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Abstract. We summarize several techniquesof analysisfor finite element methodsfor linear
hyperbolic problems, illustrating their key properties on the simplest model problem. These
include the discontinuous Galerkin method, the continuous Galerkin methods on rectangles
and triangles, and a nonconforming linear finite element on a special triangular mesh.

1 Introduction

Let {2 be a bounded polygonal domain and consider the simple linear hyperbolic
problem:

a-Vu=f inf, u=g onl;, (),
where a = (a1, ap) isaconstant vector and I75,,({2) is the portion of the boundary
of 2 onwhich « - n < 0, with n denoting the unit outward normal to 9s2.

In this paper, we review several finite element methods proposed for this model
problem, and discussthekey ingredientsof their analysis. At themost basic level, all
of thenumerical analysistriesto follow in some way the basic conservation property
of the homogeneous equation. That is, multiplying the homogeneous equation by u
and integrating over a subdomain G, we have

1 1
O:(a-Vu,u)G:§/a-V(u2):§/a wo-n.
G G

This may bewritten in theform

1 1
= ula-n| == u?la - n
2 2

Tout(G) Tin(G)

sincea-n >00nl,,:(G)anda-n <0onl;,(G).
If we choose 2 so that it is the digoint union of subdomains G; and sum these
identities, cancellation of integrals over the common boundaries|eads to the conser-

vation result: )

1
—/ ula-m| = —/ u?lee - ml.
2 Jrun(2) 2 Jr(2)

Itisthistypeof analysisthat wewish tofollow at thediscretelevel to obtain stability
and an error analysis of finite e ement approximation schemes.
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2 The Discontinuous Galerkin Method

We beginwiththe method whichisthe subject of thisconference, and whose analysis
isthe most familiar. Let 7, denote atriangulation of (2 into triangles T of diameter
< hand P, (T) the space of polynomialsof degree < n onT. For each T’ € 74, the
discontinuous Gaerkin method is:

Findu;, € P,(T) such that

(o - Vup,vp)r — / Jlup) vp o -m = (f,vn)7 (1)

for al v, € P,(T), where J[v] = vt — v~, withv*(z) = lim._ o+ v(z + ea),
u, (z) = g(z) if x € I},(£2), and (-, -)r denotes the L? inner product over T'.

For this method, one can follow the lead of the continuous problem and take the
test function v;, = uy,. Then for the homogeneous problem f = 0,

(e Vup,up)r — / Jlup)uf - m = 0.
Tin (T)
Integrating the first term by parts as before and recombining terms, one gets

1 _ 1 _
5[ wlaenl = [ pRlenl - [ - wluflacnl
2 Jrpui(1) 2 Jrin(m) Lin (T)
1 _ 1
—5 [ wiPlecnl-g [ Gl
[ (T) [ (T)

Summing over al trianglesin the triangulation comprising {2 gives

3w+ g [ Gwllanl=5 [ flaw

1 - .

2 rpiey " = 2 Jr.(7) 2)r 2

in

Thisidentity is of course the basic one needed to establish stability of the method.
The additional test function a - Vuy,, used by Johnson and Pitkéaranta[4] provides
additiond stability and leads to an improvement inthe error estimates originally ob-
tained by Lesaint and Raviart [5].

3 Winther’'smethod

Next consider a method proposed by R. Winther, using a rectangular mesh. The ap-
proximate solution is sought in the space of continuous tensor product piecewise
polynomials of degree < n in each variable. On each rectangle R, the approximate
solutionuy, € Q,, isdetermined by:

(O{ - Vup, Uh,)R = (f; Uh,)R for al Vp € Qn—la

where @Q,, denotesthe space of tensor productsof polynomialsof degreen ina and y.
These equationsmust be solved in an order determined by the characteristic direction



and it isassumed that u;, is already known on the inflow boundary of the rectangle
R.Inthesmplest case n = 1, uy isknown at 3 of the rectangle vertices and the
value at the fourth is determined by taking inner products against constants. In this
case, the method isthe box scheme or a simple finite volume method.

The analysis of such amethod is not so obvious, since thetest function vy, = uy,
isnot allowed. Winther’sideaisto get conservation of a quantity equivalent to L?
conservation of u by choosing two test functions. The first is (uy,),,. Considering
the homogeneous problem, and dropping the subscript 2 for the moment, we have
for the rectangle R;; with corners (ih, jh), ([i + 1]h, jh), (ih, [j + 1]h), and ([i +
1h, [j + 1]h),

1 pli+th pli+1R )
(ug + a2uy, uxy)Ra,j = B /h /’h (al[(ux)Q]y + aal(uy)]s) dy dz
ih ih

1 flitn

T2 /h ar{[uz(z, [j + 1R)]? — [us(z, jh))*}da

li+11n
+ % /jh, cz{[uy([i + 1Jh, y)]* — [uy (ih, y)]*}dy

1 1
5[ wrlacsi=g [ @)la-sl
Towi(Rij) I'in (Rij)

where s denotes the unit tangent vector to OR;; and u, = Vu - s denotes the tan-
gential derivativealong OR;;.

Since uy, iscontinuous across rectangle edges, so is (uy,)-, SO summing over al
rectangles leads to cancellations and the following result.

1 1
_/ [(un)7)? |- s| = _/ [(un)-)?|ex - s].
2 Jr.) 2 Jr. (2

Since this is only a seminorm for functions defined on these boundaries, Winther
considered asecond test function, whichiscloser tothespirit of the origina analysis.
Letting P, and P, denote L? projectionsinto polynomias of degree n — 1 in z and
y, respectively, Winther used the test function vy, = P, yuy, where P, , = P, P,.
Again dropping the subscript h, we have
0 = (a1uy + oy, Py yu) = (Q1ug, Pyu) + (aouy, Pru)
= (ou[Pyuls, Pyu) + (a2[Pruly, Pru)

1 [i+1]h  p[i+1]R , ,
- 5/}1 /'h (1([Pyu]”)e + a2([Prul®),) dy dz
h Jh

i+1]h
- %/Jh al{[Pyu([i + l]h’ y)]2 - [Pyu(iha y)]Q}dy

li+1]h
+1/ ar{[Peulz, [j + 1JR)]2 — [Pou(a, jh)|2}da

1 1
5/ (Pou)2|04"n|—§/ (Pou)?|ex - nl,
Towi(Rij) I'in (Rij)

o



where now P, represents L? projection into polynomiasof degree n — 1 along an
edge. Adding h? times thefirst identity to the second identity gives conservation of
anorm that is equivalent on piecewise polynomialsto the L? norm.

4 The Continuous Galerkin method on triangles

This method was originally proposed by Reed and Hill [6] and was analyzed in [2].
Here we note that are two types of triangles: type | triangles with one inflow side
and typel triangleswith two inflow sides. We then seek an approximate solutionin
the space of continuous piecewise polynomials of degree < n determined on each
triangle T" by the variational equations

(a . VUh,, Uh,)T = (fa U}L)T

wherev, € P,_1(T) onatypel triangleand v;, € P,,_o(T') onatypell triangle. By
continuity, u;, will aready beknown at n + 1 degrees of freedom onatypel triangle
and at 2n + 1 degrees of freedom on atype Il triangle. Since the total number of
degrees of freedom for polynomiasof degree < nisequal to (n+1)(n+2)/2,and

n+1)(n+2)/2=nn+1)/2+(n+1)=(n—-1)n/2+ (2n+1),

we have the same number of equations as unknows on both types of triangles. Once
again, the analysis of this method is not so obvious, since the simple test function
v, = uy, isnot alowed. However, Winther’s analysis gives a clue and Richter no-
ticed that the analogue of u,,, for trianglesis the choice v = v, -,, with 7 and 7
chosen to be the variables along the two inflow sides of atype Il triangleor two out-
flow sides of atype| triangle. This leads to the following useful identity.

_ L[ lem)lains) o
- [(a- v =5 [ 2

a-n
_l/ (n-ma)(m2ms) (g2,
2 Jp a-ng

where I'5 istheinflow side of atype triangle and the outflow side of atypell trian-
gle, andn; istheunit outward normal to I;. Once again, the continuity of u;, ensures
the continuity of (uy, ), across triangle edges and when thisidentity issummed over
thetriangles, cancellations occur on the triangle boundaries which lead to a stability
result. For the homogeneous problem, .- Vuy, = 0 onatypel triangle, and athough
thisis not true on atype Il triangle, thisterm appears with the right sign so its pres-
ence does not interfere with the basic stability result. Asin the approach of Winther,
another test function must be used to control the full norm on triangle boundaries.

5 Analysisusing characteristic coordinates

Thereisanother approach to error analysis of these methods which can be applied to
other methods as well. In thisapproach, described more fully in [3], we use a coor-



dinate system with one coordinate in the characteristic direction and a second coor-
dinate either orthogonal to the characteristic direction or else lying along the inflow
side of atypel triangleor the outflow side of atypel triangle.

Fig.1. Characteristic coordinates

In the notation of Fig. 1, atriangleT" may be described by

T ={(s,t) : s € [sin(t), Sout(t)], t € [to, 1]}

Using thiscoordinate system, one can integrate al ong the characteristics to write the
exact solution in theform

S

u(sa t) = uin(t) + / f ds.

Sin (f)

We now show how to get a similar formulafor the discontinuous Galerkin solution
on atypel triangle. Sincethe function s — s;,,(¢) islinear and vanishes on I, (7)),
vp, = [s — sin(t)]q isapolynomia of degree < n when ¢ isapolynomial of degree
< n — 1. Choosing thistest function in (1), we get

([s = sin (O] (un)s, @) = ([s = sin(®)1f, 0) -

Since (up)s € Pn—1(T) and s — s;,(t) > 01inT, thisimplies (up)s = Rp—1f,
where R,,_; denotesthe projection of f into P,,_(T") with respect to the weighted
L? inner product [f, q] = ([s — sin(t)] f, q). Using thisresult, choosing v, = w(t)



in (1), and rearranging terms, we also get

t1
[ i = i 0l6) = (7 = R fo )

to
t1 Sou,f,(t)
= /t / (f - Rn—lf)‘| ’U}(f,) dt

sin(t)
Since ;! ;,, — u;, ;,, € Pulto, t1], (polynomiasof degree < n int),

Sou,f,(t)
u;in - u;,in = Q"/ ® (f - Rn—lf) ds
Sin

where Q,, denotes L? projectioninto P, [to, t1]. Hence

S

Up (S’ t) = u;,in + [u;in - u;7i7l] + / ( )(uh)s ds
Sin(t

S

Sou,f,(t)
= u;,in + Q"/ (f - Rn—lf) ds +/ Rn—lf ds.
Sin(t) Sin(t)

It followsimmediately that
u(Sout(t),t) — un(Sout(t), 1) = [win — uy, ;] )
Sout(t)
+ (I - Qn)/ o (f = Rn-1f)ds
Sin(t

On atype Il triangle, using the test function vy, = w(t) € Py [to, t1], we get by
integration by parts that

(faw)T:(a'vuhaw)T_/F (T)J[uh]wa-n

:/ uhwa-n—/ J[uh]wa-n
oT i (T)

i

:/ u;wa-n+/ U, WM
Tout(T) I (T)

t1
= / [u;,out - u;,in]w(t) dt.

to

When f = 0, sinceu,, .., and w(t) € Py, [to, 1], we get that w;, ., = Qnity ;.-

One can then obtain an error analysis for thismethod by using ¢- dependent test
functions. Setting e = u — wy, and rewriting the discontinuous Gal erkin error equa
tionin theform

to

t1
0= (a-Ve,vh)T—/ [eT—e |an = —(e, a-Vvh,)T+/ (€gut —€in)Un dt,
Iin (T)



we get for test functions vy, = vy, (t), that

t1
/ (eo_uf zn) Un dt = 0.
to

Choosing vy, = Qn(egy: + €;,), We get
|Q"eo_ut|2 = |Q"ei—n 2
Equivaently,
legue? + (I = Qu)ep,|? = leg, 12 + [(I — Qn)egyel*.

Onatypell triangle, u;, ,,,, isapolynomial of degree < nint, so

(I = Qu)egue] = (T = Qn)uguel < CR™ V2 full g1,
Onatypel triangle, we get using (2) and the fact that u,, ,;,, € Py [to, t1] that

Sout(t)

(I - Qn)eo_ut = = Qn)uin+ (I —Qn) / " (f —Rn-1f)ds

Using thisformula, it is not difficult to show that
(I = Qu)egutl < CR™ V2 g 7

We can now sum these identitiesin the usua way to produce the standard error es-
timate

|eo_ut|?"om(!2) < |ez’_n|?"om(!2) + ChQn_HHuH??,n—H < Ch2n+1|‘u|‘?2,n+l'

A similar approach can be used to analyze the continuous Gal erkin method. The
test functionw(t) = Qn—1(e€.,,; + €},,) produces the basic estimate

|Qn—1e/out |2 = |Qn—1€;n |2’

from which an error estimate can be obtained using a similar technique. The ana
logue for the continuous Galerkin method of the conditionw, ,,,,, = @nu, ,,, hold-
ing for the discontinuous Galerkin method on atypell trlanglewhen f= 0 isthat

[uh,,out] Q"—l [uh,,'m]/'

6 A nonconforming piecewise linear approximation

A natural question is whether this technique can be used to analyze methods that
don’t already have another method of error analysis. One class of such methods are
those that lie somewhere between the continuousand discontinuous Gal erkin meth-
ods in the sense that only certain moments are required to be continuous across € -
ement edges. Perhaps the simplest example is a method that seeks an approximate



solutionin the space of nonconforming piecewiselinear e ements, i.e., piecewiselin-
ear functions continuousat the midpointsof triangle edges. On atypell triangle, the
solution would aready be known at the midpointsof the two inflow edges (i.e., av-
erage values are continuous across edges). The remaining degree of freedom could
be determined by requiring the finite volume condition that

/a-Vuh,vz/fv
T T

for al constant functions v. On a type | triangle, the solution would be known at
the midpoint of theinflow edge and several possibilitiesexist for the remaining two
equations. Perhaps the simplest is to require the finite volume condition above and
also to require that the first moment be continuous across the inflow edge, i.e., con-
tinuity of u;, acrosstheinflow edge of atypel triangle. Again, it is not obvious how
to analyze such a method since the test function v = wy, is not alowed. An error
analysis, using the ¢-dependent test functions described above, can be found in [1]
in the case when each type Il triangle, together with atype | triangle whose inflow
sideisthe outflow side of the type Il triangle, forms a parallelogram.

The identity for the homogeneous problem, which isthe key to the analysis, is
obtained by first integrating by partsto write the homogeneous variational equation
intheform

t1
/f (u}:,out - u;:,_,in)vh/ dt,
to
and choose the constant test function
Up = ]Din(uh,,out + uh,,'m)

onatypel triangleand
v = Py (uh,,out + uh,,'m)

onatypell triangle, where P;,, isthe L? projectioninto constant functionson I, (T')
onatypel triangleand P,,; isthe L? projectioninto constant functionson I',,; (T')
onatypell triangle. On atypel triangle, thisleadsto the identity

2 2
|]371nuh,,out| = |]31lnuh,,in|
Since P;, Pyt = Piy, On atypel triangle,

|Poutuh,,out|2 = |]37171,Poutuh,,out|2 + |(I - Hn)POU,tu}L,outlQ

= |]31',nuh,,in|2 + |(I - ]Din)Poutuh,,out|2-

Onatypel triangle, itiseasy to seethat P,,,; P;, = Py Py andsinceac- Vuy, = 0,
uh,,out(t) = uh,in(t)- Hence

(I - ]Din)Poutuh,,out = Pout (I - Hn)uh,,in = [duh,/dt]Poth(t)a

where Q(t) = t — t,, with ¢, being the average vaue of ¢ on [t, t1]. Combining
these results, we have on atypel trianglethat

|Poutuh,,out|2 = |]31',nuh,,in|2 + [duh,/dt]leoth|2-



Inasimilar fashion, we can show on atypell trianglethat
|Poutuh,,out|2 = |Poutuh,,in|2
and then using the fact that P, P;;, = P,u:, it followsthat

|Poutuh,,out|2 = |Poutuh,7in|2 = |PoutPinuh,,in|2

= |Pintn in|* — [(I = Powt) Pintin,in)?.
Again, Py Py, = Pip Poyy, and since o - Vuy, = 0, upin(t) = up,out(t). Hence
(I — Pout) Pintun,in = Pin(I — Pout)Un,out = [dup/dt] P Q.
Combining these results, we obtain
| Poutttn,out|* + [dun/dt)*| PinQ|* = | Pinti,in|*.
In the case when atype| triangle 77 and atypell triangle 75 form a parallelogram
P, one can show that | P,,;Q|? on T} isequa to | P;,,Q|? on Ty. Since [duy, /dt]? is

continuous across the common boundary of 77 and T, adding the above identities
leads to cancellation of the [duy,/dt]? terms and resultsin the identity

2 2
|Poutuh,,out|[‘0m(T1) = |Pz'nuh,,'m Tin(T2)"

Since the above quantities are continuous across triangle edges, we may now sum
over al trianglesto produce aglobal stability result

|Poutuh,,out|%om(g) = |Pinuh,,in|?"m(9)a

which is analogous to the stability result for the continuous problem. An error anal -
ysisbased on this approach leads to the estimate

| Pout(u = un) |1, (2) + [ = unllo < Ch*||ull3 0.

Notethat the estimate is of optimal order in L?, but requires additional regularity of
thesolution. The key ideahereisthefact that if the adjacent triangles T} and 75 form
apardleogramand u € H3(Ty U Ty), thenfor al w € Po(Ty U Ty),

3,107, || Wllo,muTsy

/ - V(u—ur)wdrdy| < Ch?||ul
ThWUTs

where v isthe standard continuous piecewise linear interpolant of .
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