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1. Introduction

The equations of linear elasticity can be written as a system of equations of the form

(1.1) Aσ = εu, div σ = f in Ω.

Here the unknowns σ and u denote the stress and displacement fields caused by a body
force f acting on a linearly elastic body which occupies a region Ω ⊂ Rn, with boundary
∂Ω. Then σ takes values in the space S = Rn×n

sym of symmetric n × n matrices and u takes
values in V = Rn. The differential operator ε is the symmetric part of the gradient, (i.e.,
(εu)ij = (∂ui/∂xj +∂uj/∂xi)/2), div denotes the divergence operator, applied row-wise, and
the compliance tensor A = A(x) : S → S is a bounded and symmetric, uniformly positive
definite operator reflecting the properties of the material at each point. In the isotropic case,
the mapping σ 7→ Aσ has the form

Aσ =
1

2µ

(
σ − λ

2µ+ nλ
tr(σ)I

)
,

where λ(x), µ(x) are positive scalar coefficients, the Lamé coefficients, and tr denotes the
trace. If the body is clamped on the boundary ∂Ω, then the proper boundary condition for
the system (1.1) is u = 0 on ∂Ω. For simplicity, this boundary condition will be assumed
throughout the discussion here. However, there are issues that arise when other boundary
conditions are assumed (e.g.,, traction boundary conditions σn = 0). The modifications
needed to deal with such boundary conditions are discussed in detail in [9].

In the case when A is invertible, i.e., σ = A−1εu = Cεu, then for isotropic elasticity,

Cτ = 2µ(τ + λ tr τI).

We may then formulate the elasticity system weakly in the form: Find σ ∈ L2(Ω,S), u ∈
H̊1(Ω;V) such that∫

Ω

σ : τ dx−
∫

Ω

Cεu : τ dx = 0, τ ∈ L2(Ω, S),

∫
Ω

σ : εv dx =

∫
Ω

f · v dx, v ∈ H̊1(Ω;V),

where σ : τ =
∑n

i,j=1 σijτij. Note that in this case, we may eliminate σ completely to obtain

the pure displacement formulation: Find u ∈ H̊1(Ω;V) such that∫
Ω

Cεu : εv dx =

∫
Ω

f · v dx, v ∈ H̊1(Ω;V).
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As the material becomes incompressible, i.e., λ → ∞, this will not be a good formulation,
since the operator norm of C is also approaching infinity. Instead, we can consider a formu-
lation involving u and a new variable p = (λ/[2µ+nλ]) trσ. Taking the trace of the equation
Aσ = εu, we find that div u = λ−1p. Then we may write

σ = 2µεu+ pI,

and thus obtain the variational formulation: Find u ∈ H̊1(Ω;V), p ∈ L2
0(Ω) = {p ∈ L2(Ω) :∫

Ω
p dx = 0}, such that∫

Ω

2µεu : εv dx+

∫
Ω

p div v dx =

∫
Ω

f · v dx, v ∈ H̊1(Ω;V),∫
Ω

div uq dx =

∫
Ω

λ−1pq dx, q ∈ L2
0(Ω).

This formulation makes sense even for the limit λ→∞ and in that case gives the stationary
Stokes equations. Even in the case of nearly incompressible elasticity, one should apply
methods that are stable for the Stokes equations. Since such methods will be considered
in other lectures, we will not consider them here. Instead, we now turn to other types of
weak formulations involving both σ and u. One of these is to seek σ ∈ H(div,Ω;S), the
space of square-integrable symmetric matrix fields with square-integrable divergence, and
u ∈ L2(Ω;V), satisfying
(1.2)∫

Ω

(Aσ : τ + div τ · u) dx = 0, τ ∈ H(div,Ω;S),

∫
Ω

div σ · v dx =

∫
Ω

f · v dx, v ∈ L2(Ω;V).

A second weak formulation, that enforces the symmetry weakly, seeks σ ∈ H(div,Ω;M),
u ∈ L2(Ω;V), and p ∈ L2(Ω;K) satisfying∫

Ω

(Aσ : τ + div τ · u+ τ : p) dx = 0, τ ∈ H(div,Ω;M),(1.3) ∫
Ω

div σ · v dx =

∫
Ω

f · v dx, v ∈ L2(Ω;V),

∫
Ω

σ : q dx = 0, q ∈ L2(Ω;K),

where M is the space of n × n matrices, K the subspace of skew-symmetric matrices, and
the compliance tensor A(x) is now considered as a symmetric and positive definite operator
mapping M into M.

Stable finite element discretizations with reasonable computational complexity based on
the variational formulation (1.2) have proved very difficult to construct. One successful
approach has been to use composite elements, in which the approximate displacement space
consists of piecewise polynomials with respect to one triangulation of the domain, while the
approximate stress space consists of piecewise polynomials with respect to a different, more
refined, triangulation [22, 30, 24, 4]. In two space dimensions, the first stable finite elements
with polynomial shape functions were presented in [10]. The simplest and lowest order spaces
in the family of spaces constructed consist of discontinuous piecewise linear vector vector
fields for displacements and a stress space which is locally the span of piecewise quadratic
matrix fields and the cubic matrix fields that are divergence-free. Hence, it takes 24 stress and
six displacement degrees of freedom to determine an element on a given triangle. A simpler
first-order element pair with 21 stress and three displacement degrees of freedom per triangle
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is also constructed in [10]. All of these elements require vertex degrees of freedom. To obtain
simpler elements, the same authors also considered non-conforming elements in [12]. One
element constructed there approximates the stress by a conforming piecewise quadratic with
15 degrees of freedom and approximates the displacement field by discontinuous linear vectors
(6 local degrees of freedom). A second element reduces the number of degrees of freedom to
12 and 3, respectively. See also [11] for an overview. In three dimensions, a piecewise quartic
stress space is constructed with 162 degrees of freedom on each tetrahedron in [1].

Because of the lack of suitable mixed elasticity elements that strongly impose the symmetry
of the stresses, a number of authors have developed approximation schemes based on the weak
symmetry formulation (1.3): see [22], [2], [3], [28], [29], [27], [5], [25], [26], [21]. Although
(1.2) and (1.3) are equivalent on the continuous level, an approximation scheme based on
(1.3) may not produce a symmetric approximation to the stress tensor, depending on the
choices of finite element spaces.

These notes will mainly concentrate on the development and analysis of finite element
approximations of the equations of linear elasticity based on the mixed formulation (1.3)
with weak symmetry. Using a generalization of an approach first developed in [8] in two
dimensions and [6] in three dimensions, and then expanded further in [9], we establish
a systematic way to obtain stable finite element approximation schemes. The families of
methods developed in [8] and [6] are the prototype examples and we show that they satisfy
the conditions we develop for stability. However, the somewhat more general approach we
present here allows us to analyze some of the previously proposed schemes discussed above
in the same systematic manner and also leads to a new scheme. Before considering weakly
symmetric schemes, we first discuss some methods based on the strong symmetry formulation
(1.2).

2. Finite element methods with strong symmetry

In this section, we consider finite element methods based on the variational formulation
(1.1). Thus, we let Σh ⊂ H(div,Ω;S) and V h ⊂ L2(Ω;V) and seek σh ∈ Σh and uh ∈ V h

satisfying

(2.1)

∫
Ω

(Aσh : τ + div τ · uh) dx = 0, τ ∈ Σh,

∫
Ω

div σh · v dx =

∫
Ω

f · v dx, v ∈ V h.

This is in a form to which one may apply the standard analysis of mixed finite element
theory (e.g., [14, 15, 20, 18]. We note that in the case of isotropic elasticity, if we write
σ = σD + (1/n) trσI, where trσD = 0, then ‖σ‖2

0 = ‖σD‖2
0 + (1/n)‖ trσ‖2

0 and so∫
Ω

Aσ : σ dx =

∫
Ω

[
1

2µ
σD : σD +

1

2µ+ nλ
(trσ)2

]
dx.

Thus, this form is not uniformly coercive as λ→∞. However, for all σ satisfying

(2.2)

∫
Ω

trσ dx = 0, div σ = 0,

one can show (cf. [15]) that ‖ trσ‖0 ≤ C‖σD‖0, and hence (Aσ, σ) ≥ α‖σ‖2
H(div) for all σ

satisfying (2.2), with α independent of λ. This is what is needed to satisfy the first Brezzi
condition with a constant independent of λ. A simple result of mixed finite element theory
that fits the methods that we will consider here is the following.
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Theorem 2.1. Suppose that for every τ ∈H1(Ω), there exists Πhτ ∈ Σh satisfying∫
Ω

div(τ − Πhτ) · v dx = 0, v ∈ V h, ‖Πhτ‖H(div) ≤ C‖τ‖H(div).

Further suppose that for all τ ∈ Σh satisfying
∫

Ω
div τ · v dx = 0, v ∈ V h, that div τ = 0.

Then for all vh ∈ V h,

‖σ − σh‖0 ≤ C‖σ − Πhσ‖0, ‖u− uh‖0 ≤ C(‖u− vh‖0 + ‖σ − σh‖0).

To describe some finite element methods based on the strong symmetry formulation, we
let Pk(X, Y ) denote the space of polynomial functions on X of degree at most k and taking
values in Y .

2.1. Composite elements. One of the first methods based on the symmetric formulation
was the method of [30] analyzed in [24]. We describe below only the triangular element (there
was also a similar quadrilateral element). The basic idea is to approximate the stresses by a
composite finite element. Starting from a mesh Th of triangles, one connects the barycenter of
each triangle K to the three vertices to form a composite element made up of three triangles,
i.e., K = T1 ∪ T2 ∪ T3. We then define

Σh = {τ ∈ H(div,Ω;S) : τ |Ti ∈ P1(Ti,S)},
V h = {v ∈ L2(Ω) : v|K ∈ P1(K,R2}.

Composite
Element r r

r
r










J
J
J
J

�
��

H
HH

Thus the displacements are defined on the coarse mesh Th. By the definition of Σh|K , we
start from a space of 27 degrees of freedom, on which we impose at most 12 constraints that
require that τn be continuous across each of the three internal edges of K. In fact, these
constraints are all independent. Then, a key point is to show that on each K, τ is uniquely
determined by the following 15 degrees of freedom (i) the values of τ ·n at two points on each
edge of K and (ii)

∫
K
τij dx, i, j = 1, 2. It is then easy to check that if

∫
K

div τ · v dx = 0 for
v ∈ P1(K,R2), then div τ = 0. If we define Πh to correspond to the degrees of freedom, then
it is also easy to check that

∫
K

div(τ −Πhτ) · v dx = 0 for v ∈ P1(K,R2). After establishing
the H(div,Ω) norm bound on Πhσ, one easily obtains the error estimates:

‖σ − σh‖0 ≤ Ch2‖σ‖2, ‖u− uh‖0 ≤ Ch2(‖σ‖2 + ‖u‖2).

The use of composite finite elements to approximate the stress tensor was extended to a
family of elements in [4]. For k ≥ 2,

Σh = {τ ∈ H(div,Ω;S) : τ |Ti ∈ Pk(Ti,S)},
V h = {v ∈ L2(Ω) : v|K ∈ Pk−1(K,R2)}.

The space Σh is constructed so that if τ ∈ Σh|K , then τn will be continuous across internal
edges, and in addition div τ ∈ Pk−1(K,R2), i.e., it is a vector polynomial on K, not just on
each of the Ti.
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The degrees of freedom for an element τ ∈ Σh on the triangle K are chosen to be∫
e

(τn) · p ds, p ∈ Pk(e,R2), for each edge e,∫
K

τ : ρ dx, ρ ∈ ε(Pk−1(K,R2)) + airy(λ2
1λ

2
1λ

2
3Pk−4(K,R)),

where the λi are the barycentric coordinates of K and

Jφ ≡ airy φ =

(
∂2φ/∂y2 −∂2φ/∂x∂y
−∂2φ/∂x∂y ∂2φ/∂x2

)
.

One can show that dim Σh|K = (3/2)k2 + (9/2)k + 6. In the lowest order case k = 2, there
are 18 edge degrees of freedom and 3 interior degrees of freedom on each macro-triangle K.
For the general case k ≥ 2, it is shown that

‖u− uh‖0 ≤ Chr‖u‖r, 2 ≤ r ≤ k,

‖σ − σh‖0 ≤ Chr‖u‖r+1, 1 ≤ r ≤ k + 1,

‖ div(σ − σh)‖0 ≤ Chr‖ div σ‖r, 0 ≤ r ≤ k.

2.2. Non-composite elements of Arnold and Winther. We now turn to the more
recent methods that produce approximations to both stresses and displacements that are
polynomial on each triangle T ∈ Th (since there are no macro triangles, we no longer use K
to denote a generic triangle). The approach of [10] is based on the use of discrete differential
complexes. It is noted there that important aspects of the structure of the plane elasticity
system are summarized by the elasticity differential complex:

(2.3) 0→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω,S)
div−→ C∞(Ω,R2)→ 0.

If we assume that Ω is simply-connected, this sequence is exact (i.e., the range of each
map is the kernel of the following one). Thus this sequence encodes the fact that every
smooth vector-field is the divergence of a smooth symmetric matrix-field, that the divergence-
free symmetric matrix-fields are precisely those that can be written as the Airy stress-field
associated to some scalar potential, and that the only potentials for which the corresponding
Airy stress vanishes are the linear polynomials. The result stated above is in terms of smooth
functions, but analogous results hold with less smoothness. For example, the sequence

(2.4) 0→ P1(Ω)
⊂−→ H2(Ω)

J−→ H(div,Ω;S)
div−→ L2(Ω,R2)→ 0

is also exact. The well-posedness of the continuous problem, i.e., that for every f ∈ L2(Ω,R2),
there exists a unique (σ, u) ∈ H(div,Ω;S)×L2(Ω,R2) which is a critical point of (1.1), follows
from this.

Just as there is a close relation between the construction of stable mixed finite element
methods for the approximation of the Laplacian and discrete versions of the de Rham complex

0→ C∞(Ω)
curl−−→ C∞(Ω;R2)

div−→ C∞(Ω)→ 0,

(see [7],[9]), there is also a close relation between mixed finite elements for linear elasticity
and discretization of the elasticity complex, given above.
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The stable pairs of finite element spaces (Σh,V h) introduced in [10] have the property
that div Σh = V h, i.e., the short sequence

(2.5) Σh
div−→ V h → 0

is exact. Moreover, if there are projections Ph : C∞(Ω,R2) 7→ V h and Πh : C∞(Ω,S) 7→ Σh

defined by the degrees of freedom that determine the finite element spaces, it can be shown
that the following diagram commutes:

(2.6)

C∞(Ω,S)
div−−→ C∞(Ω,R2)

Πh

y Ph

y
Σh

div−−→ V h

The stability of the mixed method follows from the exactness of (2.5), the commutativity of
(2.6), and the well-posedness of the continuous problem.

Information about the construction of such finite element spaces can be gained by com-
pleting the sequence (2.5) to a sequence analogous to (2.3). For this purpose, we set
Qh = {q ∈ H2(Ω) : Jq ∈ Σh}. Note Qh is a finite element approximation of H2(Ω).
Moreover, there is a natural interpolation operator Ih : C∞(Ω) 7→ Qh so that the following
diagram with exact rows commutes:

0→ P1(Ω)
⊂−→ C∞(Ω)

J−→ C∞(Ω, S)
div−−→ C∞(Ω,R2)→ 0

id

y Ih

y Πh

y Ph

y
0→ P1(Ω)

⊂−→ Qh
J−→ Σh

div−−→ V h → 0

For a description of this construction, see [10]. As discussed there, under quite general
conditions, the existence of a stable pair of spaces (Σh,V h) approximating H(div,Ω;S) ×
L2(Ω,R2), implies the existence of a finite element approximation Qh of H2(Ω) related to
Σh and V h through the diagram above. The fact that the space Qh requires C1(Ω) finite
elements represents a substantial obstruction to the construction of stable mixed elements,
and in part accounts for their slow development.

The family of elements developed in [10] chooses for k ≥ 1, the local degrees of freedom
for Σh to be

ΣT = Pk+1(T,S) + {τ ∈ Pk+2(T,S) : div τ = 0}
= {τ ∈ Pk+2(T,S) : div τ ∈ Pk(T,R2)}, VT = Pk(T,R2).

Now dimVT = (k + 2)(k + 1) and it is shown in [10] that dim ΣT = (3k2 + 17k + 28)/2
and that a unisolvent set of local degrees of freedom is given by

• the values of 3 components of τ(x) at each vertex x of T (9 degrees of freedom)
• the values of the moments of degree at most k of the two normal components of τ on

each edge e of T (6k + 6 degrees of freedom)
• the value of the moments

∫
T
τ : φ dx, φ ∈ Pk(T,R2) + airy(b2

TPk−2(T,R)).
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For this family of elements, it is shown in [10] that

‖σ − σh‖0 ≤ Chr‖σ‖r, 1 ≤ r ≤ k + 2,

‖ div(σ − σh)‖0 ≤ Chr‖ div σ‖r, 0 ≤ r ≤ k + 1,

‖u− uh‖0 ≤ Chr‖u‖r+1, 1 ≤ r ≤ k + 1.

There is a variant of the lowest degree (k = 1) element involving fewer degrees of freedom.
In this element, one chooses VT to be the space of infinitesimal rigid motions on T , i.e.,
vector functions of the form (a− by, c+ bx). Then ΣT = {τ ∈ P3(T,S) : div τ ∈ VT}.

The element diagram for the choice k = 1 and a simplified element are depicted below.

Figure 1. k = 1 and simplified Arnold-Winther elements

In [12], the authors obtain simpler elements with fewer degrees of freedom, and also avoid
the use of vertex degrees of freedom by developing nonconforming elements. Corresponding
to the choice VT = P1(T,R2), one chooses for the stress shape functions

ΣT = {τ ∈ P2(T,S) : n · τn ∈ P1(e,R), for each edge e of T}.
The space ΣT has dimension 15, with degrees of freedom given by

• the values of the moments of degree 0 and 1 of the two normal components of τ on
each edge e of T (12 degrees of freedom),
• the value of the three components of the moment of degree 0 of τ on T (3 degrees of

freedom).

Note that this element is a nonconforming approximation of H(div,Ω;S), since although
t · τn may be quadratic on an edge, only its two lowest order moments are determined on
each edge. Hence, τn may not be continuous across element boundaries. This space may be
simplified in a manner similar to the lowest order conforming element, i.e., the displacement
space may be chosen to be piecewise rigid motions and the stress space then reduced by
requiring that the divergence be a rigid motion on each triangle. The local dimension of the
resulting space is 12 and the first two moments of the normal traction on each edge form a
unisolvent set of degrees of freedom.

Figure 2. Two nonconforming Arnold-Winther elements

We note that for k = 1, the corresponding space Qh is the Argyris space consisting of
C1 piecewise quintic polynomials. There is also an analogous relationship for the composite



8 RICHARD S. FALK

elements discussed earlier. For the element of [24], the space Qh is the Clough-Tocher
composite H2 element and for the element family of [4], the Qh spaces are the higher order
composite elements of [17].

Figure 3. Qh spaces for k = 1 conforming element, nonconforming element,
and composite element of [24]

The remainder of these notes will be devoted to the development and analysis of mixed
finite element methods based on the formulation (1.3) of the equations of elasticity with weak
symmetry. An important advantage of such an approach is that it allows us to approximate
the stress matrix by two copies of standard finite element approximations of H(div,Ω) used
to discretize scalar second order elliptic problems. In fact, to develop our approximation
schemes for (1.3), we will heavily exploit the many close connections between these two
problems. Although there is some overhead to the development, much of the structure of
these connections is most clearly seen in the language of differential forms. Thus, we devote
the next section to a brief overview of the necessary background material.

3. Exterior calculus on Rn

To simplify matters, we will consider exterior calculus on Rn, and summarize only the
specific results we will need.

3.1. Differential forms. Suppose that Ω is an open subset of Rn. For 0 ≤ k ≤ n, we let
Λk denote the space of smooth differential k-forms of Ω, i.e., Λk = Λk(Ω) = C∞(Ω; Altk V),
where Altk V denotes the vector space of alternating k-linear maps on V. If ω ∈ Λk(Ω),
this means that at each point x ∈ Ω, there is a map ωx ∈ Altk V, i.e, ωx assigns to each
k − tuple of vectors v1, . . . , vk of V, a real number ωx(v1, . . . , vk) with the mapping linear in
each argument and reversing sign when two arguments are interchanged.

A general element of Λk(Ω) may be written

ωx =
∑

1≤σ(1)<···<σ(k)≤n

aσdxσ(1) ∧ · · · ∧ dxσ(k),

where the aσ ∈ C∞(Ω) and dxi(ej) = δij, where ej is the unit vector in Rn whose jth

component is one and for ω ∈ Altj V and η ∈ Altk V , the exterior product or wedge product
ω ∧ η ∈ Altj+k V is bilinear and associative, and satisfies the anti-commutativity condition

η ∧ ω = (−1)jkω ∧ η, ω ∈ Altj V, η ∈ Altk V.

Thus, dxi ∧ dxj = −dxj ∧ dxi and so dxi ∧ dxi = 0.
When n = 2, for k = 0, 1, 2, ω ∈ Λk(Ω) will have the respective forms

w, w1dx1 + w2dx2, wdx1 ∧ dx2.
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Table 1. Correspondence between alternating
algebraic forms on R3 and scalars/vectors

Alt0 R3 = R c↔ c

Alt1 R3
∼=−→ R3 u1 dx1 + u2 dx2 + u3 dx3 ↔ u

Alt2 R3
∼=−→ R3 u3 dx1 ∧ dx2 − u2 dx1 ∧ dx3

+u1 dx2 ∧ dx3 ↔ u

Alt3 R3
∼=−→ R c dx1 ∧ dx2 ∧ dx3 ↔ c

To see the connection between differential forms and scalar and vector-valued functions,
we may identify w ∈ Λ0(Ω) and wdx1 ∧ dx2 ∈ Λ2(Ω) with the function w ∈ C∞(Ω) and
w1dx1 + w2dx2 ∈ Λ1(Ω) with the vector (w1, w2) or the vector (−w2, w1) ∈ C∞(Ω;R2). The
associated fields are called proxy fields for the forms.

When n = 3, for k = 0, 1, 2, 3, ω ∈ Λk(Ω) will have the respective forms

w, w1dx1 +w2dx2 +w3dx3, w1dx2∧dx3−w2dx1∧dx3 +w3dx1∧dx2, wdx1∧dx2∧dx3.

In this case, we may identify w ∈ Λ0(Ω) and wdx1 ∧ dx2 ∧ dx3 ∈ Λ3(Ω) with the function
w ∈ C∞(Ω) and w1dx1 + w2dx2 + w3dx3 or w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2 with
the vector (w1, w2, w3) ∈ C∞(Ω;R2). The correspondences are listed in Table 1.

When n = 2, if η ∈ Λ0(Ω) and ω is defined as above, then ω ∧ η will have the forms

wη, w1ηdx1 + w2ηdx2, wηdx1 ∧ dx2, k = 0, 1, 2,

respectively. If η ∈ Λ1(Ω) = η1dx1 + η2dx2, and ω ∈ Λ1(Ω) = w1dx1 + w2dx2, then from the
bilinearity and antisymmetry, we have

ω∧η = w1η1dx1∧dx1+w1η2dx1∧dx2+w2η1dx2∧dx1+w2η1dx2∧dx2 = (w1η2−w2η1)dx1∧dx2.

When n = 3, if η ∈ Λ0(Ω), then as above, ω ∧ η simply multiplies each of the coefficients
by η. If η ∈ Λ1(Ω) = η1dx1 + η2dx2 + η3dx3, and ω ∈ Λ1(Ω) = w1dx1 + w2dx2 + dx3, then
from the bilinearity and antisymmetry, we have

ω ∧ η = (w1η2 − w2η1)dx1 ∧ dx2 + (w1η3 − w3η1)dx1 ∧ dx3 + (w2η3 − w3η2)dx2 ∧ dx3.

Finally, if η ∈ Λ2(Ω) = η1dx2 ∧ dx3 − η2dx1 ∧ dx3 + η3dx1 ∧ dx2, then

ω ∧ η = (w1η1 + w2η2 + w3η3)dx1 ∧ dx2 ∧ dx3.

One can give a general formula for the wedge product, which we omit here. We also note
that for v, w, z ∈ Rn,

dxi(v) = vi, dxi ∧ dxj(v, w) = viwj − vjwi,
and for n = 3, dx1 ∧ dx2 ∧ dx3(v, w, z) = det(v|w|z).

The volume form is simply dx1 ∧ · · · ∧ dxn. One can also give a general formula for dxσ(1) ∧
· · · ∧ dxσ(k)(v1, . . . , vk), but we will not need it for our presentation. If we allow instead
aσ ∈ Cp(Ω), aσ ∈ L2(Ω), aσ ∈ Hs(Ω), etc., we obtain the spaces CpΛ(Ω), L2Λ(Ω), HsΛ(Ω),
etc. If ωx and ηx ∈ Λk(Ω) are given by∑

1≤σ(1)<···<σ(k)≤n

aσdxσ(1) ∧ · · · ∧ dxσ(k),
∑

1≤σ(1)<···<σ(k)≤n

bσdxσ(1) ∧ · · · ∧ dxσ(k),
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Table 2. Correspondences between differential
forms ω on Ω ⊂ R3 and scalar/vector fields w on
Ω.

k Λk(Ω) HΛk(Ω) dω
0 C∞(Ω) H1(Ω) gradw
1 C∞(Ω;R3) H(curl,Ω;R3) curlw
2 C∞(Ω;R3) H(div,Ω;R3) divw
3 C∞(Ω) L2(Ω) 0

respectively, we can define the inner products

〈ωx, ηx〉 =
∑

1≤σ(1)<···<σ(k)≤n

aσbσ, 〈ω, η〉 =

∫
Ω

〈ωx, ηx〉dx1 ∧ · · · ∧ dxn.

A key object in our presentation is the exterior derivative d = dk : Λk(Ω) → Λk+1(Ω),
defined by

d
∑

aσdxσ(1) ∧ · · · ∧ dxσ(k) =
∑
σ

n∑
i=1

∂aσ
∂xi

dxi ∧ dxσ(1) ∧ · · · ∧ dxσ(k).

As we shall see below, the exterior derivative operator d corresponds to the standard differ-
ential operators grad, curl, div, and rot.

When n = 2, if ω ∈ Λ0(Ω), then d0ω = ∂w/∂x1dx1 + ∂w/∂x2dx2 ∈ Λ1(Ω). Identifying
∂w/∂x1dx1 + ∂w/∂x2dx2 with the vector (∂w/∂x1, ∂w/∂x2), d0 corresponds to grad. If
instead, we identify ∂w/∂x1dx1 + ∂w/∂x2dx2 with the vector (−∂w/∂x2, ∂w/∂x1), then d0

corresponds to curl. If µ = w1dx1 +w2dx2 ∈ Λ1(Ω), then d1µ = (∂w2/∂x1− ∂w1/∂x2)dx1 ∧
dx2 ∈ Λ2(Ω). If we identify w1dx1 + w2dx2 with the vector (w1, w2), then d1 corresponds to
rot. If instead, we identify w1dx1 + w2dx2 with the vector(−w2, w1), then d1 corresponds to
− div.

When n = 3, if ω ∈ Λ0(Ω), then d0ω = ∂w/∂x1dx1 + ∂w/∂x2dx2 + ∂w/∂x3dx3 ∈ Λ1(Ω).
Identifying ∂w/∂x1dx1 + ∂w/∂x2dx2 + ∂w/∂x3dx3 with (∂w/∂x1, ∂w/∂x2, ∂w/∂x3dx3), d0

corresponds to grad. If µ = w1dx1 + w2dx2 + w3dx3 ∈ Λ1(Ω), then d1µ = (∂w3/∂x2 −
∂w2/∂x3)dx2 ∧ dx3 − (∂w1/∂x3 − ∂w3/∂x1)dx1 ∧ dx3 + (∂w2/∂x1 − ∂w1/∂x2)dx1 ∧ dx2 ∈
Λ2(Ω). Identifying w1dx1 + w2dx2 + w3dx3 with the vector (w1, w2, w3), d1 corresponds to
curl. Finally, if µ = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2 ∈ Λ2(Ω), then d2µ =
(∂w1/∂x1 + ∂w2/∂x2 + ∂w3/∂x3)dx1 ∧ dx2 ∧ dx3 ∈ Λ3(Ω). Identifying µ with (w1, w2, w3),
d2 corresponds to div. Table 2 summarizes correspondences between differential forms and
their proxy fields in the case Ω ⊂ R3.

An important role in our analysis is played by the de Rham sequence, the sequence of
spaces and mappings given by:

(3.1) 0→ Λ0(Ω)
d0−→ Λ1(Ω)

d1−→ · · · dn−1−−−→ Λn(Ω)→ 0.

By introducing proxy fields and the usual differential operators, the de Rham complex takes
the following forms.
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For Ω ⊂ R3, the de Rham complex becomes

0→ C∞(Ω)
grad−−−→ C∞(Ω;R3)

curl−−→ C∞(Ω;R3)
div−→ C∞(Ω)→ 0,

and the L2 de Rham complex

0→ H1(Ω)
grad−−−→ H(curl,Ω;R3)

curl−−→ H(div,Ω;R3)
div−→ L2(Ω)→ 0.

For Ω ⊂ R2, the de Rham complex becomes

0→ C∞(Ω)
grad−−−→ C∞(Ω;R2)

rot−→ C∞(Ω)→ 0,

or
0→ C∞(Ω)

curl−−→ C∞(Ω;R2)
div−→ C∞(Ω)→ 0,

depending on whether we identify w1dx1 + w2dx2 ∈ Λ1(Ω) with the vector (w1, w2) or the
vector (−w2, w1).

By using the language of differential forms, much more of the structure of our finite element
spaces and the boundary value problems they are designed to approximate is revealed.

4. Basic finite element spaces and their properties

We now turn to the definition of the finite element spaces we shall use in our approximation
schemes and their properties. For this we follow the approach developed in [9]. We begin by
defining Pr as the space of polynomials in n variables of degree at most r and PrΛk as the
space of differential k-forms with coefficients belonging to Pr. Let Th be a triangulation of
Ω by n+ 1 simplices T and set

PrΛk(Th) = {ω ∈ HΛk(Ω) : ωT ∈ PrΛk(T ) ∀T ∈ Th}, r ≥ 0

P−r Λk(Th) = {ω ∈ HΛk(Ω) : ωT ∈ P−r Λk(T ) ∀T ∈ Th}, r ≥ 1,

where P−r Λk(T ) := Pr−1Λk(T ) + κPr−1Λk+1(T ) and κ = κk+1 : Λk+1(T ) → Λk(T ) is the
Koszul differential defined for ω =

∑
σ aσdxσ(1) ∧ · · · ∧ dxσ(k+1) ∈ Λk+1 by

κω =
∑
σ

k+1∑
i=1

(−1)i+1aσxσ(i)dxσ(1) ∧ · · · ∧ d̂xσ(i) ∧ · · · dxσ(k+1),

where the notation d̂xσ(i) means that the term is omitted in the sum. Note that κkκk+1 = 0,
and one can show that the Koszul complex

0→ Pr−nΛn(Ω)
κn−→ Pr−n+1Λn−1(Ω)

κn−1−−−→ · · · κ1−→ PrΛ0(Ω)
div−→ 0,

is exact. For Ω ⊂ R3, this complex becomes

0→ Pr−3(Ω)
x−→ Pr−2(Ω;R3)

×x−→ Pr−1(Ω;R3)
·x−→ Pr(Ω)→ 0.

Comparing to the corresponding polynomial de Rham complex

0→ Pr(Ω)
grad−−−→ Pr−1(Ω;R3)

curl−−→ Pr−2(Ω;R3)
div−→ Pr−3(Ω)→ 0,

we see that the Koszul differential increases polynomial degree and decreases the order of
the differential form, while exterior differentiation does exactly the opposite.

We note that PrΛ0(Th) = P−r Λ0(Th), r ≥ 1 and PrΛn(Th) = P−r+1Λn(Th), r ≥ 0. Us-
ing proxy fields, we can identify these spaces of finite element differential forms with finite
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Table 3. Correspondences between finite ele-
ment differential forms and the classical finite el-
ement spaces for n = 2.

k Λk
h(Ω) Classical finite element space

0 PrΛ0(Th) Lagrange elements of degree ≤ r

1 PrΛ1(Th) Brezzi–Douglas–Marini H(div) elements of degree ≤ r

2 PrΛ2(Th) discontinuous elements of degree ≤ r
0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) Raviart–Thomas H(div) elements of order r − 1

2 P−r Λ2(Th) discontinuous elements of degree ≤ r − 1

Table 4. Correspondences between finite ele-
ment differential forms and the classical finite el-
ement spaces for n = 3.

k Λk
h(Ω) Classical finite element space

0 PrΛ0(Th) Lagrange elements of degree ≤ r

1 PrΛ1(Th) Nédélec 2nd-kind H(curl) elements of degree ≤ r

2 PrΛ2(Th) Nédélec 2nd-kind H(div) elements of degree ≤ r

3 PrΛ3(Th) discontinuous elements of degree ≤ r
0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) Nédélec 1st-kind H(curl) elements of order r − 1

2 P−r Λ2(Th) Nédélec 1st-kind H(div) elements of order r − 1

3 P−r Λ3(Th) discontinuous elements of degree ≤ r − 1

element spaces of scalar and vector functions. In Tables 3 and 4, we summarize the cor-
respondences between spaces of finite element differential forms and classical finite element
spaces in two and three dimensions.

Degrees of freedom for these spaces are given as follows. For the space PrΛk(T ), we use

(4.1)

∫
f

Trf ω ∧ ν, ν ∈ P−r−j+kΛ
j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r+ k− 1), where Trf ω denotes the trace of ω on the face f and ∆j(T ) is
the set of all j-dimensional subsimplices generated by Th. For example, when n = 3, ∆j(T )
is the set of vertices, edges, faces, or tetrahedra in the mesh Th for j = 0, 1, 2, 3. In this case,
when j = 0, i.e., f is a vertex,

∫
f

Trf ω means w(f), where w is the function associated with

ω ∈ Λ0(Ω). When j = 1, i.e., f is an edge of a tetrahedron,
∫
f

Trf ω =
∫
f
w · t dµ, where w

is the vector associated to ω ∈ Λ1(Ω) and t is the unit tangent vector to f . When j = 2,
i.e., f is a face of a tetrahedron,

∫
f

Trf ω =
∫
f
w · n dµ, where w is the vector associated
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to ω ∈ Λ2(Ω) and n is the unit outward normal to f . Finally, when j = 3, i.e., f is a
tetrahedron,

∫
f

Trf ω =
∫
f
w dµ, where w is the function associated to ω ∈ Λ3(Ω).

Analogously, the degrees of freedom for the space P−r Λk(T ) are given by

(4.2)

∫
f

Trf ω ∧ ν, ν ∈ Pr−j+k−1Λj−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1). Note the key property that the degrees of freedom for each
space are defined in terms of wedge products with elements of the other space.

An important property of these finite element spaces is that they form discrete de Rham
sequences. In fact, as shown in [9], in n dimensions, there are exactly 2n−1 distinct sequences.
When n = 2 and r ≥ 0, these are

0→ Pr+2Λ0(Th)
d−→ Pr+1Λ1(Th)

d−→ PrΛ2(Th)→ 0,(4.3)

0→ Pr+1Λ0(Th)
d−→ P−r+1Λ1(Th)

d−→ PrΛ2(Th)→ 0.(4.4)

When n = 3 and r ≥ 0, we have the four sequences

0→ Pr+3Λ0(Th)
d−→ Pr+2Λ1(Th)

d−→ Pr+1Λ2(Th)
d−→ PrΛ3(Th)→ 0,(4.5)

0→ Pr+2Λ0(Th)
d−→ Pr+1Λ1(Th)

d−→ P−r+1Λ2(Th)
d−→ PrΛ3(Th)→ 0,(4.6)

0→ Pr+2Λ0(Th)
d−→ P−r+2Λ1(Th)

d−→ Pr+1Λ2(Th)
d−→ PrΛ3(Th)→ 0,(4.7)

0→ Pr+1Λ0(Th)
d−→ P−r+1Λ1(Th)

d−→ P−r+1Λ2(Th)
d−→ PrΛ3(Th)→ 0.(4.8)

The first and last of these are exact sequences involving only the PrΛk(Th) or P−r Λk(Th)
spaces alone, while the middle two mix the two spaces. As we shall see, to obtain mixed
finite element methods for elasticity when n = 3, it is one of these middle sequences that
will play a key role.

To each of the spaces PrΛk(Th), we may associate a canonical projection operator Π(=
ΠTh) : C0Λk(Ω)→ PrΛk(Th) defined by the equations:

(4.9)

∫
f

Trf Πω ∧ ν =

∫
f

Trf ω ∧ ν, ν ∈ P−r−j+kΛ
j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1). Similarly, to each of the spaces P−r Λk(Th), we may associate
a canonical projection operator Π(= ΠTh) : C0Λk(Ω)→ P−r Λk(Th) defined by the equations

(4.10)

∫
f

Trf Πω ∧ ν =

∫
f

Trf ω ∧ ν, ν ∈ Pr−j+k−1Λj−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1). A key property of these projection operators is that they
commute with the exterior derivative, i.e., the following four diagrams commute.

Λk(Ω)
d−→ Λk+1(Ω) Λk(Ω)

d−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
PrΛk(T )

d−→ Pr−1Λk+1(T ) PrΛk(T )
d−→ P−r Λk+1(T )
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Λk(Ω)
d−→ Λk+1(Ω) Λk(Ω)

d−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
P−r Λk(T )

d−→ P−r Λk+1(T ) P−r Λk(T )
d−→ Pr−1Λk+1(T ).

These commuting diagrams will also play an essential role in the construction of stable mixed
finite element approximation schemes for the equations of elasticity.

4.1. Differential forms with values in a vector space. To study the equations of linear
elasticity in the language of differential forms, we will need to use differential forms with
values in a vector space. Let V and W be finite dimensional vector spaces. We then define
the space Λk(V ;W ) of differential forms on V with values in W . The two examples we have
in mind are when V = V = Rn and W = V or W = K, the set of anti-symmetric matrices.
When n = 2, ω ∈ Λk(V;V), k = 0, 1, 2 will have the respective forms(

w1

w2

)
,

(
w11

w21

)
dx1 +

(
w12

w22

)
dx2,

(
w1

w2

)
dx1 ∧ dx2,

while ω ∈ Λk(V;K) will have the respective forms

wχ, w1χdx1 + w2χdx2, wχdx1 ∧ dx2, where χ =

(
0 −1
1 0

)
.

Recalling that the 1-form w1dx1 +w2dx2 can be identified either with the vector (w1, w2) or
the vector (−w2, w1), we will have the analogous possibilities in the case of vector or matrix-
valued forms. Since we will be interested in de Rham sequences involving the operator div,

we choose the second identification. Hence,

(
w11

w21

)
dx1 +

(
w12

w22

)
dx2 ∈ Λ1(V;V) will be

identified with the matrix

(4.11)

(
W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
,

and w1χdx1 + w2χdx2 ∈ Λ1(V;K) with the vector (−w2, w1). When n = 3, ω ∈ Λk(V;V)
will have the respective formsw1

w2

w3

 ,

w11

w21

w31

 dx1 +

w12

w22

w32

 dx2 +

w13

w23

w33

 dx3w11

w21

w31

 dx2 ∧ dx3 −

w12

w22

w32

 dx1 ∧ dx3 +

w13

w23

w33

 dx1 ∧ dx2

w1

w2

w3

 dx1 ∧ dx2 ∧ dx3,

Hence, Λ0(V;V) and Λ3(V;V) have obvious identifications with the space of 3 dimensional
vectors and Λ1(V;V) and Λ2(V;V) have obvious identifications with the space of 3 × 3
matrices (i.e, Wij = wij in both cases). In fact, in treating the equations of elasticity on
a domain Ω ⊂ Rn, we shall represent the stress as an element of Λn−1(Ω,V). To describe
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Λk(V;K), it will be convenient to introduce the operator Skw taking a 3-vector to a skew-
symmetric matrix. i.e.,

Skw(w1, w2, w3) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

Then ω ∈ Λk(V;K) will have the respective forms

Skw(w1, w2, w3),

Skw(w11, w21, w31)dx1 + Skw(w12, w22, w32)dx2 + Skw(w13, w23, w33)dx3,

Skw(w11, w21, w31)dx2 ∧ dx3 − Skw(w12, w22, w32)dx1 ∧ dx3 + Skw(w13, w23, w33)dx1 ∧ dx2,

Skw(w1, w2, w3)dx1 ∧ dx2 ∧ dx3.

Note that from the above formulas, there is an obvious identification of Λ0(V;K) and
Λ3(V;K) with the space of 3-dimensional vectors and of Λ1(V;K) and Λ2(V;K) with 3 × 3
matrices (again with Wij = wij in both cases).

In the mixed formulation of elasticity, we shall need a special operator S = Sk : Λk(V,V)→
Λk+1(V,K) defined as follows: First define Kk : Λk(Ω;V)→ Λk(Ω;K) by

Kkω = XωT − ωXT ,

where X = (x1, · · · , xn)T . Then define

Sk = dkKk −Kk+1dk : Λk(Ω;V)→ Λk+1(Ω;K).

Using the definition of the exterior derivative, the definition of K, and the Leibniz rule, one
can show that for any vector (v1, . . . , vk+1),

(Skω)x(v1, . . . , vk+1)

=
k+1∑
j=1

(−1)j+1[vjω
T (v1, · · · , v̂j, · · · , vk+1)− ω(v1, · · · , v̂j, · · · , vk+1)vTj ],

where the notation v̂j means that this argument is omitted. Thus, Sk is a purely algebraic
operator.

More specifically, we shall need this operator when k = n− 2 and k = n− 1. We examine
these cases below for n = 2 and n = 3. When n = 2, we get for ω = (w1, w2)T ,

K0ω = (w1x2 − w2x1)χ

and after a simple computation,

S0ω = (d0K0 −K1d0)ω = −w2χdx1 + w1χdx2.

Note that S0 is invertible with

S−1
0 [µ1χdx1 + µ2χdx2] = (µ2,−µ1)T .

If ω ∈ Λ1(V;V) is given by:

ω = w1dx1 + w2dx2, w1 = (w11, w21)T , w2 = (w12, w22)T ,

then
S1ω = −(w11 + w22)χdx1 ∧ dx2.
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If we identity ω with a matrix W by(
W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
,

then we can identify S1ω with the matrix(
0 W12 −W21

W21 −W12 0

)
= 2 skwW.

When n = 3, we get for ω = w1dx1 + w2dx2 + w3dx3, with wj = (w1j, w2j, w3j)
T ,

S1ω = Skw(−w33 − w22, w12, w13)dx2 ∧ dx3

− Skw(w21,−w11 − w33, w23)dx1 ∧ dx3

+ Skw(w31, w32,−w11 − w22)dx1 ∧ dx2.

If we identify ω ∈ Λ1(V;V) with a matrix W by Wij = wij, and identify S1ω ∈ Λ2(V;K)
with the matrix U given by

U =

−w33 − w22 w21 w31

w12 −w11 − w33 w32

w13 w23 −w11 − w22

 ,

then, W and U are related by the equations

U = ΞW = W T − tr(W )I, W = Ξ−1U = UT − 1

2
tr(U)I.

Hence, S1 is invertible.
If ω = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2, then

S2ω =

 0 w21 − w12 w31 − w13

w12 − w21 0 w32 − w23

w13 − w31 w23 − w32 0

 dx1 ∧ dx2 ∧ dx3.

If we identify ω with the matrix W given by Wij = wij, then by the above, S2ω may be
identified with the matrix −2 skwW .

We easily obtain from the fact that dk+1dk = 0 and the definition Sk = dkKk − Kk+1dk
that

(4.12) dk+1Sk + Sk+1dk = 0.

This identify, for k = n− 2, i.e., dn−1Sn−2 + Sn−1dn−2 = 0 is the key identity in establishing
stability of continuous and discrete variational formulations of elasticity with weak symmetry.

Note that this formula is much more complicated and also different in different dimensions
when stated in terms of proxy fields (which are reasons why we have introduced differential
forms). When n = 2 and k = 0, if we identify ω = (w1, w2)T ∈ Λ0(Ω;V) with the vector W ,
then the formula (d1S0 + S1d0)ω = 0 becomes

(divW )χ+ 2 skw curlW = 0, skwM = (M −MT )/2.

When n = 3 and k = 1, if we identify ω ∈ Λ1(Ω;V) with the matrix W , then the formula
(d2S1 + S2d1)ω = 0 becomes

Skw div(ΞW )− 2 skw curlW = 0.
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5. Mixed formulation of the equations of elasticity with weak symmetry

In order to write (1.3) in the language of exterior calculus, we will use the spaces of vector-
valued differential forms presented in the previous section. We assume that Ω is a contractible
domain in Rn, V = Rn, and K is again the space of skew-symmetric matrices. We showed
in the last section that the operator S = Sn−1 : Λn−1(Ω;V) → Λn(Ω;K) corresponds (up
to a factor of ±2) to taking the skew-symmetric part of its argument. Thus the elasticity
problem (1.3) becomes: Find (σ, u, p) ∈ HΛn−1(Ω;V)× L2Λn(Ω;V)× L2Λn(Ω;K) such that

〈Aσ, τ〉+ 〈dτ, u〉 − 〈Sτ, p〉 = 0, τ ∈ HΛn−1(Ω;V),(5.1)

〈dσ, v〉 = 〈f, v〉, v ∈ L2Λn(Ω;V), 〈Sσ, q〉 = 0, q ∈ L2Λn(Ω;K).

This problem is well-posed in the sense that, for each f ∈ L2Λn(Ω;V), there exists a unique
solution (σ, u, p) ∈ HΛn−1(Ω;V)× L2Λn(Ω;V)× L2Λn(Ω;K), and the solution operator is a
bounded operator

L2Λn(Ω;V)→ HΛn−1(Ω;V)× L2Λn(Ω;V)× L2Λn(Ω;K).

This will follow from the general theory of such saddle point problems [14] once we establish
two conditions:

(W1) ‖τ‖2
HΛ ≤ c1〈Aτ, τ〉 whenever τ ∈ HΛn−1(Ω;V) satisfies 〈dτ, v〉 = 0

∀v ∈ L2Λn(Ω;V) and 〈Sτ, q〉 = 0 ∀q ∈ L2Λn(Ω;K),

(W2) for all nonzero (v, q) ∈ L2Λn(Ω;V)× L2Λn(Ω;K), there exists nonzero
τ ∈ HΛn−1(Ω;V) with 〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖),

for some positive constants c1 and c2. The first condition is obvious (and does not even
utilize the orthogonality of Sτ). However, the second condition is more subtle. We will
verify it in Theorem 7.2 in a subsequent section.

We next consider a finite element discretizations of (5.1). For this, we choose families of
finite-dimensional subspaces

Λn−1
h (V) ⊂ HΛn−1(Ω;V), Λn

h(V) ⊂ L2Λn(Ω;V), Λn
h(K) ⊂ L2Λn(Ω;K),

indexed by h, and seek the discrete solution (σh, uh, ph) ∈ Λn−1
h (V) × Λn

h(V) × Λn
h(K) such

that

〈Aσh, τ〉+ 〈dτ, uh〉 − 〈Sτ, ph〉 = 0, τ ∈ Λn−1
h (V),(5.2)

〈dσh, v〉 = 〈f, v〉 v ∈ Λn
h(V), 〈Sσh, q〉 = 0, q ∈ Λn

h(K).

In analogy with the well-posedness of the problem (5.1), the stability of the saddle point
system (5.2) will be ensured by the Brezzi stability conditions:

(S1) ‖τ‖2
HΛ ≤ c1(Aτ, τ) whenever τ ∈ Λn−1

h (V) satisfies 〈dτ, v〉 = 0
∀v ∈ Λn

h(V) and 〈Sτ, q〉 = 0 ∀q ∈ Λn
h(K),

(S2) for all nonzero (v, q) ∈ Λn
h(V)× Λn

h(K), there exists nonzero
τ ∈ Λn−1

h (V) with 〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖),
where now the constants c1 and c2 must be independent of h. The difficulty is, of course, to
design finite element spaces satisfying these conditions.

We have seen previously that there is a close relation between the construction of stable
mixed finite element methods for the approximation of the equations of linear elasticity
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and discretization of the associated elasticity complex (2.3). This relationship extends an
analogous relationship between the construction of stable mixed finite element methods for
Poisson’s equation and discretization of the de Rham complex. It turns out that there is
also a close, but non-obvious, connection between the elasticity complex and the de Rham
complex. This connection is described in [19] and is related to a general construction given
in [13], called the BGG resolution (see also [16]).

The elasticity complex (2.3) is related to the formulation of the equations of elasticity
with strong symmetry. It is also possible to derive an elasticity complex that is related to
the equations of elasticity with weak symmetry, again starting from the de Rham complex.
In [8] (two dimensions) and [6] (three dimensions), such an elasticity complex is derived and
a discrete version of the BGG construction also developed. This was then used to derive
stable mixed finite element methods for elasticity in a systematic manner based on the finite
element versions of the de Rham sequence described earlier. The resulting elements in both
two and three space dimensions are simpler than any derived previously. For example, the
simple choice of P1Λn−1(Th;V) for stress, P0Λn(Th;V) for displacement, and P0Λn(Th;K) for
the multiplier results in a stable discretization of the problem (5.2). In Figure 4, this element
is depicted in two dimensions. For stress, the degrees of freedom are the first two moments
of its trace on the edges, and for the displacement and multiplier, their integrals on the
triangle (two components for displacement, one for the multiplier). Moreover, this element
is the lowest order of a family of stable elements in n dimensions utilizing PrΛn−1(Th;V)
for stress, Pr−1Λn(Th;V) for displacement, and Pr−1Λn(Th;K) for the multiplier. In fact,
the lowest order element may be simplified further, so that only a subset of linear vectors is
needed to approximate the stress. More details of this simplified element are presented in
Section 11.

Figure 4. Approximation of stress, displacement, and multiplier for the sim-
plest element in two dimensions.

In the next section, we follow the approach in [9] and outline how an elasticity complex with
weakly imposed symmetry can be derived from the de Rham complex. Since this derivation
produces a sequence in the notation of differential forms, we then translate our results to
the more classical notation for elasticity in two and three dimensions. In Section 7, we give
a proof of the well-posedness of the mixed formulation of elasticity with weak symmetry for
the continuous problem, as a guide for establishing a similar result for the discrete problem.
Using this proof as a guide, we develop in Section 8 the conditions that we will need for stable
approximation schemes. These results are then used to establish the main stability result
for weakly symmetric mixed finite element approximations of the equations of elasticity in
Section 9 and some more refined estimates in Section 10. The results presented in this paper
are for the case of displacement boundary conditions. An extension to the equations of
elasticity with traction boundary conditions can be found in [9].
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6. From the de Rham complex to an elasticity complex with weak
symmetry

In this section, we discuss the connection of the elasticity complex in n dimensions with
the de Rham complex. Details of the derivation can be found in [6] and [9] and follows
the ideas in a a derivation of elasticity from the de Rham sequence in the case of strongly
imposed symmetry given in [19] in three dimensions.

We start with the two vector-valued de Rham sequences, one with values in V and one
with values in K, i.e.,

Λn−2(Ω;K)
dn−2−−−→ Λn−1(Ω;K)

dn−1−−−→ Λn(K)→ 0,

Λn−3(Ω;V)
dn−3−−−→ Λn−2(Ω;V)

dn−2−−−→ Λn−1(Ω;V)
dn−1−−−→ Λn(V)→ 0,

Using the fact that these sequences are exact, one is able to show that the sequence
(6.1)

Λn−3(W)
(dn−3,−Sn−3)−−−−−−−−→ Λn−2(Ω;K)

dn−2◦S−1
n−2◦dn−2−−−−−−−−−−→ Λn−1(Ω;V)

(−Sn−1,dn−1)T−−−−−−−−−→ Λn(W)→ 0

is exact, where W = K×V. We refer to the sequence (6.1) as the elasticity sequence with weak
symmetry. Crucial to this construction is the fact that the operator Sn−2 : H1Λn−2(Ω;V)→
H1Λn−1(Ω;K) is an isomorphism.

We next interpret this sequence in the language of differential operators in two and three
dimensions. When n = 2, we have the sequence

Λ0(Ω;K)
d0◦S−1

0 ◦d0−−−−−−→ Λ1(Ω;V)
(−S1,d1)T−−−−−−→ Λ2(W)→ 0.

Hence, if we begin with an element wχ ∈ Λ0(Ω;K) that we identify with the scalar function
w, then

d0(wχ) =
∂w

∂x1

χdx1 +
∂w

∂x2

χdx2, S−1
0 [d0(wχ)] =

(
∂w

∂x2

,− ∂w
∂x1

)T
,

d0S
−1
0 [d0(wχ)] =

(
∂2w/∂x1∂x2

−∂2w/∂x2
1

)
dx1 +

(
∂2w/∂x2

2

−∂2w/∂x1∂x2

)
dx2.

We then identity this vector-valued 1-form with the matrix(
−∂2w/∂x2

2 ∂2w/∂x1∂x2

∂2w/∂x1∂x2 −∂2w/∂x2
1

)
≡ −Jw.

To translate the second part of the sequence, we begin with an element ω =

(
w11

w21

)
dx1 +(

w12

w22

)
dx2 ∈ Λ1(V;V) that we identify (as in (4.11)) with the matrix

W =

(
W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
.

We have seen previously that −S1ω corresponds to −2 skwW . Now

d1ω =

(
∂w12/∂x1 − ∂w11/∂x2

∂w22/∂x1 − ∂w21/∂x2

)
dx1 ∧ dx2 = − divWdx1 ∧ dx2.
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Hence, modulo some constants, we obtain the elasticity sequence

C∞(Ω)
J−→ C∞(Ω;M)

(skw,div)T−−−−−−→ C∞(Ω,K× V)→ 0.

When n = 3, we have the sequence

Λ0(W)
(d0,−S0)−−−−−→ Λ1(Ω;K)

d1◦S−1
1 ◦d1−−−−−−→ Λ2(Ω;V)

(−S2,d2)T−−−−−−→ Λ3(W)→ 0.

Hence, if we begin with a pair (Skww, µ) ∈ Λ0(W) = Λ0(Ω,K)× Λ0(Ω,V) that we identify
with the pair (w, Skw µ) ∈ C∞(Ω,V) × C∞(Ω,K), then d0 corresponds to the row-wise
gradient and S0 to the inclusion of C∞(Ω,K) → C∞(Ω,M). We have discussed previously
natural identifications of Λ1(Ω;K) and Λ2(Ω;V) with C∞(Ω;M). With these identifications,
d1 corresponds to the row-wise curl and S1 to the operator Ξ. Finally, we have also seen how
−S2 corresponds to the operator 2 skw. Since d2 corresponds to the row-wise divergence, we
obtain (modulo some unimportant constants), the elasticity sequence with weak symmetry

C∞(V×K)
(grad,I)−−−−−→ C∞(M)

curlΞ−1 curl−−−−−−−→ C∞(M)
(skw,div)T−−−−−−→ C∞(K× V)→ 0.

More details, and the extension of these ideas to more general domains, can be found in [9].

7. Well-posedness of the weak symmetry formulation of elasticity

As discussed in Section 5, to establish well-posedness of the elasticity problem with weakly
imposed symmetry (5.1), it suffices to verify condition (W2) of that section. This may be
deduced from the following theorem, which says that the map

HΛn−1(Ω;V)
(−Sn−1,dn−1)T−−−−−−−−−→ HΛn(Ω;K)×HΛn(Ω;V)

is surjective. We present the proof in detail, since it will give us guidance as we construct
stable discretizations. The proof will make use of the following well-known result from partial
differential equations.

Lemma 7.1. Let Ω be a bounded domain in Rn with a Lipschitz boundary. Then, for all
µ ∈ L2Λn(Ω), there exists η ∈ H1Λn−1(Ω) satisfying dn−1η = µ. If, in addition,

∫
Ω
µ = 0,

then we can choose η ∈ H̊1Λn−1(Ω).

Theorem 7.2. Given (ω, µ) ∈ L2Λn(Ω;K)×L2Λn(Ω;V), there exists σ ∈ HΛn−1(Ω;V) such
that dn−1σ = µ, −Sn−1σ = ω. Moreover, we may choose σ so that

‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖),
for a fixed constant c.

Proof. The second sentence follows from the first by Banach’s theorem, (i.e., if a continuous
linear operator between two Banach spaces has an inverse, then this inverse operator is
continuous), so we need only prove the first.

(1) By Lemma 7.1, we can find η ∈ H1Λn−1(Ω;V) with dn−1η = µ.
(2) Since ω + Sn−1η ∈ HΛn(Ω;K), we can apply Lemma 7.1 a second time to find

τ ∈ H1Λn−1(Ω;K) with dn−1τ = ω + Sn−1η.
(3) Since Sn−2 is an isomorphism from H1Λn−2(Ω;V) onto H1Λn−1(Ω;K), we have ρ ∈

H1Λn−2(Ω;V) with Sn−2ρ = τ .
(4) Define σ = dn−2ρ+ η ∈ HΛn−1(Ω;V).
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(5) From steps (1) and (4), it is immediate that dn−1σ = µ.
(6) From (4), −Sn−1σ = −Sn−1dn−2ρ− Sn−1η. But, since dn−1Sn−2 = −Sn−1dn−2,

−Sn−1dn−2ρ = dn−1Sn−2ρ = dn−1τ = ω + Sn−1η,

so −Sn−1σ = ω.

�

We note a few points from the proof.
(i) Although the elasticity problem (5.1) only involves the three spaces HΛn−1(Ω;V),

L2Λn(Ω;V), and L2Λn(Ω;K), the proof brings in two additional spaces from the BGG con-
struction: HΛn−2(Ω;V) and HΛn−1(Ω;K).

(ii) Although Sn−1 is the only S operator arising in the formulation, Sn−2 plays a role in
the proof.

(iii) We do not fully use the fact that Sn−2 is an isomorphism from Λn−2(V;V) to Λn−1(V;K),
only the fact that it is a surjection. This will prove important in the next section, when we
derive conditions for stable approximation schemes for elasticity.

(iv) Other slightly weaker conditions can be used in some places in the proof (a fact we
also exploit in discrete versions for some choices of finite element spaces).

8. Conditions for stable approximation schemes

To obtain stable approximation schemes, we now mimic the key structural elements present
for the continuous problem. In particular, we see that to establish stability of the continuous
problem, we do not use the complete exact sequences, but only the last two spaces in the
top sequence and the last three spaces in the bottom sequence, connected by the operators
Sn−2 and Sn−1.

Λn−1(K)
dn−1−−−→ Λn(K)→ 0

↗ Sn−2 ↗ Sn−1(8.1)

Λn−2(V)
dn−2−−−→ Λn−1(V)

dn−1−−−→ Λn(V)→ 0.

Thus, we look for five finite dimensional spaces that are connected by a similar structure,
i.e., in addition to the spaces

Λn
h(K) ⊂ HΛn(K), Λn−1

h (V) ⊂ HΛn−1(V), Λn
h(V) ⊂ HΛn(V)

used in the finite element method, we also seek spaces

Λn−1
h (K) ⊂ HΛn−1(K), Λn−2

h (V) ⊂ HΛn−2(V).

To mimic the structure of the continuous problem, but taking into account the comments
made following Theorem 7.2, we require that the finite element spaces are also connected
by exact sequences, but where we introduce some additional flexibility by inserting the L2

projection operator Πn
h and using approximations of the operators Sn−2 and Sn−1.

Λn−1
h (K)

Πn
hdn−1−−−−→ Λn

h(K)→ 0

↗ Sn−2,h ↗ Sn−1,h(8.2)

Λn−2
h (V)

dn−2−−−→ Λn−1
h (V)

dn−1−−−→ Λn
h(V)→ 0.
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In anticipation of proving a stability result for the mixed finite element method for elas-
ticity that mimics that proof used in the continuous case, we need to define interpolants
into each of these finite element spaces that have appropriate properties. The reason for the
choice of the specific properties will become apparent in the stability proof.

We first define Πn
h and Π̃n

h to be the L2 projection operators into the spaces Λn
h(K) and

Λn
h(V), respectively. We then define Πn−1

h and Π̃n−1
h to be interpolation operators mapping

H1Λn−1(K) to Λn−1
h (K) and H1Λn−1(V) to Λn−1

h (V), respectively, and satisfying

Πn
hdn−1Πn−1

h τ = Πn
hdn−1τ, τ ∈ (H̊1 + P 1)Λn−1(K),(8.3)

Πn
hdn−1Π̃n−1

h τ = Π̃n
hdn−1τ, τ ∈ H1Λn−1(V).

(8.4) ‖Πn−1
h τ‖ ≤ C‖τ‖1, τ ∈ (H̊1 + P 1)Λn−1(K), ‖Π̃n−1

h τ‖ ≤ C‖τ‖1, τ ∈ H1Λn−1(V).

Next, we define Π̃n−2
h mapping H1Λn−2(V) to Λn−2

h (V) satisfying

(8.5) ‖dn−2Π̃n−2
h ρ‖ ≤ c‖ρ‖1, ρ ∈ H1Λn−2.

(In (8.5), the exterior derivative dn−2 corresponds to the differential operator curl.) As we
shall see in the examples, in some cases these will be the canonical interpolation operators
we usually associate with standard finite element spaces, while in other cases, we will need
to make some modifications so that the interpolation operators are defined on spaces of
functions will less smoothness than we usually assume.

The key to the derivation of the formulation of elasticity with weak symmetry at the
continuous level was the introduction of the operators S = Sk : Λk(V) → Λk+1(K). In the
reduced sequence (8.1), only the operators Sn−2 and Sn−1 will enter the analysis. One of the
key properties of these operators was that

(8.6) dn−1Sn−2 = −Sn−1dn−2.

For the discrete version of this analysis, we will need to modify the definitions of Sn−2

and Sn−1 in a simple way. As a discrete analogue of the operator Sn−1, we define Sn−1,h :
Λn−1
h (V) → Λ3

h(K) by Sn−1,h = Πn
hSn−1. As a discrete analogue of the operator Sn−2, we

define Sn−2,h : Λn−2
h (V)→ Λ2

h(K) by Sn−2,h = Πn−1
h Sn−2. With these definitions, we establish

the following discrete version of (8.6),

(8.7) Πn
hdn−1Sn−2,h = −Sn−1,hdn−2.

To see this, we observe that using (8.3) and (8.7),

Πn
hdn−1Sn−2,h = Πn

hdn−1Πn−1
h Sn−2 = Πn

hdn−1Sn−2 = −Πn
hSn−1dn−2 = −Sn−1,hdn−2.

Another key property of the operator Sn−2 was that it was invertible as a map from
H1Λn−2(V) to H1Λn−1(K). This fact was used in the prove of stability of the weak symmetry
formulation at the continuous level, although we observed that surjectivity of this map would
be sufficient. We cannot expect invertibility of the map Sn−2,h However, a key condition to
prove stability of the finite element approximation to the weak symmetry formulation is that
Sn−2,h maps Λn−2

h (V) onto Λn−1
h (K). To ensure this condition, we will assume that Λn−2

h (V)
and Λn−1

h (K) are related by the condition.

(8.8) Sn−2,hΠ̃
n−2
h τ = Πn−1

h Sn−2τ, τ ∈ H1Λn−2(V).
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To see that this condition ensures surjectivity, note that given a function σh ∈ Λn−1
h (K), we

can find σ ∈ H1Λn−1(K) (e.g., a continuous piecewise polynomial differential form), such
that σh = Πn−1

h σ. Defining τ = S−1
n−2σ and τh = Π̃n−2

h τ ∈ Λn−2
h (V), we find that

σh = Πn−1
h σ = Πn−1

h Sn−2τ = Sn−2,hΠ̃
n−2
h τ = Sn−2,hτh.

To summarize the results of this section, we will develop stable mixed finite element
approximation schemes by finding five finite element spaces. The three spaces Λn

h(K) ⊂
HΛn(K), Λn−1

h (V) ⊂ HΛn−1(V), Λn
h(V) ⊂ HΛn(V) are used in the method and the spaces

Λn−1
h (K) ⊂ HΛn−1(K) and Λn−2

h (V) ⊂ HΛn−2(V) are auxiliary spaces crucial to the proof of
stability. Associated with each of these spaces is an operator for which we need properties
(8.3), (8.4), and (8.5) We further assume that the five spaces are connected by the exact
sequences given in (8.2). Finally, we require (8.8), which ensures that Sn−2,h maps Λn−2

h (V)
onto Λn−1

h (K). Under these conditions, we can then prove the following stability result for
the mixed finite element method for elasticity.

9. Stability of finite element approximation schemes

Theorem 9.1. Assume that the finite element subspaces Λk
h(K) and Λk

h(V) are connected by
the exact sequences given in (8.2), that there are operators associated with these subspaces
satisfying conditions (8.3), (8.4), (8.5), and that condition (8.8) is satisfied. Then, given
(ω, µ) ∈ Λn

h(K) × Λn
h(V), there exists σ ∈ Λn−1

h (V) such that dn−1σ = µ, −Sn−1,hσ ≡
−Πn

hSn−1σ = ω, and

(9.1) ‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖),

where the constant c is independent of ω, µ and h.

Before proving this theorem, we note that condition (8.2) immediately implies that the
first Brezzi condition (S1) is satisfied and that the second Brezzi condition (S2) easily follows
from the conclusion of the theorem.

Proof.

(1) By Lemma 7.1, we can find η ∈ H1Λn−1(Ω;V) with dn−1η = µ and ‖η‖1 ≤ c‖µ‖.

(2) Since ω + Πn
hSn−1Π̃n−1

h η ∈ HΛn(Ω;K), we can apply Lemma 7.1 a second time

to find τ ∈ H1Λn−1(Ω;K) with dn−1τ = ω + Πn
hSn−1Π̃n−1

h η and ‖τ‖1 ≤ c(‖ω‖ +

‖Πn
hSn−1Π̃n−1

h η‖).
(3) Since Sn−2 is an isomorphism from H1Λn−2(Ω;V) to H1Λn−1(Ω;K), we have ρ ∈

H1Λn−2(Ω;V) with Sn−2ρ = τ , and ‖ρ‖1 ≤ c‖τ‖1.

(4) Define σ = dn−2Π̃n−2
h ρ+ Π̃n−1

h η ∈ Λn−1
h (V).

(5) From step (4), (8.3), step (1), and the fact that Π̃n
h is a projection, we have

dn−1σ = dn−1Π̃n−1
h η = Π̃n

hdn−1η = Π̃n
hµ = µ.

(6) Also from step (4),

−Sn−1,hσ = −Sn−1,hdn−2Π̃n−2
h ρ− Sn−1,hΠ̃

n−1
h η.
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Applying, in order, (8.7), (8.8), step (3), (8.3), step (2), and the fact that Πn
h is a

projection, we obtain

Sn−1,hdn−2Π̃n−2
h ρ = −Πn

hdn−2Sn−2,hΠ̃
n−2
h ρ

= −Πn
hdn−2Πn−1

h Sn−2ρ = −Πn
hdn−1Πn−1

h τ = −Πn
hdn−1τ

= −Πn
h(ω + Πn

hSn−1Π̃n−1
h η) = −ω − Sn−1,hΠ̃

n−1
h η.

Combining, we have −Πn
hSn−1 ≡ −Sn−1,hσ = ω.

(7) Finally, we prove the norm bound. From the boundedness of Sn−1 in L2, (8.4), and
step (1),

‖Πn
hSn−1Π̃n−1

h η‖ ≤ c‖Sn−1Π̃n−1
h η‖ ≤ c‖Π̃n−1

h η‖ ≤ c‖η‖1 ≤ c‖µ‖.

Combining with the bounds in step (3) and (2), this gives ‖ρ‖1 ≤ c(‖ω‖+‖µ‖). From
(8.5), we then have ‖dn−2Π̃n−2

h ρ‖ ≤ c(‖ω‖+ ‖µ‖). From (8.4) and the bound in step

(1), ‖Π̃n−1
h η‖ ≤ c‖η‖1 ≤ c‖µ‖. In view of the definition of σ, these two last bounds

imply that ‖σ‖ ≤ c(‖ω‖ + ‖µ‖), while ‖dn−1σ‖ ≤ C‖Π̃n
hdn−1σ‖ = ‖µ‖, and thus we

have the desired bound (9.1).

�

We have thus verified the stability conditions (S1) and (S2), and so obtain the following
quasi-optimal error estimate (see [14], [15]).

Theorem 9.2. Suppose (σ, u, p) is the solution of the elasticity system (5.1) and (σh, uh, ph)
is the solution of discrete system (5.2), where the finite element spaces satisfy the hypotheses
of Theorem 9.1. Then there is a constant C, independent of h, such that

‖σ − σh‖HΛ + ‖u− uh‖+ ‖p− ph‖ ≤ C inf(‖σ − τ‖HΛ + ‖u− v‖+ ‖p− q‖),

where the infimum is over all τ ∈ Λn−1
h (V), v ∈ Λn

h(V), and q ∈ Λn
h(K).

10. Refined error estimates

To see more precisely the contribution to the error from each of the approximating sub-
spaces, we now follow the theory developed in [18] and [20] for error estimates for mixed finite
element methods. Since the derivation is fairly simple and we are in an intermediate case to
the general theory developed in the references above, we present the complete derivation for
the problem we are considering.

Theorem 10.1. Suppose (σ, u, p) is the solution of the elasticity system (5.1) and (σh, uh, ph)
is the solution of discrete system (5.2), where the finite element subspaces satisfy the hypothe-
ses of Theorem 9.1. Then

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p− Πn
hp‖),

‖u− uh‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖p− Πn

hp‖+ ‖u− Π̃n
hu‖),

‖dn−1(σ − σh)‖ = ‖dn−1σ − Π̃n
hdn−1σ‖.



FINITE ELEMENT METHODS FOR LINEAR ELASTICITY 25

Proof. Subtracting the equations in (5.2) from the corresponding equations in (5.1), and
adding and subtracting appropriate interpolants, we get the error equations

〈A(σh − Π̃n−1
h σ), τ〉+ 〈dτ, uh − Π̃n

hu〉 − 〈Sτ, ph − Πn
hp〉 = 〈A(σ − Π̃n−1

h σ), τ〉
+〈dτ, u− Π̃n

hu〉 − 〈Sτ, p− Πn
hp〉, τ ∈ Λn−1

h (V),

〈d(σh − Π̃n−1
h σ), v〉 = 〈d(σ − Π̃n−1

h σ), v〉, v ∈ Λn
h(V),(10.1)

〈S(σh − Π̃n−1
h σ), q〉 = 〈S(σ − Π̃n−1

h σ), q〉, q ∈ Λn
h(K),

where we use d as an abbreviation for dn−1. Now by (8.3), 〈d(σ−Π̃n−1
h σ), v〉 = 0 for v ∈ Λn

h(V)

and hence by (8.5), d(σh − Π̃n−1
h σ) = 0. Also note that the second term on the right of the

first error equation vanishes, since dΛn−1
h (V) ⊂ Λn

h(V) and Π̃n
h is the L2 projection.

Applying Theorem 9.1, with ω = ph − Πn
hp and µ = uh − Π̃n

hu, we can find τ ∈ Λn−1
h (V)

such that

Π̃n
hdτ = uh − Π̃n

hu, −Sn−1,hτ ≡ −Πn
hSn−1τ = ph − Πn

hp,

‖τ‖HΛ ≤ c(‖ph − Πn
hp‖+ ‖uh − Π̃n

hu‖).

Making this choice of τ in (10.1), we get

‖ph−Πn
hp‖2 + ‖uh− Π̃n

hu‖2 = 〈A(σ− Π̃n−1
h σ), τ〉− 〈A(σh− Π̃n−1

h σ), τ〉+ 〈ph−Πn
hp, p−Πn

hp〉.

Applying standard estimates, we easily obtain

(10.2) ‖ph − Πn
hp‖+ ‖uh − Π̃n

hu‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖σh − Π̃n−1

h σ‖+ ‖p− Πn
hp‖).

Now choose

τ = σh − Π̃n−1
h σ, v = uh − Π̃n

hu, q = ph − Πn
hp,

and add the error equations. Then

C‖σh − Π̃n−1
h σ‖2 ≤ 〈A(σh − Π̃n−1

h σ), σh − Π̃n−1
h σ〉

= 〈A(σ − Π̃n−1
h σ), σh − Π̃n−1

h σ〉 − 〈S(σh − Π̃n−1
h σ), p− Πn

hp〉+ 〈S(σ − Π̃n−1
h σ), ph − Πn

hp〉.
≤ C(‖σ − Π̃n−1

h σ‖+ ‖p− Πn
hp‖)(‖σh − Π̃n−1

h σ‖+ ‖ph − Πn
hp‖).

Using (10.2) and applying standard estimates, we then obtain

(10.3) ‖σh − Π̃n−1
h σ‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p− Πn
hp‖),

and hence,

‖σ − σh‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖p− Πn

hp‖).

The estimates for ‖p − ph‖ and ‖uh − Π̃n
hu‖ then follow directly from (10.2). Finally, since

〈d(σ − σh, v〉 = 0 for v ∈ Λn
h(V), we get dσh = Π̃n

hdσ, which establishes the last estimate of
the theorem. �
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11. Examples of stable finite element methods for elasticity

11.1. Arnold, Falk, Winther families. In the approach of [8, 6, 9], the spaces are chosen
for r ≥ 0 to be:

Λn−2
h (V) = P−r+2Λn−2(Th), Λn−1

h (V) = Pr+1Λn−1(Th;V), Λn
h(V) = PrΛn(Th;V),

Λn−1
h (K) = P−r+1Λn−1(Th;K), Λn

h(K) = PrΛn(Th;K).

The sequences

P−r+1Λn−1(Th;K)
d−→ PrΛn(Th;K) −→ 0

P−r+2Λn−2(Th;V)
d−→ Pr+1Λn−1(Th;V)

d−→ PrΛn(Th;V) −→ 0

are the final parts of longer exact sequences involving the Pr and P−r spaces. Hence, (8.2)
is satisfied without the additional projection at the end of the first sequence. For these
spaces, the canonical projection operators Πn−1

h , Πn
h, Π̃n−1

h , and Π̃n
h satisfy conditions (8.3)

and (8.4). Although the canonical projection operator Π̃n−2
h does not satisfy (8.5), since

this operator is not defined on functions in H1Λn−2(V), we can define a modification of this
operator, P̃h : Λn−2(Ω;V) → P−r+2Λn−2(Th;V) that does satisfy (8.5). The operator P̃hω
will have the same moments as ω on faces of codimension 0 and 1, but with moments of
a smoothed approximation of ω on the faces of codimension 2. When n = 2, the issue is
simply that the vertex values are not defined and this can be remedied by using the ideas
of the interpolant of Clement. When n = 3, additional details are provided in [6]. Thus, to
satisfy the hypotheses of Theorem 9.1, it remains to show that

Πn−1
h Sn−2P̃h = Πn−1

h Sn−2.

This is equivalent to showing that

Πn−1
h Sn−2ω = 0, ∀ω = (I − P̃h)σ, σ ∈ Λn−2(V).

Since P̃hω = 0, we have for n− 1 ≤ d ≤ min(n, r + n− 1),

(11.1)

∫
f

Trf ω ∧ ζ = 0, ζ ∈ Pr−d+n−1Λd−n+2(f ;V), f ∈ ∆d(Th).

Note that we have not included similar statements for the vertex degrees of freedom when
n = 2 or the edge degrees of freedom when n = 3, since we will not need them here. We
must show that (11.1) implies that for n− 1 ≤ d ≤ min(n, r + n− 1),

(11.2)

∫
f

Trf Sn−2ω ∧ µ = 0, µ ∈ Pr−d+n−1Λd−n+1(f ;K), f ∈ ∆d(Th).

The simplest case is when r = 0. When n = 2, (11.1) becomes∫
f

Trf ω ∧ ζ = 0, ζ ∈ P0Λ1(f ;V), f ∈ ∆1(Th),

which for ω = (w1, w2)T , is simply the condition

(11.3)

∫
e

wi de = 0, i = 1, 2, e ∈ ∆1(Th).
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We then require that ∫
e

Tre(−w2χdx1 + w1χdx2) = 0, e ∈ ∆1(Th).

But if (t1, t2) is the unit tangent to e, then by (11.3),∫
e

Tre(−w2χdx1 + w1χdx2) =

∫
e

(−w2t
1 + w1t

2)χ de = 0.

An analogous argument works for general r when n = 2, and the basic outline of the proof
is the same when n = 3, although in this case the operator S1 is more complicated. The
details can be found in [6].

Using Theorem 10.1, it is straightforward to derive the following error estimates, valid for
1 ≤ k ≤ r + 1, assuming that σ, p, and u are sufficiently smooth.

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ Chk(‖σ‖k + ‖p‖k),

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k), ‖dn−1(σ − σh)‖ ≤ Chk‖dn−1σ‖k.

11.2. Arnold, Falk, Winther reduced element. In the reduced element proposed in [8]
(in two dimensions) and [6] (in three dimensions), the spaces Λn

h(V), Λn−1
h (K), and Λn

h(K)
remain as chosen above, while the spaces Λn−2

h (V) and Λn−1
h (V) are modified. Thus, the

reduced element has a somewhat simpler stress space than the methods described above.
The basic idea is that in the verification of condition (8.8) in the last section, we did not
use all the degrees of freedom of the space P−2 Λ0(Th), i.e., we did not use the vanishing of
the edge integral of both components of ω, but only the combination −w2t

1 + w1t
2 (the

normal component). Hence, instead of the vector-valued quadratic space P2Λ0(Th,V), we
can use the reduced space obtained from it by imposing the constraint that the tangential
component on each edge vary only linearly on that edge. This space of vector fields, which
we denote by P2−Λ0(Th,V) has been used previously to approximate the velocity field in
the approximation of the stationary Stokes equations (cf. [23, p. 134 ff., 153 ff.]). Together
with piecewise constants, it gives a stable finite element approximation scheme for the Stokes
equations. An element in this space is determined by its vertex values and the integral of
its normal component on each edge. In order to complete the construction, we must provide
a vector-valued discrete de Rham sequence in which the space of 0-forms is P2−Λ0(Th;R2).
This will be the sequence

P2−Λ0(Th;V)
d0−→ P1−Λ1(Th;V)

d1−→ P0Λ2(Th;V)→ 0,

where it remains to define P1−Λ1(Th;V). This will be the set of τ ∈ P1Λ1(Th;V) for which
Tre(τ)·t is constant on any edge e with unit tangent t and unit normal n. (In more detail: for
τ ∈ P1Λ1(Th;R2), Tre(τ) is a vector-valued 1-form on e of the form g ds with µ : e→ R2 linear
and ds the volume form—i.e., length form—on e. If µ · t is constant, then τ ∈ P−1 Λ1(Th;V).)
The natural degrees of freedom for this space are the integral and first moment of Tre(τ) · n
and the integral of Tre(τ) · t. If we use (4.11) to identify vector-valued 1-forms and matrix
fields, then the condition for a piecewise linear matrix field W to correspond to an element
of P−1 Λ1(Th;R2) is that on each edge e with tangent t and normal n, Wn · t must be constant
on e. This defines the reduced space Σh, with three degrees of freedom per edge. Together
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with piecewise constant for displacements and multipliers, this furnishes a stable choice of
elements.

A three-dimensional simplified element can be constructed using a similar approach. We
start from the space P−2 Λ(Th;V) and see that we do not use all the degrees of freedom to
satisfy condition (8.8). We thus define a reduced space P−2−Λ(Th;V) and a space P1−Λ2(Th;V)
such that these spaces, together with P0Λ3(Th;V), form the exact sequence

P2−Λ1(Th;V)
d1−→ P1−Λ2(Th;V)

d2−→ P0Λ3(Th;V)→ 0.

We are then able to replace the space P1Λ1(Th;V), which has 36 degrees of freedom (9 per
face), by the space P1−Λ2(Th;V), which has 24 degrees of freedom (6 per face). If we identify
an element in our reduced space with a matrix W is the manner discussed previously, then
we get on each face the six degrees of freedom:∫

f

Wndf,

∫
f

(x · t)nTWndf,

∫
f

(x · s)nTWndf,

∫
f

[(x · t)sT − (x · s)tT ]Wndf,

where s and t denote orthogonal unit tangent vectors on the face f . More details can be
found in [6].

11.3. PEERS. In the PEERS method, n = 2 and we choose

Λ1
h(V) = P−1 Λ1(Th;V) + dB3Λ0(Th;V), Λ2

h(V) = P0Λ2(Th;V),

Λ2
h(K) = P1Λ2(Th;K) ∩H1Λ2(K) which we denote by P0

1 Λ2(Th;K),

where B3 denotes the space of cubic bubble functions. We then choose the two remaining
spaces as

Λ0
h(V) = (P1 +B3)Λ0(Th;V), Λ1

h(K) = S0Λ0
h(V).

It is easy to see that

Λ1
h(K) = (P1 +B3)Λ1(Th;K) ∩H1Λ1(K) ≡ (P0

1 +B3)Λ1(Th;K).

Since the sequence

P1Λ0(Th;V)
d0−→ P−1 Λ1(Th;V)

d1−→ P0Λ2(Th;V) −→ 0

is exact, so is the sequence

(P1 +B3)Λ0(Th;V)
d0−→ P−1 Λ1(Th;V) + d0B3Λ0(Th;V)

d1−→ P0Λ2(Th;V) −→ 0.

For this choice of spaces, however, it is not true that dΛ1
h(K) = Λ2

h(K). Instead, we use the
more general condition Π2

hdΛ1
h(K) = Λ2

h(K), which allows the use of stable Stokes elements.
The proof that the combination (P0

1 + B3)Λ1(Th;K) and P0
1 Λ2(Th;K) is stable Stokes pair

(the Mini-element) involves construction of an interpolation operator Π1
h : H1Λ1(K) 7→

(P0
1 +B3)Λ1(Th;K) satisfying

〈d1(τ − Π1
hτ), qh〉 = 0, qh ∈ Λ2

h(K),

‖Π1
hτ‖1 ≤ C‖τ‖1, τ ∈ H1Λ1(K),

which gives properties (8.3) and (8.4) for the operators Π1
h and Π2

h. Properties (8.3) and

(8.4) for the operators Π̃1
h and Π̃2

h are satisfied by the Raviart-Thomas interpolant

Π̃1
h : H1Λ1(V) 7→ P−1 Λ1(Th;V).
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Finally, one can easily check that (8.5) and (8.8) are satisfied if we define

Π̃0
h : H1Λ0(V) 7→ (P1 +B3)Λ0(Th;V)

by

Π̃0
hτ = S−1

0 Π1
hS0τ.

Note that condition (8.8) is then trivial, since for τ ∈ H1Λ0(V),

S0,hΠ̃
0
hτ = Π1

hS0S
−1
0 Π1

hS0τ = Π1
hS0τ.

Applying Theorem 10.1, and standard approximation and regularity results, we obtain the
error estimates

‖σ − σh‖0 + ‖p− ph‖0 + ‖u− uh‖0 ≤ Ch(‖σ‖1 + ‖p‖1 + ‖u‖1) ≤ Ch‖f‖0.

11.4. A PEERS-like method with improved stress approximation. In this new
method, we change one of the spaces used in the PEERS element and both of the aux-
iliary spaces used in the analysis, i.e., we choose

Λ1
h(V) = P1Λ1(Th;V), Λ2

h(V) = P0Λ2(Th;V), Λ2
h(K) = P0

1 Λ2(Th;K),

and the two remaining spaces as

Λ0
h(V) = P2Λ0(Th;V), Λ1

h(K) = S0Λ0
h(V) ≡ P2Λ1(Th;K) ∩H1Λ1(K).

The basic change from the analysis of the PEERS element is that we use the fact that the
combination of P2Λ1(Th;K) ∩ H1Λ1(K) and P0

1 Λ2(Th;K) is a stable pair of spaces for the
Stokes problem (i.e., the Taylor-Hood element).

We may also view this new method as a modification of the lowest order Arnold-Falk-
Winther method, where we are using the same stress and displacement spaces and lower
exact sequence as in that method, but have changed the spaces with values in K. The
advantage of this modification is that it produces a higher order approximation to the stress
variable. Looking at the error estimates given in Theorem 10.1, we see that the error estimate
for ‖σ−σh‖0 depends both on ‖σ−Π̃n−1

h σ‖0 and ‖p−Πn
hp‖0. In the lowest order Arnold-Falk-

Winther method, ‖σ − Π̃n−1
h σ‖0 ≤ Ch2‖σ‖2, since we are using P1 elements to approximate

σ. The fact that piecewise constants are used to approximate the multiplier results in only an
O(h) approximation for the second term. By using linear elements in the modified method,
we recover second order convergence. Since we use only piecewise constants to approximate
u, we can only obtain the estimate ‖u−uh‖0 ≤ Ch. However, since the quantity ‖uh−Π̃n

hu‖0

is also O(h2), we might be able to obtain a better result by a post-processing procedure.

Remark. We note that some of these same ideas have been used to develop hybrid methods
for the approximation of the elasticity equations. For example, see [21].

11.5. Methods of Stenberg. A family of methods proposed and analyzed by Stenberg [29]
chooses for r ≥ 2, n = 2 or n = 3,

Λn−1
h (V) = PrΛn−1(Th;V) + dBr+nΛn−2(Th;V), Λn

h(V) = Pr−1Λn(Th;V),

Λn
h(K) = PrΛn(Th;K),
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where Br+n denotes the space of functions which on each simplex T have the form bTPr−1,
where bT (x) =

∏n+1
i=1 λi(x), i.e., the space of bubbles of degree r + n. To fit our framework,

we then choose the two remaining spaces as

Λn−2
h (V) = (Pr+1 +Br+n)Λn−2(Th;V), Λn−1

h (K) = (Pr+1 +Br+n)Λn−1(Th;K) ∩H1Λ1(K).

Since the sequence

Pr+1Λn−2(Th;V)
dn−2−−−→ PrΛn−1(Th;V)

dn−1−−−→ Pr−1Λn(Th;V) −→ 0

is exact, it is easy to see that the sequence

(Pr+1 +Br+n)Λn−2(Th;V)
dn−2−−−→ PrΛn−1(Th;V) + dn−2Br+nΛn−2(Th;V)

dn−1−−−→ Pr−1Λn(Th;V) −→ 0

will be exact. Again it is not true that dΛn−1
h (K) = Λn

h(K), and so we use the more general
condition,

Πn
hdΛn−1

h (K) = Λn
h(K),

which allows the use of stable Stokes spaces. From the definition of Sn−2, it it easy to see
that when n = 2,

S0Λ0
h(V) = (Pr+1 +Br+n)Λ1(Th;K) ∩H1Λ1(K),

and when n = 3,

S1[Λ1
h(V) ∩H1Λ2(V)] = (Pr+1 +Br+n)Λ2(Th;K) ∩H1Λ2(K).

The proof that the combination (Pr+1 +Br+n)Λn−1(Th;K)∩H1Λn−1(K) and PrΛn(Th;K) is
a stable pair of Stokes elements (cf [23, 15]) gives us precisely what we need to establish (8.3)
and (8.4) for the operators Πn−1

h and Πn
h, i.e., the construction of an interpolation operator

Πn−1
h : H1Λn−1(K) 7→ (Pr+1 +Br+n)Λn−1(Th;K) ∩H1Λn−1(K) satisfying

〈dn−1(τ − Πn−1
h τ), qh〉 = 0, qh ∈ Λn

h(K), ‖Πn−1
h τ‖1 ≤ C‖τ‖1, τ ∈ H1Λn−1(K).

Properties (8.3) and (8.4) for the operators Π̃n−1
h and Π̃n

h are satisfied by the canonical

canonical interpolant Π̃n−1
h : H1Λn−1(V) 7→ PrΛn−1(Th;V). Finally, it is easy to check that

(8.5) and (8.8) are satisfied if we define

Π̃n−2
h : H1Λn−2(V) 7→ (Pr+1 +Br+n)Λn−2(Th;V) ∩H1Λn−2(V)

by

Π̃n−2
h τ = S−1

n−2Πn−1
h Sn−2τ.

When n = 2, this same analysis also carries over to the case r = 1, since the combination
(P2 + B3)Λ1(Th;K) ∩ H1Λ1(K) and P1Λ2(Th;K) is a stable pair of Stokes elements. The
situation is more complicated in three dimensions, since the analogous combination is not a
stable pair of Stokes elements.

Using Theorem 10.1, it is straightforward to derive the following error estimates, assuming
that σ, p, and u are sufficiently smooth.

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
hu‖ ≤ Chk(‖σ‖k + ‖p‖k), 1 ≤ k ≤ r + 1,

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k), ‖dn−1(σ − σh)‖ ≤ Chk‖dn−1σ‖k, 1 ≤ k ≤ r.
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