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Abstract 

We consider the equations of linear homogeneous anisotropic elasticity ad- 
mitting the possibility that the material is internally constrained, and formulate 
a simple necessary and sufficient condition for the fundamental boundary value 
problems to be well-posed. For materials fulfilling the condition, we establish 
continuous dependence of the displacement and stress on the elastic moduli and 
ellipticity of the elasticity system. As an application we determine the orthotropic 
materials for which the fundamental problems are well-posed in terms of their 
Young's moduli, shear moduli, and Poisson ratios. Finally, we derive a reformu- 
lation of the elasticity system that is valid for both constrained and unconstrained 
materials and involves only one scalar unknown in addition to the displacements. 
For a two-dimensional constrained material a further reduction to a single scalar 
equation is outlined. 

1. Introduction 

The equations of anisotropic elasticity are 

Aa = e(u) in /2, (1.1) 
- ~ 

d i v a = f  in /2, (1.2) 

where tr = (trkt) is a 3 • 3 symmetric tensor of unknown stresses, u is a 3-vector 
.T. 

of unknown displacements, and f is a given 3 vector of forces, all defined on a 
smoothly bounded domain /2 ( - R  3. The infinitesmal strain tensor e(u) is defined 

as the symmetric part of the gradient tensor (~u~/~xj) and the vector-valued diver- 
gence div ~ is defined by applying the scalar-valued divergence operator to the 

rows of a. The fourth-order tensor A, known as the compliance tensor, is a self- 
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adjoint linear operator on the six-dimensional space R of symmetric 3 • 3 tensors, 

and characterizes the particular material. The coml~iance tensor may be deter- 
mined by specifying 21 independent coefficients or elastic moduli. 

We shall consider in this paper the fundamental displacement and traction 
boundary conditions: 

u = g~ on / '1,  (1.3) 

o'n = g2 on I'2- 

Here I'1 a n d / ' 2  are disjoint open subsets of  8~2 with /~1 ~J/~2 = ~g2. For  now 
we assume t h a t / ' ,  and ['2 are nonempty. The case of unmixed boundary condi- 
tions is considered in Section 5. 

It is often assumed that the compliance tensor is positive definite. In this 
case, tr can be eliminated and it can easily be shown that the resulting boundary 

value problem is well-posed. For  many important materials, however, the com- 
pliance tensor is positive semidefinite but singular, or nearly so. If  the compliance 
tensor is singular, admitting a nonzero tensor a o in its nullspace, then the displace- 

ment fields which satisfy the constitutive equation (1.1) are not arbitrary, but auto- 
matically satisfy the linear relation 

e ( u )  : _% = 0 .  

This relation is called the material constraint and the material is said to be (inter- 
nally) constrained. We term any nonzero tensor in the nullspace of  the compliance 
tensor a c o n s t r a i n t  t e n s o r .  For example, an incompressible material is one for 
which the 3 • 3 identity matrix is a constraint tensor and the corresponding 
constraint is div u ---- 0. A material which is inextensible in the direction s has 
constraint tensor ss  t and so satisfies the constraint s .  grad (s. u) = 0. 

T h e  boundaryva lue  problem (1.1)-(1.3) for a constrained material may or 
may not be well posed. For  an incompressible material, for example, well posed- 
ness has long been known in the isotropic case and has been recently established 
in general [6]. For  inextensible materials, in contrast, the boundary value problem 
is overdetermined. 

In this paper we assume only that the compliance tensor is semidefinite, and 
formulate a simple algebraic property of  the compliance tensor which characterizes 
those materials for which the fundamental boundary value problem is well-posed. 
Moreover, for those materials we establish a p r i o r i  bounds for the displacement 
and stress fields which are uniform with respect to the elastic moduli and establish 
continuous dependence of the solution on the moduli. 

As an application of  our analysis we consider the class of  orthotropic materials. 
A material in this class is determined by nine independent physical constants 
and can be constrained in a variety of  ways. We determine when the fundamental 
boundary value problems are well set in terms of  these constants, and establish 
continuity of  the solutions with respect to them. 

The question of  continuous dependence on the elastic moduli near an elastic 
constraint is of  great importance. Without such continuous dependence results, 
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the use of  constrained models, which represent an idealization of nearly con- 
strained materials, would be unjustified. Nonetheless this question remains largely 
unresolved. Our results apparently provide the first proof of convergence of  un- 
constrained materials to a constrained material outside of the simplest ease, that 
of an isotropic incompressible material. The isotropic case was examined by 
BRA~aLE &PAvNE [4], who proved continuous dependence results for the pure 
displacement and traction problems and, in particular, showed that as the Pois- 
son ratio tends to 1/2 the displacement and each of its derivatives converge at 
interior points to the corresponding quantity for the incompressible problem. 
Results of  the same sort have since been derived by MIKHLIN [17], KOBEL'KOV 
[13], LAZA~V [14], and ROSa'Ar, iIAN [19]. For nonlinear elastic materials asympto- 
tic expansions have been devised which suggest the convergence of an almost 
constrained material to a constrained one, but of course these do not provide 
proofs of convergence. See SPENCER [21] for the constraint of incompressibility 
of an elastic solid and ANTMAN [2] for that of inextensibility of an elastica. 

ROSa'AMIAN [19] has derived abstract conditions on the compliance tensor of 
an anisotropic linearly elastic material which insure continuous dependence of  
the solution on the elastic moduli. His conditions, which are sufficient but not 
necessary, are much more complex than the simple algebraic conditions that we 
give. He applied his theory only to the known case of isotropic elasticity, regaining 
the results of BRAMaLE & PAYNE [4] and also showing convergence of the stresses. 

PIPKIN outlines the general theory of constraints in linear elasticity in [18]. 
He classifies constraints by their dimension, which he defines as the rank of the 
corresponding constraint tensor. For our purpose the crucial distinction is between 
constraint tensors of deficient rank and those of full rank. We term the corres- 
ponding constraints singular and nonsingular respectively. Our essential hypothesis 
on the material is that it admits only nonsingular constraints, that is, that no 
nonzero singular tensor ao satisfies A o'o ---- 0. 

Let us comment on the physical significance of singular and nonsingular 
constraints. A material is constrained if and only if a smooth body composed of  
the material can be subject to a homogeneous state of  stress without deforming. 
The constant stress tensor is then a constraint tensor. The constraint is singular 
if and only if the traction vanishes at some point on the boundary, since the nor- 
mal at such a point is a nullvector of the constraint tensor. For example, an in- 
compressible material supports a uniform pressure without deforming. In this 
state the traction never vanishes. On the contrary, an inextensible material under 
uniform tension does not deform, but the traction vanishes in any direction 
normal to the axis of tension. 

To state uniform estimates we associate a quantitative measure with this hypo- 
thesis. Let cr denote the space of positive semidefinite self-adjoint linear transfor- 
mations of R into itself, and for A E cr let 0 =< ;tl(A) --< ;t2(A) =< ... ~ 26(A) 

denote its eigenvalues and al(A), q2(A) . . . . .  a6(A)E R a corresponding ortho- 
normal basis of eigenvectors. The quantity that we use to measure the closeness 
of  the material to having a singular constraint is denoted by z(A) and defined by 

z(A) ---- max [21(A), a2(A)/lylfa) -1121. (1.4) 
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In the next section we show that the definition of  Z is independent of  the choice 
of  eigenbasis, and that Z : c~ __> [0, oo) is continuous and vanishes if and only if 
the material admits a singular constraint. We may now state our principal result. 

Theorem 1.1. Suppose that the compliance tensor A is positive semidefinite and 
admits no singular constraints. Then for any data (f, gl, g2) E L2(-Q) • 

X H 1/~(1"1) XL2(F2), there exists a unique solution (a, u) E L2(s • HI(O)  to the 

mixed boundary value problem (1.1)-(1.3). Moreover, the a priori estimate 

[l~ll0 + [lulls ~ C(llflt-,,D + Ig, IX/~,/~l + [g21-I/2:) (1.5) 

holds with C a constant depending only on $2, an upper bound for the compliances, 
and a lower bound for z(A); and the solution (a_, u) depends continuously on the com- 

~ 

pliance tensor A and the data f, g~, and g2. 
~ _ 

An outline of  the paper is as follows. Section 2 contains additional notation 
used in the paper along with the statement of  a theorem due to BR~ZZI [5] dealing 
with abstract saddle point problems. This theorem will play a major role in our 
subsequent analysis. The proof  of  Theorem 1.1 is given in Section 3. As an appli- 
cation of  the theorem we consider the case of  orthotropic materials in Section 4. 
In the next section we extend the results to the cases of  pure traction and pure 
displacement boundary conditions. We then show in Section 6 that the hypothesis 
of  nonsingularity of  constraints is in some sense necessary. In Section 7 we prove 
ellipticity of  the elastic system uniformly with respect to the elastic moduli and 
in Section 8 we use the ideas previously developed to derive two alternate formu- 
lations of  the elasticity equations which may be more convenient for some com- 
putational and analytic purposes. In the first of  these formulations the stress (r 

is eliminated and new scalar variable p is introduced. In the case of an isotropic 
incompressible material these equations are equivalent to the stationary Stokes 
equations. The second formulation is a further simplification possible in the two- 
dimensional constrained case and results in a single fourth-order equation, ana- 
logous to reduction of  the Stokes system to the biharmonic problem by intro- 
duction of  a stream function. Finally, in the last section, we remark on the case 
o f  plane elasticity. 

2. Notation and Preliminary Results 

We underscore 3 • 3 symmetric tensors by ~ and 3-vectors by ~-~. We endow 
~E, the space of  real symmetric 3 • 3 tensors, with the Frobenius norm and use 

3 
the notation a : r  = ~ a0~ij for the associated inner product. The space 1% 

o f  three-vectors carries the usual Euclidean norm and dot product. For  vector- 
valued functions u = ( u l ,  u2, u3) t, we write uEH~(f2) if uIEH~(f2) for 
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(• 1,) ''' i = 1, 2, 3, and set II u lh = II uill . For  3 • 3 symmetric tensors a = (aij), 
i = 1  z (• o,)"2 we write a E L2(-Q) if tr~j E L2(-Q) for  i, j = 1, 2, 3 and set II~ll0 = II %11 �9 

= = = , j =  1 

We shall require some spaces of functions defined on a smoothly bounded 
open subset F' o f / ' .  By H1/2(F ') we denote the usual Sobolev space [16, Ch. 1, 
Sec. 7]. The subspace consisting in the functions whose extension to T' by zero 
lies in I-I1/2(F) is denoted by/-/g/o2(_P'). The norm is taken as the graph norm of  the 
extension by zero, which induces a finer topology than the H u:(F ') norm. By 
H-1/2(F ') we mean the normed dual of  z2tl2r~,~ ~ ~oo~,~). The norms in Hi/2(/*') and 
H-1/2(F ') are denoted by ['[m,r" a n d  ] ' l_~/2,r ,  respectively, with the subscript 
being dropped in case F ' :  F. 

We further define 

and 
H0'(O) = {.~E H I ( a )  : v i r  = 0}, 

Yo ' (o )  = {.rE y ' ( O )  : ~1/~, = 0}, 

and denote by Ilfl[- 1,0 and l i f t -  t.D the norms in the dual spaces of  H~(.Q) and/-/~($2,) 

respectively. 
Many of  the results in this paper will be derived using a theorem of  F. BREZZI 

[5] dealing with saddle point problems of  the following type: 
Find (a, u) E W• V such that: 

a(a, ~) + b@, u) = <g, z> for all ~ E W, (2.1) 

b(a, v) = ( f ,  v> for all v E V, (2.2) 

where W and V are real Hilbert spaces, a(., -) and b(., -) are continuous bilinear 
forms on W• W and W• V respectively, and g and f are given functions in W* 
and V* (the duals of  W and V respectively). 

Let Z = {r E W: b(r, v) = 0 for all v E V}. One version of  BREZZI'S theorem 
is the following: 

Theorem 2.1. Suppose there is a constant 7 > 0 such that 

and 

a(r,  ~) ~ r I1~11~ for all r E  Z 

b(~, v) 
inf sup > 

o , ~ v o , ~ . ,  [l~llwllvllv = r -  

Then for all ( f  g)E V*• W*, there is a unique solution (~, u)E W• V of  (2. 0 ,  
(2.2). Moreover, 

II~IIw + Ilullv ~ C(llglIw, + Ilfllv,), 

where C depends only on 7 and bounds for the bilinear forms a and b. 
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We will be applying BREZZI'S theorem in the case 

a(cr, T)---- J A a : z d x ,  b(r,v) = -- f e ( O : z d x .  (2.3) 
: - .~ ~ ~ . Q  ~ .~  

Finally we establish some properties of  the function z(A) defined in (1.4). 
For any A with At(A) ~ 22(A), ffl(A) is uniquely determined (up to sign), so 
the definition of  z(A) is independent of the choice of  eigenbasis and, moreover, 
X is certainly continuous in A. On the other hand, if ~.I(A) = ~.2(A), then Z(A) = 
21(A), since regardless of  the choice of  basis 

[fit(A)-~ [ E I1, oo[. (2.4) 

Moreover, in view of (2.4), 

0 < 2 , (a)  < z(A) <= 22(A) < oo, 

from which it follows that Z is again continuous in A. Thus in any case Z maps c~ 
continuously into [0, co). 

We next show that if 22(A) = 0, then A admits a singular constraint. This is 
certainly so if ffL(A ) is singular. If  ~I(A) is nonsingular and 22(A ) : 0, then 
o ~ = fie(A) q-/~_a~(A) is a (nonzero) constraint tensor for all real # and its deter- 
7.  

minant is a polynomial in/t  of  degree exactly 3. When/~ is a real root of this poly- 
nomial, a ~_ is a singular constraint tensor. 

Now-if  A does not admit a singular constraint then l al(A)-~I < oo and as 
we have just seen 22 > 0, so z(A) > 0. If, on the other hand, A admits a singu- 
lar constraint tensor ~r(A), then 3q(A) = 0 and lfix(A)-ll = + or so z(A) = O. 
Thus x(A) vanishes if and only if A admits a singular constraint. 

3. Proof of Theorem 1.1 

The crux of the argument is contained in the following lemma. 

Lenuna 3.1. Let A be a semidefinite compliance tensor which does not admit a 
singular constraint. Let G E L2(F2) *, FE Hol(f2) *. Then there exist unique func- 
tions ~ E L2(F2) and z E HA(O) such that 

a(~, T) + b(T, z) = <G, ~) for all ~ E L2(~Q), 

b(e, v) = <F, _v> for all v E H~(f2). 

Moreover 
115110 + Ilzlh ~ C(llGII0 + IIFII-,,D) 

z 

where C depends only on $2, an upper bound for I A ], and a lower bound for z(A). 

The bilinear forms here are defined in (2.3). Before turning to the proof  of  this 
lemma, we deduce from it the proof  of the theorem. 
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As is usual, we impose the Dirichlet boundary condition by setting u 1 = ((g~) 
with 8 : . .  ~--~j 
(a, _u2)-such that 

a continuous extension operator, and seek a pair 

div ff = f ,  (3.1) 
~ _ 

u 2 = 0 on / 'x, 

a n = g 2  on / 2 .  % -  

We then take u = u  t + u  2, 
of  the bilinear forms (2.3), a weak form of (3.1) is: 

Find ff E L2(~2), u 2 E H~(-Q) such that 

so that the problem (1.1)-(1.3) is satisfied. In terms 

a(~, ~) + b(~, u 2) = --b(~, u t) for all ~ C L2(-Q), (3.2) 

b(~, v) = f _f. ~ dx_ --  f g~. ~ ds for all v E Hi(O) .  (3.3) 
-O / ' 2  

By Lemma 3.1 this problem admits a unique solution and the estimate 

I[g[Io -}-Ilu21I, =< C(ft~(u')[Io q-ttfll-,,D + Ig2l-,/2,r~) 

holds with C a constant depending only on ,Q, an upper bound for I A I, and a lower 
bound for z(A). Existence and uniqueness for the original problem and the a 
priori estimate (1.5) follow readily. The continuous dependence result follows by 
a standard argument which we sketch. Letting (~, _~) denote the solution to the 

elliptic system with compliance tensor ,4 and dataf~1,32,  and writing fi = fil + fiz 
as above, the pair (~, .~2) solves 

a(~, ~) + bfr, ~ )  = --bfr ,  ~ )  + f ( a  --  ,~) ~ : ~ d.y_ for all _z E L2(O), (3.4) 
i2 

b(~, v) = f f .  v d4. -- f g2" v ds for all _v E/-/~(Q). (3.5) 

We wish to show that if [ A -- A[ + [[f--.t~[_ 1,o + I gl -- g11112,r~ + [g2 -- g2 [- 112,r~ 
-+ 0, then I1~ - _~11o + II_u - _~111 ~ 0. First llu ~ - _~:111 ~ 0 by the continuity 
of the extension operator ~. Subtracting (3.2), (3.3) from (3.4), (3.5), noting that 
IA[---> [A[and Z(A)--> g(,~), and applying Lemma3.1, we deduce that also 
I{_a - ~rllo + Ilu ~ - _~ l i t - >  0. 

It remains to prove Lemma 3.1. We apply BREZZI'S theorem (Theorem 2.1) 
to reduce Lemma 3.1 to the verification of the following two lemmas. 

Lemma 3.2. There exists a constant y > 0 depending only on $2 and a lower bound 
for z(A) such that 

fa~:zdx>>_Yllz_ll 2 for all z E Z ,  
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Z = {zzE L2(~Q) : =  x a f z : e ( v )  d x = 0 :  -- . for all _rE H~(S2)}. 

Lemma 3.3. There exists a constant ~ ~ 0 depending only on g2 such that 

f ,=(v.) : r dx 
inf sup a ~ 7. 

~ _ 

The proof of Lemma 3.3 is immediate: given v, we take zz = e(v) and apply 
Korn's inequality. To prove Lemma 3.2 we decompose an arbitrary element 
T o f Z a s  z = z  r + r  n with r r = ( z : g ~ ) q x .  Then clearly 

f A z:  ~ dx --> max (21 IITII 2, 22 11_~01102)- (3.6) 
O " 

Now there exists p E Hol(12) such that 
~ 

divp = z : a t  and Ilpll~ ~ C~ I1~:~11o, 
. ~ 

- - t  where Ct depends only on s Let q = a t p. Then 
~ 

and 

Ilqh ~ Ct I=~i-llll~: ~tllo 

at : grad q---- divp = ~ : q t .  

Consequently 

II z : al []g= f (ff~ : grad q) (z : fit) d x 

= f g~d q: r~ dx = f grad q : (z  - -  ~o) dx 
D .Q - 

= f e(q): (z -- zD) dx ---- - -  f ~(q): ~o dx, 
D ~ ~ D 

since q E Hol(f2) and rE  Z. Thus 

II_~ _~ II20--< Ilqlh II~oI[o =< G I~i-t I I1~: a_xllo I[.*ollo 

and it follows easily that 

Cz 
II~oll~ ~ ~ 1[III 2 (3.7) 

w h e r e  C 2 depends only on s The lemma is an immediate consequence of (3.6) 
and (3.7). 
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4. Orthotropic Materials 

An elastic material which admits three orthogonal planes of  symmetry is termed 
orthotropic. Included in this case are hexagonal and cubic crystalline structures 
[15, page 31]. Orthotropic materials are also used to model woods, plywood and 
other composites [15, pages 58-60], and some biological substances, such as the 
basilar membrane of  the inner ear [11]. Constrained orthotropic materials, in 
particular incompressible ones, are studied frequently in the engineering literature 
[8], [20]. To state the constitutive equation for an orthotropic material concisely 
it is convenient to introduce the notations 

diag o" ---- (o'Lt, 0"22, o'33) t and offd o' = (0 '23  , O'L3 , U 1 2 )  t 
,7 ,  ~ .Z  

for the diagonal and offdiagonal parts of  a symmetric 3 • 3 tensor. The consti- 
tutive equation may then be written 

O diag tr = diag e(u), 

where 

and 

G offd a = offal e(u), 

B _ 

liE, --vt21E2 --v,.31E3\ 
--v2t/E, l/E, --v23/E3~ 

--v3~/Et --v32/E2 lIE3 I 

1/GI 0 \ o 

G = I/G2 0 ) . 

Here the Ei are the Young's moduli of  the material, the G,- are the shear moduli, 
and the vfj are the Poisson ratios. The relations 

voEi = vyiE j, l ~ i < j ~ 3, 

are satisfied, so an orthotropic material is defined by nine independent constants 
and the matrix B is symmetric. 

The Young's modulus Ei is the ratio of  tension to extension when the body is 
in a state of  pure tension in the i th coordinate direction. The shear modulus Gi 
is the ratio of  shear stress to shear strain when the body is in a state of pure shear 
orthogonal to the i th coordinate direction. The Poisson ratio v~j is the ratio of  com- 
pression in the i th direction to extension in t h e f  h direction for a material in a state 
of  pure tension in the flh direction. 

The condition that the compliance tensor be positive semidefinite implies 
that E~ > 0 and G; > 0. It  is a priori possible that one of  these quantities is 
infinite, but in that case it is easy to see that the material admits a singlar constraint. 
Henceforth we assume that the Young's moduli and shear moduli are positive finite 
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real numbers. It is rare, though apparently possible, for some of the Poisson ratios 
to be negative [9]. 

Noting that sign (*'jk)= sign (*'kJ), we introduce the symmetrized Poisson 
ratios 

*'i = sign (*'yk) ]/*'jkVkj 

where (j, k} = {1, 2, 3} \ {i}. Setting 

E]-112 

~ 
and 

0o) 
E2-- 1/2 

0 E31/2 

M = --*'3 1 -- I , 

--*'2 --Vl 

we have B = DMD. Thus the compliance tensor is positive semidefinite if and 
only if M is. Since the diagonal elements of M are positive, this holds if and 
only if the principal minors and the determinant of M are nonnegative, i.e., if 
and only if 

1 - -  ,,2 ~ 0,  i = 1, 2, 3 ,  (4 .1)  
and 

1 -- v~ z -- v~ -- ~3: -- 2v~*'2v3 ~ O. (4.2) 

Fig. 4.1. The solid P of admissible Poisson ratios 

The region P Q R described by these inequalities is a compact convex set 
which may be described as a solid curvilinear tetrahedron. Its vertices are the 
points (--1, 1, 1) t, (1,--1,  1) t, (1, 1,--1)  t, and ( - -1 , - -1 , - -1) t ,  which are the 
only singular points of 8P. The six line segments connecting these points form 
the 1-skeleton of a 3-simplex. This skeleton, which we denote by K, is entirely 
contained in 8P and decomposes it into four curvilinear triangles in ~ with 
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straight edges. These triangles are joined along their edges in a manner yielding 
a surface which is smooth except at the vertices. (See Figure 4.1.) To verify these 
assertions we note that for 

1, f*'21 ~ 1 (4 .3 )  

(4.2) may be solved for *'3 to give 

- - v , v 2  - -  ] /(1 - -  *'2) (1 - -  *'2) ~ *'3 ~ --*',v2 + I/(1 - -  v2) (1 - -  *'2). ( 4 .4 )  

Moreover (4.3) and (4.4) together imply that 1.'3 ] ~ 1. Thus the systems (4.1-4.2) 
and (4.3-4.4) are equivalent. It is then easy to give parametric representations 
of  the four curvilinear triangles forming ~P. They are 

*'3 = -* ' ,* '2  + I / (1  - (1 - *'2), 

*'3 = --~'IV2 -[- I/( 1 --  ,,2) (1 -- *'2), 

*'3 = - - ' P , ' P 2  - -  ]/(1 -- *'2) (1 -- v2), 

*'3 = --*',*'2 - -  ~/(1 - -  ~ )  (1 - -  v2), 

*'1 ~ --1,*'2 => --1,*'t + * ' 2 ~  O, 

vl ~ 1,*'2 ~ 1, vl +* '2>=0,  

vl ~ 1,*'2 ~ --1,*'l -- *'2 ~ O, 

One easily verifies that a point *" = (*'t, v2, v3)tE P lies on ~P if and only if 
det M = 1 --  * ' 2  *'2 _ *'2 _ 2.'1.'2.'3 = 0. Consequently if the vector of  Poisson 
ratios of  an orthotropic material lies in the interior of  P, the material is uncon- 
strained, while if it lies on the boundary the material is constrained. We now 
that if v E ~P \ K then the constraint is nonsingular, but if ~ E K the material 
admits a singular constraint. First suppose that r E K. Without loss of  generality 
we may suppose that *" lies on the line segment joining (--1,  1, 1) t and (1, --1, 1) t. 
Then *'3 = i and *'2 = - - * ' 1  SO 

M =  1 - - t  �9 

In view of  the form of  the compliance tensor, we conclude that 

Ell2 

0 

is a constraint tensor, which is manifestly singular. 
Next suppose that ~ E ~P \ K. We show that any nontrivial nullvector of  

M must then have all nonvanishing components. Indeed if z denotes such a null- 
vector and z3, for example, were to vanish, then (zj,  z2) t would be a nontrivial 
nullvector of  the matrix 

(13 
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and consequently v3 = ~ 1. From (4.2) it then follows that vx -4- v2 = 0, whence 
v E K, a contradiction. Again recaUing the form of the compliance tensor for 
an orthotropic material, we deduce that when v E 8P \ K the only constraint ten- 
sors are diagonal tensors with nonzero diagonal elements, which are nonsingular. 

We are now in a position to invoke Theorem 1.1, with the following conclusion. 

Theorem 4.1. Let the elastic moduli of  an orthotropic material satisfy 

(Et, E2, E3, Gt., G2, G3,191, V2, ~'3) E (0, 00) 6 X (P \ K) .  

Then the boundary value problem (1.1)-(1.3) is well-posed(in the sense of  Theorem 1.1). 
the solution depending continuously on the load, boundary data, and elastic moduli. 
The a priori estimate (1.5) holds with constant C uniform for elastic moduli in any 
compact subset of  (0, ~ ) 6  • (p \ K). 

We first presented this result in [3] under the additional assumption that the 
Poisson ratios are nonnegative. 

5. Pure Traction and Pure Displacement Boundary Conditions 

In this section we briefly indicate the changes necessary to analyze the elasticity 
system (1.1), (1.2) when the mixed boundary conditions (1.3) are replaced by 
either the displacement boundary condition 

u -=-- g on / '  : 0~ ,  (5.1) 

or the traction boundary condition 

an : g on / ' .  (5.2) 

The latter case is entirely straightforward and we dispose of it immediately. A 
necessary and sufficient condition for the existence of a solution is the compatibility 
condition 

f g.  e ds = f .f. dx_ for all v E RM,  (5.3) 
F ~2 

where 

R M  : {v E Lz(I2) : v : c -Jr- Qx, c E R,  Q E R a x3, Q = _Qt} 

is the space of rigid motions. When (5.3) holds, the solution is determined up 
to the addition of a rigid motion, and uniqueness may be obtained by requiring 
that u belong to H~_(12), the orthogonal complement of R M in Ha(Q). The ana- 
logue of Theorem 1.1 for the traction problem thus applies to data (f, g)E L2(,Q) 
• satisfying (5.3) and asserts existence and uniqueness of a solution in 

x 
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To prove the theorem, we consider a weak formulation of  the traction problem 
which seeks ~ E L2(-Q), u E H~_(~2) such that 

a(~, ~) + b(r, u) = 0 for all ~ E L2(,~), 

b(~,v)=jf, vdx-- rfg'vds for all vE HJ_(g2). 

Note that the latter equation actually holds for all v E Ha(O) when the compa- 
tibility condition (5.3) is satisfied, so this weak formulation is justified. Proceeding 
as in Section 3, we may apply BREZZI'S theorem to the analysis of  this formulation 
to obtain the theorem. 

The case of  displacement boundary conditions is considerably more complicated 
due to the existence of  a compatibility condition only for constrained materials, 
the condition depending, moreover, on the compliance tensor. From (1.1), (5.1) 
and the fact that the material is homogeneous (specifically that q~ = at(A ) is 

independent of  x E g2), we see that 

a t  f ~ : ~ t a x =  f~:A~_~dx 
D D 

= f A~ : ~, dx = f f(u) : ~ dx (5.4) 
.Q .Q - 

= -  + f .  nas: Sg.g,nas.  
~2 1" 11 

When A is singular, ;t~ = 0, implying the necessary condition 

fg .a~(a)  nds = 0. (5.5) 

When (5.5) does hold, uniqueness fails in that (0, ?'t(A)) satisfies the homogeneous 
system. Uniqueness is restored by adding the side condition 

f ~ :  _~t(a) d x = 0. �9 (5.6) 
D 

Note that for At ~ 0, (5.6) follows from (5.5) by (5.4). 
We remark that for the constraint of  incompressibility, at  is the identity tensor. 

In this case the compatibility condition (5.5) reduces to 

f g.nas=o 
r ,  

and the side condition (5.6) to 

f tr (~) dx = O. 
D 

We now establish existence, uniqueness, and an a priori estimate for the dis- 
placement boundary value problem (assuming that the compliance tensor does 
not admit any singular constraints). For a weak formulation of  the problem, we 
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define the space 

The proof  of  the following lemma, which differs only slightly from that of  Lem- 
ma 3.1, will be discussed at the end of  the section. 

Lemma 5.1. Let GE IV*, FE H o(f2) . Then there is a unique pair (~, z) E Wa • H~(O) 

such that 

a(~, ~) -b b(~, z) = (G, ~) for all =~ E Wa, (5.7) 

b(~, v) = (F, v) for all v E Ho~ff2). 

Moreover, 

I[~1[0 + Ilzlh ~ C(llqllw~_ • + IIFIl-l,0), 

where C depends only on $-2, an upper bound for  I A 1, and a lower bound for  z(A).  

Note that if 

(G, a~(A)) = 0, (5.8) 

which will be the case for a Dirichlet problem with compatible data, then the solu- 
tion of  (5.7) satisfies the first equation also for ~ = _a.L(A) and hence for all 

E L2(f2), not just r E Wa. Therefore (5.7) is a valid weak formulation of  the 

Dirichlet problem. 
Now suppose that the displacement boundary data g satisfies (5.5). Then 

the solution to the boundary value problem (1.1), (1.2), (5.1) may be written 
as (if, u 1 + u2), where u 1 = 8(g) with ~ :/_/1/2(/~)__~/_/1(O ) a bounded ex- 

tension operator, and the pair (q, u 2) satisfies (5.7) with (F, v)---- f f"  v dx, 
f /  ~ 

(G, ~ ) = - - b ( ~ ,  ul). The compatibility condition (5.5)ensures (5.8), and so 

Lemma 5.1 implies first, that the displacement problem admits a unique solution 
(if, u), and second, that 

II~llo + II_ulll =< C(ll.fll-,,0 + I_gh:2) (5.9) 

with C depending only on s I A [, and z(A). 
If the displacement boundary data violate (5.5), then both these conclusions 

are false. Existence and uniqueness do not hold for a constrained material. Even 
for an unconstrained material the a priori estimate (5.9) does not hold uniformly. 
More precisely, f _a : a~(A) dx cannot be bounded independently of  the material 

O ~ 

constants. However we can derive a uniform a priori bound on u and on the ortho- 
gonal projection b of ~ on the complement of  the one-dimensional space spanned 
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by fit = _a~(A). To this end we decompose the solution as 

where 

+ 

b = O~d,h, h = off,x, 0 = f g .  ~_~ n ds/measure (12). 

Then b_ is indeed the projection of a orthogonal to _o'1, as follows from (5.4), and 
the pair (~, _fi) solves the boundary value problem 

~ 

A3" = e@) in $2, 

d i v b = f  in ,(2, 

~t = g -- Oatx on 8-Q. 

The boundary data for this problem is compatible since 

f a l x  .aL nds  = f e(o'Lx ) : fft.dx : f [o't [ 2 dx ----- measure (.Q). 
/ "  ~ . Q  ~ ~ O 

Thus Lemma 5.1 implies 

I[bll0 + Ilhlh ~ c(llfll-~,o + Ig - 0o'lxlm) ~ C([]fll-L0 + Igl,12). 
~ 

Clearly also H_~lh =< C ]ghz=, so 

i[b_l[o + Ilu[h =< C(llfl[-~,o + ]gh/~), 
- ~ 

which gives the desired a priori bound. 
Finally we consider the continuous dependence of the solution on the elastic 

moduli. Thus we fix a value ASof the compliance tensor and da t a fand  ~, and denote 
by (~, if) the corresponding solution. One might hope to show t h a t i f  (A , f ,  g) is 

~ 

sufficiently close to (A,f ,~) ,  then the solution (a, u) determined by (A,f,  g) is 
~ - ~ 

arbitrarily near (_~, ~), i.e., that 

lim_ __ (q, u) = (~, ~) in L2(s • Hi( t )) .  (5.10) 
( A s  ~ - - -  

Of course we assume that neither compliance tensor A nor A admits a singular 
constraint. Moreover we may assume that the limiting material is constrained, 
i.e., that A is singular, since otherwise the result is obvious. Now for A singular 
we must suppose that 

f ~ .  ~ n ds = O, (5.11) 
F 

(where ~ = at(.4)) in order that the solution (~, _~) exist and (5.10) make sense. 
This condition is not, however, sufficient to make sense of (5.10), since even if 
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(5.11) holds there may exist singular tensors A arbitrarily nea r /1  for which g is 

not compatible and hence for which (tr, u) is undefined. We may circumvent this 

difficulty in two ways. First, we may consider the special case g = 0. In this case 

there is no problem of incompatibility and (5.10) follows from~(5.9) by a straight- 
forward argument. Second, to derive a result valid for nonzero ~ satisfying (5.11), 

we consider the singular compliance tensor 71 as the limit of positive definite 
tensors A, i.e., we restrict A in (5.10) to be nonsingular. Even with this restriction, 
however, it is not hard to see that (5.10) is not valid, as ~ may have a component 

in the direction of O'L(A ) which becomes unbounded as A tends to 71. However 
we shall show that 

lim (ll~ - =~llpc~)/~,~a) + Ilu - ~111) = 0 (5.12) 

with the quotient seminorm in (5.12) defined by 

[1 q [[L2(a)/,,(A) = inf II e + c~_da)II-(o), 

and the limit taken as (A,f,  g) tends to ( A , f ,  ~) with A nonsingular. (This semi- 
norm depends on A, but for all A exceeds the quotient seminorm on L2(.Q) induced 

by the six-dimensional subspace of constant tensors.) 
To prove (5.12) we note that 

a(a --  b, z) + b(T, u -- Ft) = f (71-- a )  5 : T dx for all zE WA, 
~ - 1 - 2  

b(g -- ~, v) = f ( f - -  iT). _v d_x for all _v E Hol(g2). 

Now let ~ denote the projection of a -  ~ on the orthogonal complement of 
. T  . 7  

_al(A ) in L2(12), and let z = u -- ~ -- ~(g -- ~). Then (~, z) E WA x Hol(Y2) and 

a(_~, ~) + b(_v_, z) = f (71 - A) _~ : ~ dx --  b(r, _g(g --  g)) for all _~ E Wa, 
~ 1 2  

b(o, v_) = f ( f  - -  f ) .  v. dx for all _v E _Hot(/2). 
..% . Q  ~ - 

By Lemma 5.1 

Further, 

Ilello q-I1.=11, ~ C(IA -- a l  I1~'11o + II~(_g- ~)lh + II./-~1-,,o) 

C(IA  - AI q - I g  - -  Kl,/2,r + I l l -  J~l-, ,o).  

I1_. - ~lh =< II_=lh + c Ig - ~1,2,~ 
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and 

I1_  - = l ie Iio, 

and so (5.12) is established. 
We close this section with a brief discussion of the proof of Lemma 5.1. It 

follows the proof of Lemma 3.1 very closely and differs significantly in only one 
point. In the statement of Lemma 3.2, which was used in the proof of Lemma 3.1, 
we must of course replace the space H~(~Q) with/-/01(.Q). We must also replace the 

with ~lrE L2(~2) : f r: ,~. dx = 01. Onlywhen �9 lies in this space does space 

the differential equation 

div p = r : q~ 
~ ~ 

have a solution in HoI(Q), which enables the proof of Lemma 3.2 to be carried 
out as before. The additional hypothesis that ~ be orthogonal to q~ causes no 

problem, since in the application to the proof of Lemma 5.1 this hypothesis 
follows from the membership of ~ in WA. 

6. Necessity of the Nonsingularity Condition 

In this section, we show that if the compliance tensor does admit a singular 
constraint, then the elasticity problem is very ill posed for a large class of boundary 
value problems. Indeed, for these problems, no solution exists unless the displace- 
ment boundary data satisfies an infinite number of linearly independent constraints. 
Further, the homogeneous problem admits an infinite-dimensional space of solu- 
tions. , 

I f  the compliance tensor admits a singular constraint, then there exists 0 4= ffl 
~ 

E lq,, 0 =~ m E R such that Acq ---- 0, arm = 0. We suppose that there exists a 

nonempty i n t e r v a l  I s u c h  t h a t  t h e  c r o s s - s e c t i o n  /*(q) = ~x  E -/~ ] x ~ m = q )  i s  

contained i n / ' t  for all q E L This hypothesis excludes the pure traction problem, 
but permits the displacement problem and a wide variety of mixed boundary 
value problems as well. First we note that the problem (1.1)-(1.3) does riot admit 
a solution unless the Dirichlet data g~ satisfy the linear constraint 

f g , ' f f ,  n ds 
L / r ( q )  " 

q E J  

----0 

for all subintervals J of I. This follows from the equation e(u) : q~ = 0 (itself a 
~ 

consequence of  (1.1)), by integrating over {_x E O [ x -  m E J). Also, associated 
to any J, there is a solution to the homogeneous boundary value problem given 
by u ~ 0 and ~(x) = ~1 if x -  m E J, o'(x) = 0 otherwise. (Although tr is dis- 
continuous, it is easy to verify that div tr ---- 0 in the sense of distributions, since 

am ---- 0.) 
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7. Eilipticity 

The system (1.1), (1.2) of  anisotropic elasticity is elliptic in the sense of  AG- 
MON, DOUGLIS & NIRENBERG [1] when the compliance tensor is positive definite. 
In this section we show that ellipticity of  the system holds for precisely those 
materials admitting no nonsingular constraints, and, more importantly, that the 
ellipticity is uniform with respect to the compliances in the sense that the symbolic 
determinant whose nonvanishing defines ellipticity may be bounded above and 
below by positive constants depending only on an upper bound for the complian- 
ces and a lower bound for z(A). This implies (among other things) uniform interior 
regularity estimates on the solution of  the equations [7]. 

For the verification of ellipticity we define, for any 3-vector 0, the operator 
E(O) : R ---> R by 

E(0) v = �89 (Od + ~Ot), ~ E R .  

The adjoint operator E(0)t: R -+ R is given by 

E(0)' T : T0, v E 1%. 
~ - ~  ~ 

and E(V) 'a  : diva, so we may write the system (1.1), 
- 

Then E(V) tj = _e(,_t) 
(1.2) as 

where 

.Lf(V) (a,, u_) = (0,.f) 
. 

~(_o) (r,  _v) = (a_~ - -  e(o)_v, E(_O)'_~) for all z E R ,  v, O E R .  

To speak of  ellipticity we must identify the principal part of  the differential opera- 
tor Aa(V). This is done in [1] and [7] by the assignment of weights si 
and tj to the i th equation and j th  unknown respectively. Without introducing an 
arbitrary numbering of the equations and unknowns, we associate weight 0 with 
the six scalar stress unknowns and the six scalar equations given by (1.1), and weight 
1 with the three scalar displacement unknowns and the three equations given by 
(1.2). It is then easily seen that La(V) coincides with its principal part. Therefore 
the system of anisotropic elasticity is elliptic if and only if det [s is nonzero 
for all nonzero 0. (A ~ is a linear operator on the nine-dimensional space R • R,  
so we may speak of its determinant.) Now if the material admits a singular 
constraint, then we have at # 0, s # 0 with Aq t  = 0, o'ls = 0. It follows that 
Aa(s) (q~, 0 ) =  0 so det [if(s)] = 0, and the elasticity system is not elliptic. 
The following theorem establishes the uniform ellipticity of  the system if the 
material admits no singular constraints. 

Theorem7.1. Suppose that the material admits no singular constraints. Then 
there is a positive constant t3 depending only on an upper bound for A and a lower 
bound for z(A) such that 

fl[0t2 ~ det [~(_0)] < f i  -1 1012 for all 0 E E .  (7.1) 
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Proof. Since det [~(_0)] is a homogeneous polynomial of  degree 2 in 0, (7.1) is 
equivalent to the condition 

fl ~ det [La(0)] ~ fl-1 for all unit vectors 0 E R .  

The asserted upper bound is obvious, and we discuss only the lower bound. We shall 
show that La(0) is invertible and bound the spectral norm IILe(_0) - a  II by a constant 
C depending only on I A I and z(A). This will imply that the eigenvalues of  La(_0) 
are all bounded below by 1/C, so that det [La(0)] ~ 1/C 9 a s  desired. 

To prove the invertibility of  Z,e(0) and establish the uniform bound on ,La(O)-l, 
we apply BREZZI'S theorem (Theorem 2.1) to the finite dimensional problem: 

Given (G, F) E R • R, find (a, u) E R • g such that 

Aa:~ ' - -  u .zO = G . r  for all r 6 R  

and 

a 0 . v - - - - F . v  for all v E R .  

It is easily verified that ~ ,  u) solves this problem if and only if 

~e(0) (4, u) = (G, F). 

Thus we must prove that this problem has a unique solution (q, u) and that 

l~l +[.ul _-< c( l~l  + I l l ) .  

By BREZZI'S theorem, it suffices to show that 

A z : v ~ y l ? ]  2 for all z E R  

and 

there exists y > 0 such that 

satisfying ~0 = 0, (7.2) 

30 �9 v 
inf sup =- - > y  

~ ~ ,T. ~ - 

(7.3) 

The proof  of  (7.3) is direct. If  =x = I/'3UtR(Uv_) U, where U is an orthogonal 

matrix chosen so that 
diagR(z)----z, then I T ] ~ C [ v  I and z 0 = v .  

To prove (7.2) we decompose ~E R as 

Then (cf  (3.6)) 

Now 

and by hypothesis, 

I/3"U0 ----- (1, 1, 1) t and R(z) is a diagonal matrix with 

. , q  

_~n + _~r with _~r = (_~ : gJ) 41- 
~ ~ . . . . . . . . . . . . . . . .  

A'r : "r ~> max (2j IT[2, 22 lynl2). (7.4) 

=~o. 7g~o - (=~: ~,) ~=,o �9 ~i-'o = ~: ~ 

~DO = (~ - Tr) 0 = - r  
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Therefore, 

t~r[ = 1_ r : qx I = [xoO. qi-'O_ [ <= Iffi-t [ [TDI. (7.5) 

Combining (7.4) and (7.5) with the identity Ir l  2 = I r r l  + Irt)l gives (7.2). 
~ 

8. The Displacement--Pressure Formulation of Anisotropic Elasticity 

The system (1.1), (1.2) of  three-dimensional elasticity involves nine independent 
scalar unknowns. This number is often considered too great for computational 
purposes, and other formulations are preferred. When the compliance tensor is 
invertible, the simplest possibility is to solve (1.1) for a and substitute in (1.2) to 
obtain the displacement equations of  elasticity, which involve only the three 
displacements as unknowns. However, when the compliance tensor is singular 
this procedure is not possible, and when it is nearly singular it is often not ad- 
visable. For isotropic materials, incompressible or not, another formulation 
is widely used. This formulation involves only the displacement and one stress 
quantity (a pressure) as unknowns, and in the incompressible limit reduces to the 
Stokes equations. Here we introduce art analogous formulation valid for any 
anisotropic material, constrained or not, as long as the nullspace of  the compliance 
tensor has dimension less than two (in particular if the material admits no singular 
constraints). 

In the case of  orthotropic elasticity, KEY [12] and TAYLOR, PFISTER &, HERR- 
MANN [22] have derived related formulations, extending work of  HERRMANN 
[10] for isotropic elasticity. DEBOGNm [6] used a similar formulation to study 
incompressible anisotropic materials. 

Our derivation is based on the decomposition of R into the one-dimensional 

subspace spanned by ~i = a~(A) and its orthogonal complement 

Y =  {I'E R : z : q l  = 0}. 

Clearly, A maps Y into itself and, since 22 > 0, the restriction Air  is positive 

definite. Define A+ : R -+ R by 

A+T = (A[r) -1 z for all TE Y, 

A+ff~ = O. 

Again decomposing 
= pa_l + _~o, 

with p = a:-at  and at)E _Y, we deduce from (1.1) that 

~(u) = A-a = 2Lp-at + Aat ) .  

Applying A + to this equation we get 

A+e(u) = at) 

(8.1) 

(8.2) 
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so (8.1) becomes 

q = A+e(u) + pq~. 

Inserting into (1.2) and noting that div (pat) : ffl grad p yields 

div A + e(u) + a t grad p : f .  (8.3) 

Next, taking the inner product of (8.2) with ~t and noting that e(u) :at---- div (~u)  

we get 

div (qtu) -- ~-LP = 0. (8.4) 

Equations (8.3) and (8.4) give the desired formulation. 
For a two-dimensional constrained anisotropic material it is possible to reduce 

the elastic system further, to a fourth-order elliptic equation for a single scalar 
unknown. In the incompressible isotropic case this is the biharmonic equation. 
Define 

[ 
rot qb ---- \-Ocb/Oxl] ' curl ~/3 : --O~t)l . / t~X2 "-~ O~I32/~XL, 

(where now ~v : (~p~, ~v2) t is a 2 vector). Multiply the analogue of (8.3) for two- 

dimensional elasticity by a1-1 and take the curl to get 

curl [_ai -l div_ A+e(u)] = curl ql-l~f. (8.5) 

Now in the two-dimensional constrained case div (fflu) = 0 (cf  (8.4)), so u : 

-ai -1 rot qb for some scalar function q~. Substituting in (8.5) gives the self-adjoint 
~ 

fourth-order differential equation 

curl [-ai -~ div_ A+e(ai -1 rot qb)] = curl o'1-1 f .  

Using the identity 

a, : e(ai -1 rot q~) = div rot q~ = 0, 
~ ~ ~ 

we easily verify that this defines a coercive variational problem on H02(f2). 

9. Plane Elasticity 

The results of the previous sections adapt to elasticity in R 2 with one difference. 
By the method of proof of Section 3, it can be shown that if 0 is not a double eigen- 
value of  the compliance tensor (now a semidefinite operator on the space of 2 • 2 
symmetric matrices) and if there is no nonzero singular nulltensor, then the fun- 
damental boundary value problems are well-posed and the constants in the a 
priori estimates depend on 

z(A) = max [21(A), 22(A)/I ~I(A) -112] 
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as before. However, in the two-dimensional case it is possible for the compliance 
tensor to admit zero as a double eigenvalue without admitting a singular constraint. 
(This was ruled out in the three-dimensional case in Section 2.) That  is, we may 
have z (A)  = 0 even though the material does not admit a singular constraint. 
We regard this as a pathological case. An example (which is essentially canonical) 
is given by the compliance tensor 

AT = tr (+) 8. 

I t  is easily verified that the homogeneous Dirichlet problem 

A=r = ~(u) in g2, 

div 1: = 0 in .Q, 

u = O  on F = O Y 2 ,  

( ~  C 1%2) admits an infinite dimensional solution space, namely 

1 ~2dp/~y2 --6O2dp/6OX ey~ 
u = O, ~z = \-02~b/Ox Oy 02rb/Ox 2 ] '  

(9.1) 

(9.2) 

where 4~ is any harmonic function on Q. It  is interesting to note that the differen- 
tial equations (9.1), (9.2) form an elliptic system in the sense of  A~MON, DOUGLIS, 

NIRENBERG, even though the Dirichlet problem is not a Fredholm problem. 
In fact, the result of  Section 7 which states that the system of  elasticity is elliptic 
if and only if the compliance tensor admits no singular constraint holds also in 
two dimensions, although the proof  must be modified. 
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