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Abstract 

A numerical method is developed for obtaining similarity solutions of the differential equations governing the evolution of 
a planar curve in the theory of diffusion along curves. The method is applied to cases in which the solution can be interpreted 
as describing the subsequent evolution (by curvature driven surface diffusion) of the boundary of a three-dimensional body 
that in the limit t--~0+ has a form close to that of a wedge with angle of aperture 24.  In the theory of curvature driven 
evaporation, the analogous problem can be solved analytically, and hence the relation between t, 4), and the retraction of the 
wedge tip can be rendered explicit. Although the differential equations of the two theories are of different orders and have 
solutions that differ in such qualitative properties as preservation of convexity and conservation of volume, it is found that the 
explicit expressions obtained for the retraction of a wedge tip by curvature driven evaporation can be transformed by rescaling 
into expressions that appear to be in perfect agreement with numerical results for retraction of the tip by curvature driven 
diffusion. (~) 1998 Elsevier Science B.V. All rights reserved. 

PACS: 68.35.Fx 
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1. Curvature driven diffusion along curves 

The theory of  curvature driven diffusion in the sur- 
face S of  an isotropic body B is based on, (i) the con- 
stitutive equation [ 1,2], 

q = - K V s H ,  (1.1) 

which relates the mass flux q in S to the surface gra- 
dient of  the sum H of the principal curvatures of  S, 
and (ii) the mass-balance equation [2], 

p v  + divsq = O, (1.2) 

* Corresponding author. E-mail: bcoleman@stokes.rutgers.edu 

which relates the surface divergence of q to the rate 
v of  advance of  S along its exterior normal. The ma- 
terial constant K is proportional to the coefficient for 
self-diffusion in S; p is the (constant) mass density 
of  B. 

From this point on we shall assume that a charac- 
teristic length L has been specified, and we shall use, 
instead of  such variables with dimension of length as 
x, y, etc., the dimensionless variables x / L ,  y / L ,  etc., 
and, instead of the time t, the dimensionless variable 
K t / p L  4. The new variables also will be denoted by 
x, y, t, etc. 

Eqs. (1.1) and (1.2) yield (in the new variables) 

v = A s H  (1.3) 
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and are said to govern the theory of motion by Lapla- 
cian of curvature. That theory has a less develop- 
ed literature than the theory of motion by curvature 
[3], based on the equation v = - k H .  Whereas H 
is given by second-order derivatives of surface coor- 
dinates, AsH depends on fourth-order derivatives of 
such coordinates, and this fact has the consequence 
that a maximum principle employed in the theory of 
motion by curvature does not hold for (1.3). Of some 
interest in materials science is the related fact that a 
theorem of Huisken [4] in the theory of  motion by 
curvature, to the effect that a surface convex at one 
time remains convex at all later times, does not hold 
in the theory of motion by Laplacian of curvature. 

We here discuss a particular class of  solutions of  
Eq. (1.3), namely, similarity solutions for cases in 
which B is a two-dimensional body that in each of  its 
configurations occupies a (not necessarily bounded) 
region of  a fixed plane P; in such cases the boundary 
S is a planar curve C(t). 

The emphasis in the present paper will be on 
similarity solutions for which C(t) represents the 
boundary of  a body that in the past has had a shape 
close to that of a wedge W with angle of  aperture 
24 .  One can imagine a wedge that is evolving by 
curvature driven surface diffusion in accord with the 
constitutive Eq. (1.1), or by curvature driven evapo- 
ration and condensation in accord with the relation 
v = - k H .  (We shall refer to the latter theory as the 
theory of  'curvature driven evaporation', because the 
solutions we shall consider of the equation v = - k H  
will be such that H is of fixed sign.) For curvature 
driven diffusion, the subject emphasized here, we 
shall present, in Section 2 below, a numerical method 
for finding C(t), and we shall calculate the retraction 
of  the tip of  the wedge as a function of t and q~. 
In Section 3 we shall show that the corresponding 
problem in the theory of curvature driven evaporation 
can be solved explicitly, and we shall observe that, 
although the two theories yield qualitatively different 
shapes for the curves C(t), there is a rescaling that 
transforms the explicit expression for the retraction 
of  the wedge tip obtained in the latter theory into 
a formula that appears to be in perfect accord with 
numerical results for the retraction in the former 
theory. 

In general, when discussing the temporal evolution 
of a curve C(t), we write x ---- x(s, t) for the loca- 
tion in the plane P of  the point of C(t) with arc-length 
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coordinate s. The unit tangent and normal vectors of  
C(t), t and n, obey the relations t = x~ = Ox/Ss 
and xn -- - t s .  (The minus sign in this last expres- 
sion results from a desire to identify the normal vec- 
tor for a closed curve with the exterior unit normal 
for the region it bounds and to have the curvature x 
non-negative for curves that are boundaries of  convex 
regions.) Here H = x and A s H  = Xss. If  we let 0 = 
O(s, t) be the counterclockwise angle to t(s, t) from 
a line parallel to a fixed x-axis, then, for an appropri- 
ate choice of  the direction of  increase of s, x(s, t) = 
Os(S, t) and (1.3) becomes 

v = Osss. (1.4) 

Because xs.n = 0, we have v = xt.n, and (1.4) can 
be written 

xt.n = 0sss. (1.5) 

As tt = -Otn and ts = -Osn, successive differentia- 
tion of Eq. (1.5) yields 

-Ot + Osxt.t = Ossss, 

--Ots q- OssX t ' t - O 2 X t ' n  = Ossss s. 

(1.6) 

(1.7) 

In view of  (1.5) and (1.6), Eq. (1.7) tells us that 

OssOt--OsOts : OsOsssss--OssOssss q- 030sss • (1.8) 

This partial differential equation for the tangent angle 
at s for the curve C(t) will play an important role in 
our discussion. 

As we are considering cases in which 0 has classical 
derivatives in s of order five, (1.4) tells us that when 
C(t) is the boundary of  a compact body, 

f v(s, = (1.9) t)ds O. 

C(t) 

This relation expresses the assertion that curvature 
driven diffusion in the perimeter of  a two-dimensional 
body conserves the area of that body. 

1.1. General theory of similarity solutions 

A similarity solution of Eq. (1.8) is one for which 
there are functions 0 and 2/ such that 

OCs, t) = 0(v), v = syCt). (1.10) 
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We shall use the prime sign to indicate derivatives of 
and 7. For each similarity solution there is a constant 
c such that 

(gttt,t~t~)ttttOt, Jr- gm(O')3)/(O')2 = C, (1. l l )  

and _g, /? ,5  = c, i.e., 

7( t )  = (b + 4ct) - ] / 4  (1.12) 

wi th b>O a constant. Curves C(t )  corresponding to 
solutions with c > 0 expand in time, and those for 

which c<O contract in time. When c = O, Ot (s, t) = 
0 and the curve C(t )  either remains fixed or moves 

at constant velocity without changing shape. We re- 
fer to similarity solutions of (1.8) with c > 0, c<0 ,  
and c = 0 as expanding, contracting, and invariant, 
respectively. 

In terms of  q = O(v) = O'(v), i.e., rl(V) = 
7(t)- lx(s ,  t), Eq. (1.11) becomes 

rlm'rl--rlt'trl t + r/'tr/3--cr/2 = 0. (1.13) 

At this point we wish to remark that although Eq. (1.8) 
was derived by considering curves that are boundaries 
of  (two-dimensional) bodies, there are planar curves 
C(t) for which the tangent angle is governed by that 
equation, i.e., which evolve by curvature driven dif- 
fusion along the curve, but which cannot be regarded 
as boundaries. Examples of  such curves are shown in 
Fig. 1 (B and C). Each curve in that figure (which will 
be discussed later) corresponds to an expanding sire- 

8 

A B C 

Fig. 1. Curves C(t) at fixed t corresponding to symmetric ex- 
panding similarity solutions of Eq. (1.8). Each curve is determined 
by numerical solution of Eq. (2.2), i.e., of the system (2.6), with 
q(O) = 1, ~1(0) = q"(O) = 0, and with values of 0"(0) that are 
(to 12 figures): (A) ~"(0) = -0.550291816458 = h~ll], which, 
by (2.7) and (2.8), yields ~ = 2.2012 and 2@ = 27.10°; (B) 
rf'(0) = h~[1] + 10-4; (C) rf'(0) = h ~ [ 1 ] - 1 0  -4.  
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ilarity solution of  (1.8), but only the one labeled A 
represents the boundary of  a planar (infinite) region. 

Whether or not the time-dependent planar curve 
C(t) is the boundary of  a region, if C(t) obeys (1.4) 
and the range of s is ( - o o ,  +oo) ,  C(t) satisfies (1.9) 
if and only if 

lira Xs(S,t) = lim Ks(S,t). (1.14) 
S---~ ~ S---~ - -  O ~  

Later in the paper we shall be concerned with cases 
in which x is an even function o f s  on ( - c ~ ,  +oo) ;  in 
such cases (l.14) is satisfied if and only if 

lim Xs(S, t) = 0. (1.15) 
S ----~ O O  

When Cartesian coordinates are employed and C(t) 
has the representation y = y(x, t), Eq. (1.3) takes the 
form [2], 

O (  tC~x ) Yxx Yt = - ~ x  , x -- (1 + v2) 3/2' (1.16) 

or, equivalently, 

• 2~-J/2,, (x, t) = -X,s(S, t). (1.17) (1 + .YxJ yt 

Each solution of Eq. (1.16) for which 

= ~(~) with ~ = g(t)x, ~ = y(t)y (1.18) 

corresponds to a similarity solution of Eq. (1.8). The 
converse is not true in general: there are similarity 
solutions of (1.8) that cannot be written in the form 
(1.18). However, if the solution T/= O(v) of (1.13) is 
such that, as v varies over its full range, 0(v) is con- 
fined to an interval of length Jr, then, after an appro- 
priate choice 00 of  0(0), integration of the function 
7(') yields a similarity solution of  Eq. (1.8) for which 
cos 0 > 0 on the domain of  0(.), and we can construct 
a solution y = y(x,  t) of Eq. (1.16) that obeys (1.18) 
(with y(t) = (b + 4ct) ua) by putting 

U 

= / cos O(s e) ds e, ~(v) 
t /  

0 

= f sin 0(~) d~ + ~(0), 
o 

O(v) = f r/(~) d~ + 0o, 

o 

(1.19) 
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where ~(0) is arbitrary. (If such a value of  00 cannot 
be found, i.e., if the length of the range of  0 exceeds 
rr, it is not true that y can be expressed as a single- 
valued function of  x and t.) We write C for the curve 
that has the parametric representation ~ = ~(v), ~ = 
~(v) in the Cartesian system (~, ~). The arc-length 
coordinate for C is v, and the curvature of C is r/ = 
r/(v). Once C is known, C(t)  is determined for each t 
for which ~, (t) is a positive number; our construction 
of  t~ implies that the point on C(t)  with s = 0 is on 
the y-axis for each such t. In view of  (1.17), (1.18) 
and (1.12), ~(~) obeys 

c(l  q- y2)-l/2(y--3~y~) = --rlvv(V ). (1.20) 

In this paper we shall discuss expanding similarity 
solutions of  (1.8) for which curvature can be expressed 
as an even function of  arc-length and that can be inter- 
preted as describing the evolution of  infinite wedges. 
Subsequent papers on similarity solutions will deal 
with invariant solutions, contracting solutions, and a 
special class of expanding solutions that appear to be 
of  importance in extensions of  the theory of  thermal 
grooving formulated by Mullins in the paper [2] in 
which the field equation (1.3) of curvature driven sur- 
face diffusion first appeared. In the following section 
we shall present a procedure for finding, by numeri- 
cal solution of equation (1,13), similarity solutions of 
(1.8) with specified asymptotic properties. This proce- 
dure differs from one, based on numerical integration 
of the Eq. (1.20), which was employed by Robertson 
[5] in a study of thermal grooving in cases in which a 
linearization introduced in [2] is not appropriate. 

2. Expanding similarity solutions for diffusion 
along curves 

For the case of  expanding similarity solutions of  
(!.8), i.e., when c > 0 in (1.12), we can, without loss 
of  generality, put c = 1/4 and b ---- 0 and thus obtain 
y ( t )  = t -1 /4 ,  and 

O(S, t )  = 0(V), V = s t  -1 /4 ,  (2.1) 

rllmTl--OtltT11 -Jr r/lit/a--It/2 = 0. (2.2) 

there is a time-invariant curve C ~ with a representa- 
tion of the form y = g(x)  and the property that, for 
each t, C(t)  is asymptotic to C ~ for large x. When 
such is the case, g must either equal or be asymptotic 
to a function f that obeys the identity y f ( x )  = f ( y x )  
for F ,x  > 0 and hence has the form f ( x )  = Ax.  
Thus, we shall seek expanding similarity solutions of  
Eq. (1.8) for which C(t)  for each t is asymptotic to an 
invariant straight line that passes through the origin of 
a Cartesian coordinate system in which (1.18) holds. 
A plausible place to start the search for such solutions 
of Eq. (1.8) is among the solutions of  Eq. (2.2) for 
which 

lim r/(v) = 0. (2.3) 

The solutions that we can find obeying this condition 
are also such that 01, r/", r/"l--+0 as v---~c~ and hence 
obey the relation (1.15). 

One way to write Eq. (2.2) as a system is to put 

(1 = f ( ( ) ,  ( = ((~, (2, (3, (n) = (0, 01, 011, 01'1). 

(2.4) 

However, for a solution 0 of Eq. (2.2) on (0, oo) that 
obeys (2.3), there are generally values v* of  v at which 
Ot(v *) = O'1'(v*)77'(v *) = 0, and, as the fourth com- 
ponent of  ( ' ,  i.e., (~ = 11" = (rf") r, contains a term 
of the form (4(2/(1 = 01110'/~, f ( ( ( v ) )  is not well 
defined where v ---- v*. To overcome this difficulty, 
we write Eq. (2.2) in the form h '  -- g(h) ,  where h = 
(hi, h2, h3, h4) with 

hi = ~, h2 = rf , h3 = ~", h4 = OO r q- rf" /O, 

(2.5) 

and so obtain a system that is well defined and locally 
Lipshitzian for all values of h: 

htl = h2, f f2-~h3,  f f 3 = h 4 h l - h 2 h 2 ,  

h~ = 1 + h 2. (2.6) 

2.1. Symmetric curves asymptotic to invariant lines 

The emphasis here is on cases in which the domain 
of  17(.) and 0(.) is infinite and ~---~ oo as v-~ oo. We are 
particularly interested in solutions of  (2.2) for which 

We are interested in solutions of (2.2) for which r/(.) 
is an even function. We call such a solution symmetric 
because for it the curve (~ has a line l ° of  symmetry 
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Fig. 2. Solutions q(v) = hi (v) of the system (2.6) with hi (0) = 0o ----- I, h2(O) = h4(0) = 0: (A) h3(0)_ = h~; (B) h~(0)~ ---- h*3 4- 10-4; (C) 
h~(O) h ~ - l O - 4 :  (D) h~(O) = h* . - = _ - 3 4 -  1 0 - 1 2 ;  ( E )  h 3 ( 0 )  = h ] - 1 0  t2 .  

(which passes through the point v = 0 and is parallel 
to n(0)). Such curves t~ are shown in Fig. 1. Our 
interest is in cases for which 6" is asymptotic to a 
straight line l + as v--~ cx~ and hence to a straight line l -  
as v - - + - ~ ,  as in Fig. I(A). We place the origin O of 
the system (~, ~) at the intersection of 1 + and l -  and 
choose the ~-axis to be the line l ° of  symmetry, which 
yields not only 00 = 0 in (1.19), but also ~ ( 0 )  = 0 
in (1.20) and hence 

= -4r/v,, (0). (2.7) 

where 6 = ~(0) is the distance from O to (~. If we 
write 2q~ for the angle between l + and l - ,  then 

o o  

= J r / 2 -  lira 0(v) = r r / 2 -  J r/(v) dr. (2.8) 
d 
0 

To find 6" when ~ is given, we employ an in- 
verse method in which we first determine the de- 
pendence of solutions of  (2.4) on 17(0) and then use 
(2.8) to obtain a graph of q> vs. 17(0). As r/ is here 
an even function, it suffices to solve (2.4) for v>_0, 
and in the initial data for the system (2.4), i.e., in 
~'(0) = (r/(0), r/'(0), r/"(0), r/"'(0)), we have r/'(0) = 

r/"(0) = 0. To find r/ as a function of v for a given 
value r/0 of r/(0) we seek the value r/~' of r/"(0) such 
that the (unique) solution h(.) of  the system (2.6) 
with the initial data h(0) -- (ht(0),  h2(0), h3(0), 
h a ( 0 ) )  = (r/0, 0 ,  r/g, 0 )  is  s u c h  that 17(.), i.e., h l (.), has 
the asymptotic property (2.3). We have used a shoot- 
ing procedure for computing approximations to r/~. As 
the procedure is based on the system (2.6) in which 
h3(v) ---- r/t'(v), we denote the approximations to r/~' 
obtained from it by h~. For a given r/0, h~ = h~[r/0] is 
taken to be the value of h3(0) that yields the longest 
range of v on which Ih(v)l is small. 

Several fourth-order and fifth-order numerical 
methods of Runge-Kutta  and predictor-corrector 
type were used to integrate the system (2.6). For each 
choice of  the initial datum r/0 = h 1 (0) and the inte- 
gration method, a value of h~ was computed to 16 
significant figures. We found h~ to be independent 
of the integration method to 12 significant figures for 
step sizes Av with maximum values less than 10 -3. 

A typical example of  our numerical calculations is 
illustrated in Fig. 2, where r/0 ---- 1. The heavy solid 
curve there labeled A is the graph r/vs. v correspond- 

Pt ing to the best approximation h i [ l ]  we found for 770. 
The dashed and dotted curves shown in the figure 
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Fig. 3. Graphs of the following functions of r/o for wedges evolving by curvature driven surface diffusion: (A) ~, given by (2.7); (B) the 
angle of aperture 2~ .  

illustrate the effects of perturbations to h~[1] and con- 
firm the general rule that the better the approxima- 

l/ tion to r/0, the longer the interval of values of v on 
which ih(v)[ remains small. In this case we find that 
if h3(0) = h~, then Ihl(V)l<10 -4 for 13<v<21. That 

!! 
h~ is only an approximation to r/0 becomes clear when 
the solution is extended beyond the range shown in the 
figure; our best value h~ yields values of Ihl (v)J that 
increase monotonically with v for v > 22 and surpass 
0.1 at v = 25. 

The first component hi(.) = ~(.) of the solution 
h of (2.6) corresponding to the best value h~[r/0] we 

?! 
can obtain for rl0 gives us the curve C by (1.19) and 
the angle ~ = ~(r/0) by (2.8). The number h~ gives 
an approximation to 8 = ~(r/0), for, by (2.7), 8(r/0) = 
-4r/~. Graphs of d and 2~  vs. r/0 are shown in Fig. 3. 

In Fig. 1, we show curves C corresponding to the 
graphs of r/vs. v labeled A, B, C in Fig. 2. The curves 
labeled B and C in Fig. 1 illustrate the importance of 

¢! 
having a good approximation to I/0. 

The curves C shown in Fig. 4 correspond to selected 
values of 2~  and were computed in the following 
way: the data used to construct graph B of Fig. 3 were 

employed to obtain a value of rl0 for each specified 

value of 2~ ,  and for that 770 the data used to construct 
graph A of Fig. 3 gave the corresponding value of 
h~[r/0]. From the pair (r/0, h~[r/0]), r/ as a function 
of v was computed by numerical integration of (2.6), 
and the Cartesian coordinates of the points on C were 
calculated from (1.19). In view of (2.1), (1.19) and 
(1.18), C can be identified with C(t) for t = 1, and 

for each t > 0 the curve C(t) is the magnification 

of C(1) by the factor of t 1/4. In cases such as these, 
for which C does not cross itself and is asymptotic to 
straight lines 1 + and l -  as v---~ + cx~ and - o o ,  C(t) 
can be regarded as the boundary at time t of an infinite 
solid body B. 

We take the range of • to be the open interval 
(0, zr/2). For • in that interval, as t---~0+, C(t) ap- 
proaches the lines l + and l -  uniformly in s for 
- o o < s < e ~ .  In other words, the function t~-~C(t) 
describes the evolution for t > 0 of the boundary of 
a body that in the limit t---~0+ has the form of an 
infinite wedge W with angle of aperture 2~.  

Because the relations (1.14) and (1.15) hold here, 
Eq. (1.9) implies that the signed area between C(t) 
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Fig. 4. Curves  E" co r re spond ing  to s y m m e t r i c  expand ing  s imi lar i ty  solut ions o f  Eq. (1.8) wh ich  gove rns  cu rva tu re  dr iven  surface  diffusion: 

(A)  2d) = 10 ° ,  8 = 3.98;  (B) 2q) = 20  ° , ~ = 2.64;  (C) 2q~ = 40  °, 8 = 1.64; (D) 2¢ '  = 60  ° , 6 = 1.17. 
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Fig. 5. The relation between q) and the dimensionless numbers 6 and ~ that determine, by (2.10) and (3.31), respectively, the retraction 
A(t) of the tip of a wedge. In the theory of curvature driven surface diffusion S obeys Eq. (2.7). In the theory of curvature driven 
evaporation $ obeys Eq. (3.24) and its equivalent (3.35). Comparison of the results of numerical integration of (2.2) with evaluation of the 
integrals in (3.24), (3.25) indicates a remarkable coincidence of the graphs of 3 and ~/ , f2  vs. q~. 

and its asymptotes must be zero for all t > 0. This fact 
gives us a further check on the reliability of  our numer- 
ical methods. For 0 < 0 0 <  1.6, we have found the ratio 
of  the signed area to the absolute area of the region 
between the calculated curve C and its asymptotes to 
be less than 10 -3 . 

The retraction A(t) = y(0, t), i.e., the distance from 
the point s = 0 on C(t) to the intersection of  the fixed 
asymptotic lines l + and l - ,  is given by 

A(t)  = t l /14~.  (2.9) 

In conventional (e.g., SI) units, Eq. (2.9) becomes 

A(t) = (Kt/p)l/4~. (2.10) 

Although S is the dimensionless quantity constructed 
using (an arbitrary) characteristic length L as the unit 
of length, that length does not appear in either (2.9) 
or (2.10). This is not surprising, for C(t) evolves by 
similarity tranformations. 

A graph 6 vs. q), based on Eqs. (2.7) and (2.8), is 
given in Fig. 5. In the following section we shall give 
evidence to the effect that the relation between 3 and 
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has the analytic representation: 
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If  we put, as in Section 1, 00 = 00(v) = 0'(v),  we 
here have 00(v) = y(t)-l tc(s,  t) and, in place of (1.13), 
an equation, 

0000't--00 '2 + /7 4 + C00 2 = 0 ,  (3.7) 

f dR (2.11) 
= R [ ( R 2 / 2 3 2 ) e ( R 2 / 2 _ s 2 ) _ l ] I / 2  • 

*/~  

3. Similarity solutions in the theory of curvature 
driven evaporation 

The expanding similarity solutions just presented 
for the theory of  motion by curvature driven diffusion 
along curves have analogs in the theory of  motion 
by evaporation and condensation. For a planar curve 
C(t), the basic equation of  the latter theory (generally 
referred to as the theory of motion by curvature) is v ---- 
-k~c, with k a positive material constant [3]. If  one 
uses, instead of  t and x, y, s, etc., the dimensionless 
variables k t /L  2 and x /L ,  y /L ,  s /L ,  (for which we 
shall here write t, x, y, s . . . .  ), the equation becomes 

v = - x  (3.1) 

and gives the following analog of (1.5): 

xt.n = -Os. (3.2) 

The argument by which we derived (1.8) from (l.5) 
tells us that (3.2) is equivalent to the following partial 
differential equation for the tangent angle 0 = O(s, t): 

OssOt --OsOst 2 4 = Oss-O s -OsOsss. (3.3) 

For a similarity solution, i.e., one with the form 

O(s,t) = 0(v), v = sy( t ) ,  (3.4) 

(3.5) 

(3.3) yields 

(~,,2 ~,4 ~ t~t t , ) / (~ , )2  = C 

(3.6) 

and 

y(t)  = (b + 2ct) -1/2, 

with b_>O. As in the case of  curvature driven diffusion, 
expanding, contracting and invariant solutions corre- 
spond, respectively, to c > O, c<O, and c = O. 

whose solution can be rendered explicit. If  there is a 
finite value of v at which 00(v) = 0, then (3.7) implies 
that 00(v) = 0 for all v and C(t) is (an invariant) 
straight line. If not, we may take ~/(v) to be positive 
for all v and note that the first integral of  (3.7) then 
has the form 

(00'/00) 2 = o~- -002- -2c  In 00 (3.8) 

with ot a constant obeying 

~ >  inf (00 2 + 2cln 00). 
o>O 

(3.9) 

(Of course, for c > 0 the relation (3.9) places no 
constraint on u). When 00 is not everywhere 0, we 
choose the point v = 0 such that 00(0) -- 000 with 170 a 
root of  the equation 

00 2 + 2cln 00 = or; (3.10) 

we then have 00'(0) = 0, the solution of (3.7) takes the 
form 

1/ 

f l) = V(00) = ziz /7[002--00 2 + 2C ln(000/00)] 1/2' 
r/o 

(3.11) 

and r/ is an even function of v. Thus each similar- 
ity solution of  (3.3) corresponds to a symmetric time- 
dependent curve C(t). 

If c < 0  and equality holds in (3.9), the root 000 of  
(3.10) is unique, the solution of  (3.8) is a constant 
equal to 000, and, for t< -b / (2c ) ,  the curve C(t) is a 
circle of  radius R(t) = 00o1(b + 2ct) 1/2. If, for c<0 ,  
(3.9) is an inequality, then (3.10) has two distinct roots 

001) 002) for each ot obeying (3.9); the solution of  (3.7) 

(1) (2) correspond for each such ~ is periodic, and 000 , 000 
to the maximum and minimum values of  00. For c>_0 
the root 000 of  (3.10) is unique for each ce obeying 
(3.9), and the corresponding solution 17 of  (3.7) is an 
even function that is monotone decreasing on [0, oo] 
with O(v)--+O as v--+o~. 
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Here, as in Section 2, we take the x-axis to be per- 
pendicular to a line 1 ° of  symmetry for the curve C(t);  
hence 0(0) = 0 and 

O(v) = f r/(v) dv. 

0 

(3.12) 

When c > 0 ,  l ° is unique, and one can show that, by 
(3.11), 

lim 0(v )  
P ----~ OG 

o o  

= f rl(v)dv 

0 

oo 
dr1 

= f [ ~ _ ~ 2  + 2cln(~o/~)]l/2" 
0 

(3.13) 

The above integral is finite for each O0 > 0. It follows 
that every expanding and invariant similarity solution 
of Eq_ (3.3) for which C is not a straight line is such 
that C is asymptotic to straight lines l + and l -  as 
v---> + c~ and v---->-c~. The angle 2q~ of intersection 
of l + and l -  is 

q~ = J r / 2 - 0 ( e ~ ) ,  (3.14) 

where 0(o~) stands for l imv~oo0(v)  and is given by 
(3.13). 

For invariant solutions, i.e., when c = 0, without 
loss of  generality we can put b = 1 in (3.6). We then 
have v = s, O = ic, and the integral in (3.11) reduces 
to 

K 

s ( x )  = + 

xo K ~  
(3.15) 

which yields an explicit relation between x (s) and the 
maximum value x0 = x(0) attained by the curvature: 

/¢0 
x(s)  -- (3.16) 

cosh(x0s) 

For c = 0, (3.14) yields q~ = 0, which says that in- 
variant solutions produce curves that are asymptotic 
to parallel lines. As we discuss below, invariant solu- 
tions of  Eq. (3.3) that do not correspond to straight 
lines undergo a translation at constant velocity along 
the symmetry axis l °. 

In the seminal paper on the theory of Eq. (3.1), 
Mullins [3] pointed out that when C(t)  has a polar co- 
ordinate representation r = r(tp, t), Eq. (3.1) becomes 

2 r 2 + 2%--rr~o~o 
(3.17) 

r r  t ~ r2 + r 2 

Mullins called solutions of  this equation for which 

r(~o, t) = R(~o)T(t) (3.18) 

invariant under magnification and showed that for 
them 

T(t)  = y( t )  - l  (3.19) 

with y( t )  as in (3.6). When c # 0  and C(t)  has a polar 
coordinate representation r = r (~o, t), our concept of  a 
similarity solution of (3.3) is equivalent to the concept 
of  a solution of (3.17) invariant under magnification. 

Similarity solutions of  (3.3) with c = 0 that do not 
reduce to r / (v)~0 are not solutions of  (3.17) obeying 
(3.18), but are instead of a type that Mullins called in- 
variant under translation. The curves corresponding 
to these solutions have the Cartesian coordinate rep- 
resentation (viz. [3, p. 903]): 

y = y(x ,  t) = V t - V  -1 In cos(Vx).  (3.20) 

Such a curve advances along the y-axis with constant 
velocity V; its curvature x(s)  is given by the invari- 
ant (i.e., c = 0) solution (3.16) of  Eq. (3.7). In the 
dimensionless units we are using here, the velocity V 
in (3.20) equals ~c0 in (3.16), and V -1 is the distance 
between the fixed parallel lines l +, l -  to which C(t)  
is asymptotic for each t. 

In general, when C(t)  has the Cartesian represen- 
tation y = y(x,  t), Eq. (3.1) takes the form [3]: 

Yxx  
(1 + y . 2 ) - l / Z y t  = tO, X - -  (1 + y2)3/2"  (3 .21)  

Each solution of this last equation for which (1.18) 
holds with y( t )  as in (3.6) corresponds to a similarity 
solution of (3.3) and can be constructed from the func- 
tion 06)  using (1.19) with 00 = O. For such solutions 
of  (3.21), y(£)  obeys 

c(1 + .92)- ~/2 (,~-~y~). = ,7, 

7/-- (3.22) 
7,2 ~3/2 " (1 + y~j 
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Of principal interest here are expanding similarity 
solutions; for them, without loss of generality, we put 
c = 1/2 and b = 0 to obtain y(t)  = t -1/2,  v = 
t - l / 2 s ,  and O(v) = t l /2K(s,  t). As in Section 2, we 
place the origin O of the (~, y)-coordinate system at 
the intersection of l + and l - ,  which, together with the 
fact that 5(0) = 0, implies that in Eq. (3.21) we have 
~ (0) = 0, and hence 

20(0) = ~(0) = ~, (3.23) 

where g is, as in (2.7), the distance in the (~, ~)-plane 
between O and the point on C with v = 0. Thus, 
for expanding similarity solutions of (3.3), we have, 
by (3.13) and (3.14), a surprisingly simple relation 
between g and the angle of aperture 2~: 

f a0 2~ = z r -2  [g2/4_~2 + ln(g/20)ll/2. (3.24) 
0 

In this theory, the retraction /~(t) = y(0, t), i.e., 
the time-dependent distance between C(t )  and the in- 
tersection of the fixed asymptotic lines l + and l - ,  is 
given by 

ZX(t) = tl/2g(~). (3.25) 

In a paper [6] on grain boundary motion by curva- 
ture driven evaporation, Sun and Bauer observed that a 
functional relation of a general type (3.25) must hold. 
They stated that the specific function g(~)  'cannot be 
expressed analytically', but calculated it by a finite dif- 
ference scheme applied to a partial differential equa- 
tion equivalent to (3.17). The graph of their numerical 
results agrees with our explicit expression (3.24) for 

(g) (and hence with the equivalent expression (3.35) 
below). 

Eq. (3.11) here yields 

f d. v = 4- [g2/4_02 + 1n(~/2~)11/2 ~. (3.26) 
~/2 

In a study of the evolution of surface grooves by cur- 
vature driven evaporation and condensation, Broad- 
bridge ]71 obtained a solution of Eq. (3.22) (with c > 
0) equivalent to Eq. (3.26). The relation (3.24) is not 
mentioned in [7], for the boundary conditions appro- 
priate to the problems treated are different from those 
occurring here. 

A B 

Fig. 6. Profiles of wedges with angle of aperture 2~ = 30 ° that 
are evolving by (A) curvature driven evaporation; (B) curvature 
driven surface diffusion. 

Eqs. (3.26) and (3.24) permits us to draw the curve 
for a specified value of 2~.  We can again identify 

C" with C(1); here, C(t )  is the magnification of C(1) 
by the factor of t 1/2. Curves C(t )  obtained this way 
describe the evolution of a wedge with angle of aper- 
ture 24' by curvature driven evaporation. The case in 
which 2~ = 30 ° is shown in Fig. 6, where it may be 
compared with our results for the same angle of aper- 
ture in the theory of Section 2. (The curves C seen in 
Figs. 6(A) and 7(A-C) were drawn using Eq. (3.34) 
below, which is equivalent to (3.26) and simplifies cal- 
culation of C.) It will be noticed that in the theory 
of (3.1), the convexity of the original wedge (defined 
by the dashed lines) is preserved in time. Huisken 
proved his theorem about conservation of convexity 
for motion by curvature assuming that the evolving 
surface is closed and compact. We have here an ex- 
ample in which the curve is not compact. Among the 
curves shown in Fig. 7 for several values of ~ is one 
(D) corresponding to the invariant solution (3.20). Al- 
though this curve undergoes a motion of translation, 
rather than expansion, it appears here as a limit for 
small 4' of curves C corresponding to expanding so- 
lutions of (3.3). This is a consequence of the fact that 
if we put yc(t) = (1 + 2ct) -1/2,  v = SFc(t), O(v) = 
y c ( t ) - l ~ ( s ,  t), then, as we let c approach 0 from above 
with rl0 held fixed in the solution (3.11) of (3.7), we 
have not only yc(t)--+ 1 and v--+s, but also 0 (v)---~x(s), 
where K(s) obeys (3.16) with K0 the fixed value of 0o. 
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Fig. 7. Curves C corresponding to expanding similarity solutions 

of Eq. (3.3) governing curvature driven evaporation: (A) 2 ~  = 

20 °, ~ = 3.73; (B) 2 ~  = 15 ° , ~ = 4.45; (C) 2 ~  = 10 °, g = 5.63. 

(D) The curve C(t) corresponding to the invariant solution (3.16) 

with xo = 2.5. 

The area A(t)  of the region bounded by C(t) and 
the asymptotic lines l+, l -  (e.g., of  the shaded region 
in Fig. 6(A)) obeys the relation 

(3.27) 

O G  

dAdt -- f y d s .  

Hence, when the motion is caused by curvature driven 
evaporation, (3.1) yields 

K ds = 2 [ 0 ( ~ ,  t)-O(O, t)]; 

(3.28) 

= 0, and 0 ( ~ , t )  = 

dA 2 f f xds = 
- o c  0 

and, as A(0) = 0 ,0(0 ,  t) 
z r /2-qb,  we have 

A(t)  = (zr-2q~)t.  (3.29) 

In other words, the amount of  material lost to its en- 
vironment by a wedge with angle of  aperture 2 ~  that 
has been evolving since t = 0 by curvature driven 
evaporation is, in conventional units, 

A = (zr--2qb)kt. (3.30) 

In the same units, the retraction of the wedge tip is 

~x(t) = (kt)l/2~(cl)). (3.31) 
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One can calculate the curves C for expanding sim- 
ilarity solutions of  (3.3) by another approach. When 
C(t) has a polar coordinate representation r = r(tp, t) 
with r(~0, t) = R(~o)/y(t),  and c = 1/2 in (3.6), Eq. 
(3.17) yields 

1 R2R~ 2 0. R 2 -t- 2 R I Z - R R  1r + R 4 Jr- (3.32) 

The above equation has the first integral, 

( R' / R) 2 = fl R2e R2/2-1,  (3.33) 

with fl as constant. If  we again place the origin at 
the intersection of the asymptotic lines 1 + and l -  and 
choose the line ~0 = 0 as the line l ° of  asymmetry for 

(i.e., as the j-axis),  then R~(0) = 0, R(0) = Ro = 
g, and (3.33) yields/3 - l  = R2e R2o/2 and 

R 

f ~o(R) = + R[(RZ,RZ)e(R2_R~)/2_I]I/2 o V (3.34) 
Ro 

It follows from (3.34) that the angle 4~ that the 
asymptotes make with the line of  symmetry ~0 = 0 is 
given as a function of g by 

~(~)  = R[(RZ/~E)e(R2_;2)/2_lI1/2 , (3.35) 

which is equivalent to Eq. (3.24). One may use either 
(3.26) or (3.34) to obtain the curves C of the type 
shown in Figs. 6(A) and 7(A--C). Use of (3.34) permits 
one to avoid numerical evaluation of the three integrals 
in (1.19). 

We believe that Eqs. (3.24) and (3.35), giving 4~ 
as a function of ~, are new. The principal result of  
this study is summarized in the caption to Fig. 5. We 
have observed that, within the precision with which 
we are able to integrate the governing equations of  the 
theory of curvature driven diffusion along the curves, 
the graph of 6 vs. ~ obtained by the methods described 
in Section 2 appears to coincide with the graph of 
~/~v/2 vs. q~ based on the Eqs. (3.24) and (3.35). If the 
graphs do indeed coincide, i.e., if the relation 

6(q~) = ~ (~ ) /~ /2 ,  (3.36) 

or, equivalently (2.11), holds exactly, it is an interest- 
ing result, because the theories of  motion by curvature 
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driven surface diffusion and curvature driven evapora- 
tion give rise to t ime-dependent curves C(t )  that differ 
in such qualitative properties as convexity and conser- 
vation of area. 

Added note (February 1998): 

solutions of two differential equations were deliber- 
ately extended as far as feasible into the range near 

= 0 ° that is non-physical (for the fourth-order equa- 
tion) and were such that the interval between succes- 
sive values of  ~ varied from 3 x 10 -4 to 5 × 10-1 de- 

grees, with that interval smallest for ~ near to 0 °. 

After this paper was submitted for publication in 
May 1997, the paper listed below as [8] was published 
and seen by us. In [8] similarity solutions obtained 
by a numerical procedure differing from the present 
are employed to describe the motion resulting from 
curvature driven diffusion in the surface of a solid 
film wedge on a substrate, and a detailed discussion is 
given of  physical applications of wedge-like similarity 
solutions. A film wedge making a contact angle ¢J with 
a substrate obeys the theory developed here when/3 ---- 
90 ° . 

Graphs of 3 vs. q~ are presented in Fig. 10 of [8] 
for /3 = 90 °, 135 °, and 180 °. These appear to be 
piecewise linear approximations based on calculated 
data points spaced by 10 ° in q~. The corresponding 
problem in the theory of curvature driven evaporation 
is not examined there, and hence the present relation 
(3.36) between results of the two theories is not given. 

As is remarked in [8], for sufficiently small values 
of  q~ the theory of  curvature driven surface diffusion 
yields a curve C that intersects itself and can no longer 
be interpreted as a boundary of  a wedge-like region. 
We found that self-intersections of  6" occur when q~ is 
in the interval 0<4~ <0.190 °, which appears to agree 
with Fig. 5 of [8]. (In the theory of curvature driven 
evaporation, our exact expressions (3.34) and (3.35) 
imply that C does not intersect itself for any q~ > 0.) 

The calculations of  q~(3) that we performed to 
verify the validity of the relation (3.36) between 
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