conservation property
of the homogeneous equation. That is, multiplying the homogeneous equation by u
and integrating over a subdomain G, we have

0 = (α · ∇u, u)G =
1
2

∫
G

α · ∇(u2) =
1
2

∫
∂G

u2α · n.

This may be written in the form

1
2

∫
Γout(G)

u2|α · n| = 1
2

∫
Γin(G)

u2|α · n|

sinceα · n ≥ 0 on Γout(G) and α · n ≤ 0 on Γin(G).
If we choose Ω so that it is the disjoint union of subdomains Gi and sum these

identities, cancellation of integrals over the common boundaries leads to the conser-
vation result:

1
2

∫
Γout(Ω)

u2|α · n| = 1
2

∫
Γin(Ω)

u2|α ·n|.

It is this type of analysis that we wish to follow at the discrete level to obtain stability
and an error analysis of finite element approximation schemes.
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2 The Discontinuous Galerkin Method

We begin with the method which is the subject of this conference, and whose analysis
is the most familiar. Let τh denote a triangulation of Ω into triangles T of diameter
≤ h and Pn(T ) the space of polynomials of degree ≤ n on T . For each T ∈ τh, the
discontinuous Galerkin method is:

Find uh ∈ Pn(T ) such that

(α · ∇uh, vh)T −
∫
Γin(T )

J [uh] vhα · n = (f, vh)T (1)

for all vh ∈ Pn(T ), where J [v] = v+ − v−, with v±(x) = limε→0± v(x + εα),
u−h (x) = g(x) if x ∈ Γin(Ω), and (·, ·)T denotes the L2 inner product over T .

For this method, one can follow the lead of the continuous problem and take the
test function vh = uh. Then for the homogeneous problem f = 0,

(α · ∇uh, uh)T −
∫
Γin(T )

J [uh] u+
h α · n = 0.

Integrating the first term by parts as before and recombining terms, one gets

1
2

∫
Γout(T )

(u−h )2|α · n| = 1
2

∫
Γin(T )

(u+
h )2|α ·n| −

∫
Γin(T )

[u+
h − u

−
h ]u+

h |α ·n|

=
1
2

∫
Γin(T )

(u−h )2|α · n| − 1
2

∫
Γin(T )

(J [uh])2|α ·n|.

Summing over all triangles in the triangulation comprisingΩ gives

1
2

∫
Γout(Ω)

(u−h )2|α · n|+
∑
T

1
2

∫
Γin(T )

(J [uh])2|α ·n| = 1
2

∫
Γin(Ω)

g2|α · n|.

This identity is of course the basic one needed to establish stability of the method.
The additional test function α · ∇uh, used by Johnson and Pitkäranta [4] provides
additional stability and leads to an improvement in the error estimates originally ob-
tained by Lesaint and Raviart [5].

3 Winther’s method

Next consider a method proposed by R. Winther, using a rectangular mesh. The ap-
proximate solution is sought in the space of continuous tensor product piecewise
polynomials of degree ≤ n in each variable. On each rectangle R, the approximate
solution uh ∈ Qn is determined by:

(α · ∇uh, vh)R = (f, vh)R for all vh ∈ Qn−1,

whereQn denotes the space of tensor products of polynomialsof degreen inx and y.
These equations must be solved in an order determined by the characteristic direction



and it is assumed that uh is already known on the inflow boundary of the rectangle
R. In the simplest case n = 1, uh is known at 3 of the rectangle vertices and the
value at the fourth is determined by taking inner products against constants. In this
case, the method is the box scheme or a simple finite volume method.

The analysis of such a method is not so obvious, since the test function vh = uh
is not allowed. Winther’s idea is to get conservation of a quantity equivalent to L2

conservation of u by choosing two test functions. The first is (uh)xy. Considering
the homogeneous problem, and dropping the subscript h for the moment, we have
for the rectangle Rij with corners (ih, jh), ([i+ 1]h, jh), (ih, [j + 1]h), and ([i+
1]h, [j+ 1]h),

(α1ux + α2uy, uxy)Rij =
1
2

∫ [i+1]h

ih

∫ [j+1]h

jh

(α1[(ux)2]y + α2[(uy)2]x) dy dx

=
1
2

∫ [i+1]h

ih

α1{[ux(x, [j + 1]h)]2 − [ux(x, jh)]2}dx

+
1
2

∫ [j+1]h

jh

α2{[uy([i+ 1]h, y)]2 − [uy(ih, y)]2}dy

=
1
2

∫
Γout(Rij)

(uτ )2|α · s| − 1
2

∫
Γin(Rij)

(uτ)2|α · s|,

where s denotes the unit tangent vector to ∂Rij and uτ = ∇u · s denotes the tan-
gential derivative along ∂Rij .

Since uh is continuous across rectangle edges, so is (uh)τ , so summing over all
rectangles leads to cancellations and the following result.

1
2

∫
Γout(Ω)

[(uh)τ ]2|α · s| = 1
2

∫
Γin(Ω)

[(uh)τ ]2|α · s|.

Since this is only a seminorm for functions defined on these boundaries, Winther
considered a second test function, which is closer to the spirit of the original analysis.
Letting Px and Py denoteL2 projections into polynomials of degree n− 1 in x and
y, respectively, Winther used the test function vh = Px,yuh, where Px,y ≡ PxPy.
Again dropping the subscript h, we have

0 = (α1ux + α2uy, Px,yu) = (α1ux, Pyu) + (α2uy, Pxu)
= (α1[Pyu]x, Pyu) + (α2[Pxu]y, Pxu)

=
1
2

∫ [i+1]h

ih

∫ [j+1]h

jh

(α1([Pyu]2)x + α2([Pxu]2)y) dy dx

=
1
2

∫ [j+1]h

jh

α1{[Pyu([i+ 1]h, y)]2 − [Pyu(ih, y)]2}dy

+
1
2

∫ [i+1]h

ih

α2{[Pxu(x, [j + 1]h)]2 − [Pxu(x, jh)]2}dx

=
1
2

∫
Γout(Rij)

(P0u)2|α · n| − 1
2

∫
Γin(Rij)

(P0u)2|α · n|,



where now P0 represents L2 projection into polynomials of degree n − 1 along an
edge. Adding h2 times the first identity to the second identity gives conservation of
a norm that is equivalent on piecewise polynomials to the L2 norm.

4 The Continuous Galerkin method on triangles

This method was originally proposed by Reed and Hill [6] and was analyzed in [2].
Here we note that are two types of triangles: type I triangles with one inflow side
and type II triangles with two inflow sides. We then seek an approximate solution in
the space of continuous piecewise polynomials of degree ≤ n determined on each
triangle T by the variational equations

(α · ∇uh, vh)T = (f, vh)T

where vh ∈ Pn−1(T ) on a type I triangle and vh ∈ Pn−2(T ) on a type II triangle. By
continuity,uh will already be known at n+1 degrees of freedom on a type I triangle
and at 2n + 1 degrees of freedom on a type II triangle. Since the total number of
degrees of freedom for polynomials of degree≤ n is equal to (n+1)(n+2)/2, and

(n+ 1)(n+ 2)/2 = n(n+ 1)/2 + (n+ 1) = (n− 1)n/2 + (2n+ 1),

we have the same number of equations as unknows on both types of triangles. Once
again, the analysis of this method is not so obvious, since the simple test function
vh = uh is not allowed. However, Winther’s analysis gives a clue and Richter no-
ticed that the analogue of uxy for triangles is the choice v = uτ1τ2 , with τ1 and τ2
chosen to be the variables along the two inflow sides of a type II triangle or two out-
flow sides of a type I triangle. This leads to the following useful identity.

−
∫
T

(α · ∇u)(uτ1τ2) =
1
2

∫
∂T

(α ·n1)(α ·n2)
α · n u2

τ

− 1
2

∫
Γ3

(τ1 · n3)(τ2 · n3)
α · n3

(α · ∇u)2,

where Γ3 is the inflow side of a type I triangle and the outflow side of a type II trian-
gle, andni is the unit outward normal to Γi. Once again, the continuityof uh ensures
the continuity of (uh)τ across triangle edges and when this identity is summed over
the triangles, cancellations occur on the triangle boundaries which lead to a stability
result. For the homogeneous problem,α·∇uh = 0 on a type I triangle, and although
this is not true on a type II triangle, this term appears with the right sign so its pres-
ence does not interfere with the basic stability result. As in the approach of Winther,
another test function must be used to control the full norm on triangle boundaries.

5 Analysis using characteristic coordinates

There is another approach to error analysis of these methods which can be applied to
other methods as well. In this approach, described more fully in [3], we use a coor-



dinate system with one coordinate in the characteristic direction and a second coor-
dinate either orthogonal to the characteristic direction or else lying along the inflow
side of a type I triangle or the outflow side of a type II triangle.
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Fig. 1. Characteristic coordinates

In the notation of Fig. 1, a triangle T may be described by

T = {(s, t) : s ∈ [sin(t), sout(t)], t ∈ [t0, t1]}.

Using this coordinate system, one can integrate along the characteristics to write the
exact solution in the form

u(s, t) = uin(t) +
∫ s

sin(t)

f ds.

We now show how to get a similar formula for the discontinuous Galerkin solution
on a type I triangle. Since the function s− sin(t) is linear and vanishes on Γin(T ),
vh = [s− sin(t)]q is a polynomial of degree ≤ n when q is a polynomial of degree
≤ n− 1. Choosing this test function in (1), we get(

[s− sin(t)](uh)s, q
)
T

=
(
[s− sin(t)]f, q

)
T
.

Since (uh)s ∈ Pn−1(T ) and s − sin(t) ≥ 0 in T , this implies (uh)s = Rn−1f ,
where Rn−1 denotes the projection of f into Pn−1(T ) with respect to the weighted
L2 inner product [f, q] = ([s − sin(t)]f, q). Using this result, choosing vh = w(t)



in (1), and rearranging terms, we also get∫ t1

t0

(u+
h,in − u

−
h,in)w(t) dt = (f −Rn−1f, w)T

=
∫ t1

t0

[∫ sout(t)

sin(t)

(f − Rn−1f)

]
w(t) dt.

Since u+
h,in − u

−
h,in ∈ Pn[t0, t1], (polynomials of degree ≤ n in t),

u+
h,in − u

−
h,in = Qn

∫ sout(t)

sin(t)

(f −Rn−1f) ds,

where Qn denotes L2 projection into Pn[t0, t1]. Hence

uh(s, t) = u−h,in + [u+
h,in − u

−
h,in] +

∫ s

sin(t)

(uh)s ds

= u−h,in +Qn

∫ sout(t)

sin(t)

(f − Rn−1f) ds +
∫ s

sin(t)

Rn−1f ds.

It follows immediately that

u(sout(t), t)− uh(sout(t), t) = [uin − u−h,in] (2)

+ (I −Qn)
∫ sout(t)

sin(t)

(f − Rn−1f) ds.

On a type II triangle, using the test function vh = w(t) ∈ Pn[t0, t1], we get by
integration by parts that

(f, w)T = (α · ∇uh, w)T −
∫
Γin(T )

J [uh]wα ·n

=
∫
∂T

uhwα · n−
∫
Γin(T )

J [uh]wα · n

=
∫
Γout(T )

u−h wα · n+
∫
Γin(T )

u−h wα · n

=
∫ t1

t0

[u−h,out − u
−
h,in]w(t) dt.

When f = 0, since u−h,out and w(t) ∈ Pn[t0, t1], we get that u−h,out = Qnu
−
h,in.

One can then obtain an error analysis for this method by using t-dependent test
functions. Setting e = u− uh and rewriting the discontinuous Galerkin error equa-
tion in the form

0 = (α·∇e, vh)T−
∫
Γin(T )

[e+−e−]α·n = −(e,α·∇vh)T+
∫ t1

t0

(e−out−e−in)vh dt,



we get for test functions vh = vh(t), that∫ t1

t0

(e−out − e−in) vh dt = 0.

Choosing vh = Qn(e−out + e−in), we get

|Qne−out|2 = |Qne−in|2.

Equivalently,

|e−out|2 + |(I −Qn)e−in|2 = |e−in|2 + |(I −Qn)e−out|2.

On a type II triangle, u−h,out is a polynomial of degree ≤ n in t, so

|(I −Qn)e−out| = |(I −Qn)u−out| ≤ Chn+1/2‖u‖n+1,T .

On a type I triangle, we get using (2) and the fact that u−h,in ∈ Pn[t0, t1] that

(I −Qn)e−out = (I −Qn)uin + (I −Qn)
∫ sout(t)

sin(t)

(f −Rn−1f) ds.

Using this formula, it is not difficult to show that

|(I −Qn)e−out| ≤ Chn+1/2‖u‖n+1,T .

We can now sum these identities in the usual way to produce the standard error es-
timate

|e−out|2Γout(Ω) ≤ |e−in|2Γout(Ω) + Ch2n+1‖u‖2Ω,n+1 ≤ Ch2n+1‖u‖2Ω,n+1.

A similar approach can be used to analyze the continuous Galerkin method. The
test functionw(t) = Qn−1(e′out + e′in) produces the basic estimate

|Qn−1e
′
out|2 = |Qn−1e

′
in|2,

from which an error estimate can be obtained using a similar technique. The ana-
logue for the continuous Galerkin method of the condition u−h,out = Qnu

−
h,in hold-

ing for the discontinuous Galerkin method on a type II triangle when f = 0 is that
[u−h,out]

′ = Qn−1[u−h,in]′.

6 A nonconforming piecewise linear approximation

A natural question is whether this technique can be used to analyze methods that
don’t already have another method of error analysis. One class of such methods are
those that lie somewhere between the continuous and discontinuous Galerkin meth-
ods in the sense that only certain moments are required to be continuous across el-
ement edges. Perhaps the simplest example is a method that seeks an approximate



solution in the space of nonconforming piecewise linear elements, i.e., piecewise lin-
ear functions continuous at the midpoints of triangle edges. On a type II triangle, the
solution would already be known at the midpoints of the two inflow edges (i.e., av-
erage values are continuous across edges). The remaining degree of freedom could
be determined by requiring the finite volume condition that∫

T

α · ∇uh v =
∫
T

f v

for all constant functions v. On a type I triangle, the solution would be known at
the midpoint of the inflow edge and several possibilities exist for the remaining two
equations. Perhaps the simplest is to require the finite volume condition above and
also to require that the first moment be continuous across the inflow edge, i.e., con-
tinuity of uh across the inflow edge of a type I triangle. Again, it is not obvious how
to analyze such a method since the test function v = uh is not allowed. An error
analysis, using the t-dependent test functions described above, can be found in [1]
in the case when each type II triangle, together with a type I triangle whose inflow
side is the outflow side of the type II triangle, forms a parallelogram.

The identity for the homogeneous problem, which is the key to the analysis, is
obtained by first integrating by parts to write the homogeneous variational equation
in the form ∫ t1

t0

(u−h,out − u
+
h,in)vh dt,

and choose the constant test function

vh = Pin(uh,out + uh,in)

on a type I triangle and
v = Pout(uh,out + uh,in)

on a type II triangle, wherePin is theL2 projection into constant functionsonΓin(T )
on a type I triangle and Pout is theL2 projection into constant functions on Γout(T )
on a type II triangle. On a type I triangle, this leads to the identity

|Pinuh,out|2 = |Pinuh,in|2

Since PinPout = Pin on a type I triangle,

|Poutuh,out|2 = |PinPoutuh,out|2 + |(I − Pin)Poutuh,out|2

= |Pinuh,in|2 + |(I − Pin)Poutuh,out|2.

On a type I triangle, it is easy to see that PoutPin = PinPout and sinceα ·∇uh = 0,
uh,out(t) = uh,in(t). Hence

(I − Pin)Poutuh,out = Pout(I − Pin)uh,in = [duh/dt]PoutQ(t),

where Q(t) = t − ta, with ta being the average value of t on [t0, t1]. Combining
these results, we have on a type I triangle that

|Poutuh,out|2 = |Pinuh,in|2 + [duh/dt]2|PoutQ|2.



In a similar fashion, we can show on a type II triangle that

|Poutuh,out|2 = |Poutuh,in|2

and then using the fact that PoutPin = Pout, it follows that

|Poutuh,out|2 = |Poutuh,in|2 = |PoutPinuh,in|2

= |Pinuh,in|2 − |(I − Pout)Pinuh,in|2.

Again, PoutPin = PinPout, and sinceα · ∇uh = 0, uh,in(t) = uh,out(t). Hence

(I − Pout)Pinuh,in = Pin(I − Pout)uh,out = [duh/dt]PinQ.

Combining these results, we obtain

|Poutuh,out|2 + [duh/dt]2|PinQ|2 = |Pinuh,in|2.

In the case when a type I triangle T1 and a type II triangle T2 form a parallelogram
P , one can show that |PoutQ|2 on T1 is equal to |PinQ|2 on T2. Since [duh/dt]2 is
continuous across the common boundary of T1 and T2, adding the above identities
leads to cancellation of the [duh/dt]2 terms and results in the identity

|Poutuh,out|2Γout(T1) = |Pinuh,in|2Γin(T2).

Since the above quantities are continuous across triangle edges, we may now sum
over all triangles to produce a global stability result

|Poutuh,out|2Γout(Ω) = |Pinuh,in|2Γin(Ω),

which is analogous to the stability result for the continuous problem. An error anal-
ysis based on this approach leads to the estimate

|Pout(u− uh)|Γout(Ω) + ‖u− uh‖Ω ≤ Ch2‖u‖3,Ω.

Note that the estimate is of optimal order in L2, but requires additional regularity of
the solution. The key idea here is the fact that if the adjacent trianglesT1 and T2 form
a parallelogram and u ∈ H3(T1 ∪ T2), then for all w ∈ P0(T1 ∪ T2),∣∣∣∣∫

T1∪T2

α · ∇(u− uI)w dx dy
∣∣∣∣ ≤ Ch2‖u‖3,T1∪T2‖w‖0,T1∪T2 ,

where uI is the standard continuous piecewise linear interpolant of u.
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