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LOCAL ERROR ESTIMATES FOR A FINITE ELEMENT METHOD
FOR HYPERBOLIC AND CONVECTION-DIFFUSION EQUATIONS*

RICHARD S. FALK' AND GERARD R. RICHTER?

Abstract. Local error estimates of near optimal order are derived for a finite element method
for hyperbolic and convection dominated convection-diffusion equations in a domain Q@ C R2. The
method generates, in an explicit fashion, a continuous piecewise polynomial approximation of de-
gree n > 2 over a triangulation of 2. The scheme is shown to propagate disturbances a distance
O(vhlog %) in the crosswind direction, where h is the meshsize. The analysis uses test functions
which depend only on the crosswind variable. It is also shown to be applicable, in a parallel fash-
ion, to the discontinuous Galerkin method, thus underscoring the close interrelationship of the two
methods.
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1. Introduction. In this paper, we continue the analysis of a continuous finite
element method for hyperbolic equations that was begun in (3] and later extended
to convection dominated convection-diffusion equations in [15], [16]. Here we derive
local error estimates for the method. We show how our analysis can be applied, in a
parallel fashion, to the discontinuous Galerkin method, and develop a close relationship
between the two methods. For ease of exposition, we shall deal only with constant
coefficient problems; the extension to variable coefficients involves only minor but
potentially diversionary technical details.

We first consider the case of a pure hyperbolic equation

a-Vu=f inQ,
{u=g on I'in (),

where 2 C R? is a polygon with boundary I and « is a unit vector. Here I'in(Q) is
the inflow part of I', defined by {z € I'|a - n < 0}, where n denotes the unit outer
normal. Let Q be triangulated by a quasi-uniform mesh of size h, with minimum angle
bounded away from zero, in such a way that | - n| # 0 for all triangle sides. The
triangles then divide into two categories: those with one inflow side and two outflow
sides (type I), and vice versa (type II). In addition, they can then be ordered explicitly
with respect to domain of dependence (cf. [11]), creating the possibility that a finite
element approximation can be generated in an explicit fashion, element by element.
Two such methods originated in the neutron transport literature in an article by Reed
and Hill [14]. One yields a discontinuous approximation, the other a continuous one.

In the discontinuous Galerkin method, the approximate solution up, of degree
n > 0, is taken to be an interpolant (perhaps discontinuous) of the given initial data
g on I'in (). The triangles are then processed in an explicit order, with the following
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inner product relations enforced in individual triangles T":

(1L1) (o Vun,on) — / (uf — u;)one - ndr = (f,0n) for all vy € Pu(T).
1-‘in(T)

Here P(T) denotes the space of polynomials of degree < k over T, and u, (u})
denotes the upstream (downstream) limit of up, on interelement boundaries, the latter
parameterized by arclength 7. The continuous method is similar, except that n > 2,
the interpolant of g on I'iy(Q2) must be continuous, and the inner product relations
(1.1) are changed to

(1.2) (- Vun,vr) = (f,vn) for all vy, € Pp_y(T),

where [ denotes the number of inflow sides that T has. The test spaces are thus dif-
ferent for type I and type II triangles, reflecting the different number of degrees of
freedom remaining for uy, in the two types of triangles. An advantage of this method is
the reduced number of unknowns to be solved for in the approximate solution. In the
vicinity of a discontinuity, however, the additional degrees of freedom of the discon-
tinuous Galerkin method could be potentially useful. We remark that the continuous
method is also applicable over rectangular meshes (see [21]).

The discontinuous Galerkin method was first analyzed by Lesaint and Raviart
[11], and subsequently by Johnson and Pitkdranta [9], who established the error esti-
mates

(1.3) llun = ulla + fun — ulr,,. @) < CR™/ 2 luflnts,0,
(1.4) lle - V(un —u)lla < Ch™||ulln+1,0-

Here and throughout the paper, C' denotes a generic constant, independent of u and
h,and || - |l | * Irgw(n), and || - ||z, denote the norms on L2(£2), L?(Tout(2)),
and H*(Q), respectively. In [8], a methodology is given which can be used to extend
(1.3) and (1.4) to a corresponding set of local error estimates, showing that crosswind
propagation of the numerical solution is limited to a distance O(\/E log %) The con-
tinuous finite element method (1.2) was analyzed in [3], where the following global
bounds were derived:

(1.5) llun —wlla + [un — Ulro. @) < CA™ /4 luflnta,0,
(1.6) IV (un = w)lla + [(ur = W)r|row @) < CA* 2 |[uflnt1,0,
(1.7) e - V(un —w)llo < Ch*[[uflntr,0-

In deriving these estimates, it was assumed that o - n is uniformly bounded away
from zero and that up can be computed layer by layer (a precise characterization is
given in §3) in O(h—1) steps. These assumptions are retained here. (We remark that
although one can construct a mesh which violates the latter assumption, we view such
a situation as anomalous.) Local versions of (1.5), (1.6), and (1.7), indicating the
same O(ﬁlog %) crosswind spread as for the discontinuous method, will be obtained
in this paper. The existence of such local error estimates is an important attribute of
a numerical method for hyperbolic equations, indicating a correspondence in domain
of dependence properties of the discrete and continuous problems.
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For a convection-diffusion equation dominated by convection, the standard Ga-
lerkin method typically exhibits instabilities (see, for example [4]), and an appropri-
ate remedy is to instead use a finite element discretization geared to the hyperbolic
limit. Both the continuous and discontinuous Galerkin methods can be extended to
convection-diffusion equations in ways that preserve their explicitness and yield similar
global error estimates, provided the diffusion term is of strength no greater than O(h),
where h is the mesh size. These extensions are given for the continuous method in [15],
[16] and for the discontinuous method in [17]. For the continuous method, the simplest
option is to include the additional diffusion term in the inner product relations (1.2),
otherwise implementing the method exactly as in the diffusionless limit. Alternatively,
for either method, we may treat diffusion in a way analogous to the discontinuous Ga-
lerkin discretization of the convection term in (1.1), resulting in an integral over I'in (T')
involving the diffusion term. These schemes will not use any boundary data given for
u on Loyt () since they are explicit. The resulting outflow boundary layer, whose
width is of the order of the diffusion coefficient [20], will therefore not be present in
Up,.

Another finite element method that can be applied to convection dominated
convection-diffusion problems is the streamline diffusion method, developed by Hughes
and Brooks [5]. This method is like the standard Galerkin method except that the test
functions are augmented by a multiple of their streamline derivatives. The resulting
discrete system is implicit, and has the same connectivity as the standard Galerkin dis-
cretization. Johnson et al. [6], [7], [8] have shown that for nth degree polynomials, the
resulting finite element approximation up has O(hn+1/2) accuracy for u € Hn+1(Q).
They have also shown [8] that such an estimate holds locally in regions of smoothness,
with crosswind numerical spread limited to a layer of width O(v/hlog %) For a diffu-
sion coefficient of size < O(h), improved estimates of crosswind spread were obtained
in [10] for the case of linear approximation, in part by adding an artificial crosswind
diffusion term. Pointwise error estimates were also given in [10], with further refine-
ments in [12]. The survey paper [4] contains additional references on the streamline
diffusion method.

Our purpose in this paper is to establish local error estimates for the continuous
method of Reed and Hill via an approach that is also applicable to the discontinu-
ous Galerkin method, and which facilitates the elucidation of basic interrelationships
between the two methods. In §2, we state our basic assumptions and notation, and
derive some preliminary results pertaining to the weighting function to be used later
in obtaining local error estimates. In §3 we give unified, parallel analyses of the dis-
continuous and continuous methods (1.1) and (1.2), extending work begun in [18]. We
use as independent variables the characteristic and crosswind variables s and ¢, respec-
tively, and apply rather simple test functions depending only on the crosswind variable
t. This will lead directly to stability results, expressed in terms of this variable, on
triangle boundaries. It will be seen that an important feature of both methods is the
role of L2 projections across the boundaries of type II triangles. For the continuous
method, this analysis is a considerable simplification over that given in [3].

In §84 and 5, we derive local error estimates for the continuous method (1.2).
Since the method is explicit, numerical effects cannot propagate upwind; thus only
the crosswind direction needs to be dealt with. To obtain local error estimates, we fol-
low the basic approach in [8]. However, our task is facilitated by the crosswind variable
analysis of §3, which lends itself naturally to the introduction of a ¢t-dependent weight-
ing function. For a strip D C € contained between two characteristics, and a larger
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subset D+ of Q consisting of points lying a distance no greater than O(v/hlog(1/h))
from D, we derive the following “local” analogue of (1.5):

(1.8) llun—ulp+[un—ulr,.. oy < Chm+1/4 (||u||n+1,D,‘: + llulle + lulr,@ + ||f||n) ;

and similar analogues of (1.6) and (1.7). Here D} = {T € Q|T N D+ # 0}. These
localization results generalize (1.5)-(1.7).

In §6, we show how the analysis can be extended to convection-diffusion equations
of the form

a - Vu — (augy + bugy + cuyy) = f in Q,

with appropriate boundary conditions specified for © on the boundary of . We
assume the diffusion coefficients a, b, ¢ are of magnitude no greater than O(h), and
that «, as before, is a unit vector. In addition, we require that the diffusion term,
when expressed in terms of s and ¢, have a dominant nonnegative u coefficient. Qur
framework includes as special cases the elliptic and parabolic equations

a-Vu—eAu=f, oUt + AUz — €Uze = f,
where € = O(h). We shall obtain local error estimates for the method
(et Vup — (a(un)zz + b(ur)ey + c(un)yy), vr) = (f,vn)  for all vy, € Pp_y(T).

The result will be a pair of local error estimates, of the type (1.8), analogous to (1.6)
and (1.7). Of perhaps greater significance, this section serves as an illustration of how
the crosswind variable analysis of §3 can be applied to problems with diffusion. We
believe it is also applicable to the other extensions of the continuous and discontinuous
methods alluded to previously.

2. Notation and preliminary results. For a domain 2 with boundary T,
we have defined I'in(Q2), the inflow portion of T, as {(z,y) € ' : a-n < 0}. We
further denote by [out(f2), the outflow portion of I' corresponding to points on I' at
which a - n > 0. Most of the analysis of the paper will be done using the variables

s = a1z + a2y, along the characteristic direction a, and t = asx — a1y, in the direction
B = (a2, —a1) perpendicular to . Note that

us=a-Vu and u;=p0-Vu.
In this notation, a generic triangle T' may be described by
T= {(37 t) 18 € [siﬂ(t)a sout(t)]7t € [tO,tI]}

(see Fig. 1.) and T'in(T) and I'ou(T) can be parameterized by t € [to, t1].
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S

Fic. 1

To simplify notation, we denote the interval [to,t1] by L, set h = t1 — to, and
define for an arbitrary function v, via(t) = v|r,, and vout(t) = v|r.,.. For a function
v(t) defined on [to,t1], we define an extension Ev to T by Ev(s,t) = v(t), i.e., Ev
extends v as a constant in the characteristic direction . We shall frequently make
use of the facts

(21) (Ev)out(t) = (Ev)in(t) = v(¢),
(2.2) (Bv) = BV,

and for any function z(t),
(2.3) Elz(t)v(t)] = z(t) E[v(?)].

We assume that T satisfies a minimum angle condition independent of h. The
notation (-, -) is used to denote the L2 inner product over T and ||- || is used to denote
the norm in the Sobolev space H*(T'), with k omitted when it has value zero. The
L2-norm over L = [tg,t1] is denoted by | - |.

In our analysis, we shall make use of several interpolants and projections. Let
P, (D) denote the space of polynomials of degree < n over the set D. We denote by
P, the L2 projection over T into P,(T) and @, the L2 projection on L into P,(L).
For u € C%(), we define an interpolant uy € S = {vp, € CO(Q) : vp|r € Pu(T)} as
follows.

(1) wr(ai) = u(as) for all triangle vertices as;
(ii) fI‘i (ur —uw)rtdr =0, 1 =0,1,--- ,n — 2 for all triangle sides I';;
(iii) Jp(ur —u)gdzdy = 0 for all ¢ € P,_3(T) and all triangles T

It is straightforward to show (for example, using the techniques in [1, Chap. 3]), that
ur has the following approximation properties.

@4) lu—urlly < Ch 1 ffullnss,  5=0,1,-+,m,
and

(2:5) lu —urljray < CRPH 25 lullngs,  §=0,1,-+,m.
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It will also be convenient to have a one-dimensional version of this interpolant
defined on the interval L = [to,t1]. Let Qh¢ € Pn(L) be defined by

(Qro — ¢)(to) = (@7 — 8)(t1) =0,

/t "(Qud— ) (H)a(t)dt =0 for all g € Pr_s(L).

Choosing g = —r"(t) for r € P, (L) and integrating by parts, it follows that
t1
| @o-¢yr®a=o,
to

and so [Q4¢] = Qn-14.

In deriving local error estimates for our approximation schemes, it will also be
useful to have the following results. Consider a quasi-uniform partition of I = [a, b,
comprised of subintervals I, of width h. Letting ¢y and ¢1 denote the endpoints of the
subinterval I, define for a positive function v, the weighted L2 inner product on a
typical subinterval I, by

(o= | " wf(t)a(t) dt

and the ¢ weighted norm on I, by

o= wi at "

We shall assume that 1) satisfies the following hypotheses:

maxy, ¥ <
(2.6) i > C,
(2.7 max [¢p'| < Ch~1/2 max 1,
Ih Ih

where C' denotes a generic constant independent of h. (We note that (2.6) follows
from (2.7) for h sufficiently small.) The two choices of 9 that we shall use, for which
the above are easily verified, are ) = 1 and for fixed t* € I,

1
Pt t*) = —— —|t—t*|/Vh,
) 2\/}_7,6

Using (2.6) and (2.7), we find that ¢ must satisfy the following additional properties.
LEMMA 2.1. Suppose 1 satisfies (2.6) and (2.7). If v and w are L? orthogonal

on Iy, then

(28) (v, w)y| < ChH/2Jv]y|wly.

If 1f1l+ 2l < C(lgal + llgzll), then

(2.9) |fily + [ f2lle < C(lg1ly + llg2lle)-
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Proof. To prove (2.8), we let £ € I,. Then since ¥ = ¥(f) € Po(In), we get,
using (2.6) and (2.7), that

t1 t1

(v, w)y| =

Pvw dt’ <

Povw dt' +

t1
(% — oy dt‘
to

to

t1
< Chmax|v/| / o] dt
In to

to

maxr, 'l/) ¢

1
< Chl/? Plollw] dt

Ip to

< Ch/2Jvly|w]y.

Inequality (2.9) follows from (2.6) by observing that if | fi] + ||f2]] < C( g1l +
llg2l), then

[£113 + 12117 < max (| fil2 + [ f2]|2) < C max (|91 + ||g211)
[to,t1] [to,t1]

maXig,,t,] (

2 2 2 2
- g1l5 + llg2 < C(|lg1l2 + llg211%)- a
im0 + o) < Cnlf + o)

3. An analysis of the basic methods. Our aim in this section is to explore
the relationships between the continuous and discontinuous Galerkin methods and
to show how a simple and parallel analysis of these methods can be given by using
the characteristic and crosswind variables. These results are obtained for the model
problem a - Vu = f and are also intended to provide some basic motivation for the
more general, but more technical results to follow in the remainder of the paper.

We first consider the continuous method for & - Vu = f:

(3.1) ((un)s,vn) = (f,vn),  vh € Pny(T).

For a type I triangle, it follows from the fact that (us)s € Pn—1(T) that
('U'h)s = Pn—lf-

Thus

(3.2) un(s,t) = up,in(t) + P,_1fds

Sin (t)

for a type I triangle.

To characterize uy, locally on a type I triangle, it is convenient to define a quantity
U(s,t), (s,t) € T as the solution of the equation Us = f with initial data Ui, = up in
on I'in(T). Observe that for v, € Pr_2(T),

t1
0= ((Uh - U)vah) = - (Uh - U, (vh)s) + (Uh,out - Uout)'vh,dt-

to

We first take v, = —Ew'(t), where w € Pn_1(L), and we integrate by parts to obtain

tl tl
0= —/ (uh,out - Uout)w,(t)dt = / (u;z,out - U(’mt)’w(t)dt,
to tO
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where the fact that upout = Uout at t = to and ¢ = t; has been used. Since ug,out €
P,—1(L), we infer that

(33) u;t,out = Qn-1Ugy;

for a type II triangle. We next take vy € Ppn_o(T) to vanish on I'out(T); (vn)s can
then be an arbitrary member of Pn_3(T"). We conclude that

(3.4) Pn—3uh = Pn—3U.

Equation (3.3) and the given data up, = up in on I'in(T) determine uy, on the boundary
of a type II triangle T. The moment conditions (3.4) then complete the specification
of a unique up, in the interior.

We now obtain a similar characterization for the discontinuous method. For our
model problem, up, satisfies

131
((un)s,vn) + / (u,"l',in - u,:,in) vpdt = (f,vn), vy, € Pr(T).
to

We first consider the case of a type I triangle, where the situation is somewhat more
complicated than for the continuous method. Choosing vy, = [s(t) — sin(t)]g With
q € Pn_1(T), we get, from the fact that s(t) — sin(t) = 0 on I'ix(T) for a type I

triangle,
([s(@) = sin (D) (un)s, ) = ([s(t) — sin (D)1, ).
Since (up)s € Pn—1(T) and s(t) — sin(t) > 0 in T, we get that
(uh)s = Rn—lf,

where R,_1f denotes the projection of f into Pp_1(T') with respect to the weighted
L2 inner product [f, q] = ([s(t) — sin(t)]f,q). Using this result and choosing vy, = w(t),
we get

t1
[ i = @)t = (7 = Rocafyw)
to
t1 Sout (t)
= [ - Rucanyas| wiy a
to sin(t)
Since u,";in —Upin € P,(L) on a type I triangle, we conclude that
_ sout(t)
u;'tin ~ Upin = Qn/ ® (f — Bn-1f) ds.
Now up(8,t) = up 1 + [uf 1 — up il + [, ssm(t) (un)s ds. Thus
sout(t) s
(65  uls) =it Qu [ (f-Reaf)ds+ [ Ruafds
s;n(t) Sin(t)

for a type I triangle.
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For a type II triangle, we define U as before with u, ;, as the given inflow data.
For vy, € Pn(T), we have

t1
0= ((un — U)s,vn) +/ (uf i — Uin)vndt
i,
0 .
— —(un — U, (vn)s) + / (47, o — Uous)ndt
to

after integrating by parts. Taking v, = Ew, where w € Py (L), we conclude that
(36) u}:,out = QnUout.

Moreover, for arbitrary wy € Pn—1(T'), we may take v, € Pr(T') to satisfy (vn)s = wh,
vp, = 0 on I'oys (7). Thus

(3.7) Pr_1up = Py_qU.

It is easy to check that wp is completely defined in a type II triangle by (3.6)—(3.7).
Note the close correspondence of (3.2)—(3.4) with (3.5)—(3.7). For the continuous
method, (3.2) and (3.3) can be used to derive a global stability result for uj on
interelement boundaries, while for the discontinuous method, (3.5) and (3.6) lead to
global stability of u, on interelement boundaries.

We now give an error analysis for the two methods using test functions that
depend only on the crosswind variable t. This will illustrate the basic idea of the
analysis to follow in this paper. We first consider the continuous method. The error
e = up — u satisfies (es,vp) = 0, vp, € Pp_o(T), for a triangle of either type. For
vp = —Ew!(t), where w € Pp_1(L), we get

t1 131
0=— [ (eous — em)w(t)dt = / (ehe — €l Y (t)dt
to to

after integrating by parts. We choose w = Qn_1(€},; + €/,) to obtain

1Qn-1€5? = |Qn—1€],|%.

This is equivalent to

Iecl)utl2 + I(I - Qn-l)e;nlz = |6;n|2 + |(I - Qn"l)ei)utP'

An estimate of the error will follow upon estimating |(I — Qn—1)el,;|? and summing
over all triangles. For a type Il triangle T', (I—Qn—1)u}, 5, = Osinceu}, ... € Pn_1(L),
S0

1(I = Qn-1yeout]l = 1T = Qnu-1)ufyel < ChR"=1/2||uflpta,7.

For a type I triangle, from (3.2) and the corresponding relation for u,

8

(3.8) w(s,t) = uin(?) + / fds,

8in (t)

we obtain
d Sout (t)
li

U;L,out - ui)ut = ’u’;;,in = Uiy — EZ (I - P —l)fds'
sin(t)
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Hence, since uj, ;;, € Pn_1(L),

d 3out(t)
(1= Qn-1)equl < 1(J—Qn-1)uip |+ |%/ © (I=Pn-1)fds| < Ch"=1/2|ullns1,r
via standard estimates. Thus for a triangle of either type,
(3.9) leoul® < leful? + Ch2=2Jull? 1

In formulating a global error estimate, it is convenient to think of u) as evolving
in layers S;, defined by:

So =0,
S; = {T eN: Fin(T) CTin (Q - Uj<iSj)}, 1=1,2,---.

Note that up can be developed in parallel in the triangles within a layer. Thus we
have, in analogy with (3.9), that

|ei)ut|2i S Ie:)utl%‘i_l +Ch2n—l”u"%hn+1,

where Fy = I'in(Q?) and F; is the “front line” to which u;, has advanced after it has
been computed in ©; = U;<;S;. Iterating the above inequality, we obtain the global
error estimate

(3.10) leouslt, < leil, + CR2[ull}, g < CR2=ulld, oy

The discontinuous method can be treated in an analogous fashion. The error
satisfies

171 131
0= (es,vn) — / (e} — e )vndt = —(e, (vn)s) + / (egut — €i)UndL.
to to

For vy, = Ew, w € Py(L), this becomes
t1
(egut — € )wdt = 0.
The choice w = Qn (e, + €;,) thus yields
| @negul® = |Qneg, |2
Equivalently,
leouel® + 1T = Qn)e P = le P + 1T — Qn)egusl.
For a type II triangle, uj, ., € Pn(L), so
(T = @n)equl = 1T = Qn)ugyl < Ch* /2 ullnga,r.

This bound also applies to |(I —Qr)es .| on a type I triangle, as can be seen by using
(3.5) and (3.8). We therefore conclude that

lebuel? < leql? + Ch2n 4|2 ¢
for a triangle of either type. The corresponding global error estimate is
(3.11) lequeld < lewly, + CR2ulld, oy < CREMH g, s

The basic global error estimates (3.10) and (3.11) for the two methods may be
used to derive interior estimates over ;. In the next section, we shall obtain such
estimates for the continuous method in a more general weighted norm setting.
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4. Stability results for a single triangle. We begin our local analysis of the
continuous finite element method by deriving weighted norm stability results over a
single triangle for the simple hyperbolic problem a-Vu = f. These results will provide
the basic tools for the global stability and error analysis for this problem and also for
the convection-diffusion problem in §6. As a consequence of the fact that up is well
defined, we have the following.

LEMMA 4.1. If up, satisfies (3.1), then

(4.1) lunlly < C(Vh|unnly + hll Pa-iflly),
(42) IVunlly < C(Vhluy soly + 1Paiflly)-

Proof. We will prove these bounds for 1 = 1. They will then follow for general
1 satisfying (2.6) and (2.7) by (2.9).

To prove (4.1), we will show that |up,in| = ||Pa—if|| = 0 implies up, = 0. The
desired result then follows by scaling, in view of the fact that P,,—;f = Pp_i(up)s. For
a type I triangle, the representation (3.2) leads directly to this conclusion. For a type II
triangle, it is easy to see that the characterization (3.3), (3.4) of uj, remains valid for U
defined by Us = Pp—2f, Uin = uh,in. Moreover, if |up in| = ||Pn—2f|| =0, then U = 0.
Thus by (3.3) and (3.4), |u}, oyl = [Pr-sun| = 0. From |up il = luh ouel = 0, we
deduce that up vanishes on I'(T') and write

Uup = /\1/\2)\3wh, wp, € Pn_3(T),
where A;i(s,t) € P1(T) is the distance from (s,t) to side I'; of T, i = 1,2,3. We take
the inner product of up with wy and use || P,—sup|| = 0 and the positivity of A1 A2A3
inside T to conclude that wy = 0, implying up = 0. This establishes (4.1) for a type

II triangle.
To verify (4.2), we apply (4.1) to up, — EQoun,in to get

llun — EQounnl < C (\/f_t lur — EQoun, in| + hlan—zf”) )
and use this in combination with the bounds

IVurll = IV(un — EQoun,in)|| < Ch|un — EQotn,inll,
|uh - EQOUh,inl <Ch 'u;w,,inl' 0

Using Lemma 4.1, we are able to prove the following.
LEMMA 4.2. If up satisfies (3.1), then

ws) I(n)slly + 11 (wn)e = BQn1tty ialli + VRl guy = Up salv
< C(VRI(I = Qn-1)up suly + [ Pa-iflly)-
Proof. By (2.9), it is enough to prove the result for ¢ = 1. First note that
12 out) < 1(WR)sIEgw (@) + 1(WR)el0gw (1) < Ch=Y2|[ Vs
Combining this result with (4.2) (with ¢ = 1), we get

(4.4) IVunll + VA [ty gyl < C(VR Ly il + | Paci f1))-
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Next observe that w, = up — EQhup in € Pn(T) and satisfies (wr)s = (up)s. Applying
(4.4), with uy, replaced by wp, we obtain
ll(un)sll + llun — EQiuninlell + VA |ty oy — (Qhuhin)|
< C(Vh w5, — (@htnin) | + | Paci 1))
Since
(Q;uh,in)l = Qn—luh’in

and
[EQhun,inlt = E(Qhtn,in) = EQn-1uy,

we have that
ll(un)sll + l1(un)e = EQu-1up sl + VA 1y, oy — Qr1t 3,
< C(VRIU = Qn-1)up sul + | Pa-if11)-
The result follows by writing
uh,out - Qn_luh,in = Up out ~ Uh,in + (I - Q""l)uh,in

and applying the triangle inequality. O

Using these basic estimates, we now derive stability results for type I and type II
triangles, which have the property that they can be iterated to prove global stability for
the method. We shall make extensive use of the test function —[EMup]: € Pn—2(T),
where

Muyp, = Qn_li/)Qn_l(u;z,out + u;l,in)'

The following lemma indicates the effect of this test function on the two terms of (3.1).
LEMMA 4.3. For a triangle of type I,

45)  —((un)s, [EMunle) 2 (1 = COR)lup, gueld) = 1up 5nlfy = Clup oue = Up sl
For a triangle of type 11,

(46)  —((un)s, [EMunle) 2 |up oulf) — (1 + CR)lup % + 51T — Qu1)up, 3
For a triangle of either type,

(4.7) |(f, [EMug)e)| < C(h=2||Pozfll, + [IVuall})-

Proof. Integrating by parts and using the fact that ul,, = ul at t = to and
t = t1, we obtain

—((un)o, [EMun}e) = — / o

131
= w[(Qn—lu;z,out)Z - (Qn—lu;z,in)z] dt

to

!’ !
= |Qn_1uh,out|3; - |Qn"‘1uh,in|12/)‘

t1
up|[EMuplia - ndr = / (u;l,out - u;l’in)Muhdt
to
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On a type II triangle, we have Q’n_lu;z,out = ulh,out, and hence using (2.8) and
the arithmetic-geometric mean inequality, we get
lQn—lu;,inI?p = I“h,inli - (I - Qn—l)“h,inEp - 2<Qn—1uh,in, (- Qn—l)“h,in>¢
< I"h,inlfp - - Qn-l)“h,inlfp + Ch1/2|Qn—1“h,in|¢|(I - Q"—l)uh,inw
< luh,in]'zz/; - %l(I - Qn—l)uh,in]?p + Cthn—-luh,inI'?/)
< (L+ Oy 3013 = 31T = Qu-1)uy 13-
Inequality (4.6) follows directly. On a type I triangle, Q"—lulh,in = u;l,in and hence
using (2.8) and the arithmetic-geometric mean inequality, we get
|Qn—1uh,out|12/) = |uh,out|$: - |(I - Q"_l)uh,outltzp - 2<Qn‘luh,out’ (I - Q"“'l)uh,out>‘¢'
2 Iuh,outlfp - I(I - Q"—l)uh,outlﬁ
— ChY2|Qn-1uy, el |(T = Qu—1)tty guily
2 Iuh,outl'?/; - 2|(I - Q"‘_l)uh,outl'?/; - ChIQ""luh,outlzz/)'
Z (1 - Ch)'“h,outli - 2|(I - Qn—l)uh,outlf?ﬁ'

Moreover, by (2.9),

’ ’ ! ! ’
|(I - Q"—l)uh,out|¢' = |(I - Q"'l)(uh,out - uh,in)|1/’ < Cluh,out - /u'h,inl'»b'

Inequality (4.5) follows by combining these results.
To establish (4.7), we use the following sequence of inequalities.

(£, IEMunle)| = |(Paaf, [EMunle) < || Paza fIIIEMunl|
< | P2 fICHh1/2 | Qno1%Qn—1(th oy + tp 1)l
< [|Pa-2f|Ch=1/2 |9Qn—1(up gy + Up 30
< || Pa2 fIICH=/2[max ]/2|Qn-1(t), gy + Up 1)l
< [max y=1]1/2|| Pa_s ||y Ch=2/2[max ]2}, oy + Up sl
< ChY|Pa—2f |yl Vunlly
< C (2| Pazafll}, + [ Vunl) 0

The inequalities (4.5), (4.6), and (4.7) can now be used in conjunction with (4.2)
and (4.3) to obtain a global stability result for u;L. Before doing so, we derive a bound
which will enable us to control uy as well.

LEMMA 4.4. For a triangle of type 1,

(4.8)

fun outld, = lunnl}, < C {1 [luninl? + B3/20u 3] + B2 Pacs fI3, + | Pz fI3 }

For a triangle of type 11 and for any positive bounded e,
(4.9)

lunoutl?, — [unnl? <C {eh3/2|(1 — Qu-1)up l3 + € 1R [|uh,in|,2p + h3/2|u;m|,2,,]

+ e Pazafl3}
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Proof. First note that

|[un,out|?, — |tn,inl2 = / uya-ndr = / (u?)otpdz = / (un)s2¢up dz
I(T) T T

- [ (u)o(I = Paz)@un) do + [ fPacs(2pun) da
T T

< N(un)s (T = Pr—2)(2%un)ll + 2l Pa—2flly llunlly
< Chl|(un)s[[IIV ($un)ll + 2[| Pa—2flly [lunlly-

Now using (2.6) and (2.7), it follows that

I (un)s IV (Pun)ll < l(wn)sl (19 Vurll + lunVep|)
< O|l(un)sl| ([ Vunll + h=2/2|[punll)
< Cll(un)slly (IVunlly + h=1/2||unlly).

Combining these results, we obtain for positive € that

[un,out|?, — [un,inl3 < Chll(un)slly(IVurlly +h=2/2[unlly) + 2(| Pa-2fllyllunlly
< Cleh/?||(un)s|l?, + € 1h3/2||Vunl|?, + || Pa—2f1I3,
+ (14 hY/2e=1)|lunll].

Applying (4.1), (4.2), and (4.3), we get

[uhoutl = [uninly < C(eh¥/2|(I = Qn-1)up il + € 1h/ 2|y, |2
+ h(1 + h1/2e= 1) up,inl?,
+ | Pa-2flI2, + (eh/2 + €= 1h3/2 + h2)|| Po i f1|2).

On a type II triangle, (4.9) is now easily established. On a type I triangle, we choose
€ =1 and use the fact that (I — Qn_l)u;%in = 0 to obtain (4.8). O
‘We now combine these results to get a single stability result for a triangle of either
type, which we shall be able to iterate to obtain global stability for the method.
LEMMA 4.5. For a triangle T of either type, there exists a positive constant A
such that

(4.10)
(1= Ch) [lunoutl?, + h¥/2lu, guql3] + M02/20| un)el3, + lfunll3, + h3/2] Va3

< (1+ Ch) [luninl3, + h¥2[u; 3] +C [RV21 Paca £I3, + h=2/2] Paaf 3]

Proof. Setting v, = —[EMuy); in (3.1) and using (4.5) and (4.7), we obtain for
a type I triangle that

(1 - Ch)lu,h,out'%b - |u;z,in|12/) - Clu;z,out - u’h,inm)
< —((un)s, [EMun]e) = —(f, [EMunlt)
< C(h2||Pa—afll2, + [[Vurll2).
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Applying (4.3) to estimate |u;l,out - ulh’inl,/, and using (4.3) and (4.2) to also gain
control over ||(un)s|ly and ||Vunl||y, we get after rearranging terms that

(1= Ch)up ool + A2 (wn)s 12 + [|Vunl?,
< (14 Oy 2 + C(A=2|| Pazaf |13, + b= | Pa—1 f12).
Multiplying this result by h3/2, adding it to (4.8), and using (4.1) to also gain control
over ||un|y, we obtain (4.10) with A = 1.

For a type II triangle, we proceed in a similar fashion, using (4.6) and (4.7) to
first obtain

[ outly + 31T = @n-1)up 3 < (L+ OB w15, + C(h=2|| PazafIl}, + [|Vunll3).

Again using (4.3) and (4.2) to gain control over ||(up)s|ly and ||Vug|ly, we get after
rearranging terms that
[ unl3 + 310 = Qo) 3 + ek (un)ally + Vsl
< (L+ Ch)luy o}, + Ch=2| Paa fI}, + Cel(I = Qn-1)u 1o

Multiplying this result by h3/2, adding it to (4.9), and using (4.1) to also gain control
over ||un||ly, we then obtain the following for e sufficiently small:

[lan outl3, + B72[t5, g3 + €ht/2 )3, + £03/2(T = Qn-)uiy

o lanll + B2V un 3, < (1+Ch) [lunnl3, + 5972105, 0 3] +CR=1/21 Paa f13,

The result follows immediately. O

5. Global stability and error estimates for the model problem. Using
the stability results of the previous section, it is now fairly easy to derive a global
stability result and error estimates for the model problem o - Vu = f.

As was done in §3, we consider the solution u; as developing in layers F;. Thus
we have, in analogy with (4.10),

(1= C)[[unouel?, g, + 13720 el 5] + AA/2 0 n)oll 5, + llun 3,
+ h3/2|lvuh”i,s,-
< (1+ Ch) [lunnl3, m_, + 12105 03 |
+C [W2) Paca fI3, 5, + h22| PacafI3 s, |
where again F; is the “front line” to which uy has advanced after it has been computed
inQ; = UjSiSj.

To convert this bound into a global stability result for the method, we use the
following lemma.



Downloaded 09/02/14 to 128.6.62.8. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal §/ojsa.php

LOCAL ERROR ESTIMATES 745
LEMMA 5.1. If
(I—Ch)(l:i-l-aiS(1+Ch)$i—1+bi, 1=1,2,--+,
where 0 < h < %, zo >0, and a; > 0, b; > 0 for all i, then

1< : 1 g
i —— < Mih z: . P =
w+1—Ch,E aj < M:? ($0+1—Ch, bj), 1=1,2,---,

where M — e2C gs h — 0.
Proof. The solution of the above inequality is

1+ Ch\' 1+Ch
z; < (m) Ch z ( ) (bJ - aj).

1 < 1+Ch\* 1 <
P — < = - .
$+1—Ch;a’—(1—0’h) x0+1—Ch§b’
The desired result follows from the fact that

1/h
lim (1+Ch) _ 20, g

Thus,

r—o\1—Ch

Assuming there are at most O(h—1) layers per triangulation, we apply Lemma 5.1
to obtain the following global stability result.
THEOREM 5.2. For h sufficiently small,

|uh,out|12p,Fi + h3/2|uh,out 12b,Fi + h1/2”(uh)8”12p,9,
+ llunlly o, + P32 Vunl} o,

c [Iwz,in@,n,, @ F P2l nl3 1 )+ B2 P fI2 g,
+ A2 Paaf} 0,

We now show how Theorem 5.2 may be used to derive various error estimates.
Let us first assume that u € H»+1(Q) and let u; € S} be an interpolant of u. Defining
en = up — ug, we have, for all v, € P,,_(T), that
((en)s,vn) = (f — (ur)s,vn) = ([u — uls, vn).
Hence, we may apply (5.1) with up and f replaced by e, and (u — uy)s, respectively.
Assuming, for convenience, that wp = ur on I'in (), we get
len,outl?, r, + B%/2lep ousl5, r, + B2 (en)sllF 0, + llenll?, o,
(5.2) + h3/2||Veh||fp,Qt
< C(h=Y2||Poz(u — un)sll} o, + /2| (u — un)sll}, q,)-

We shall first take ur to be the interpolant of §2. From the defining properties of this
interpolant, it follows immediately from integration by parts that

(5.3) ([u — ur]s,vn) =0 for all v, € Pp_o(T).

Thus, using the approximation properties (2.4), (2.5) of ur, we obtain the following
error estimates for the method in the case where the solution u is smooth.

(5.1)



Downloaded 09/02/14 to 128.6.62.8. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal §/ojsa.php

746 RICHARD S. FALK AND GERARD R. RICHTER

- .I l Fin(ﬂ)
\"ldl’\\ d=§\/ﬁlog%

THEOREM 5.3.

uh,out — toutly,F, + llun — ully,0, < CR™ 4 |ullnta,p.0.
|t out = Youslp,Fs + [V (un — w)lly.0, < CR=1/2|[uflnt1,9.0.,
(un)s — uslly,0; < Ch™||ullnta,p,0:-
Up until this point, all our estimates apply to a general 1 satisfying (2.6) and
(2.7). We now indicate how (5.2) can be applied locally in problems where u is not

globally smooth, for example, in a problem with a discontinuous initial condition. To
accomplish this, we now make, for fixed t*, the specific choice

1
= *) = —— "'l_‘l/‘/’_",
Y = P(t, t*) Wi -t

For an interval I C I'in(Q2), let D = {(s,t) € Q: t € I} (see Fig. 2).
For fixed £ > 0, we define

D+ = {(s,t) €Q:minlt —t'| < éVhlog 1}
t'el h

and
DZ:{TGQ:’TQD*’#@}.

Note that for t* € I and (s,t) € Q — D+,

1 1 1
£8%) = ——e—l—t"I/VE < _L_o—Elog(1/h) < ~pE-1/2,
vt t) 2vh ~ 2vh 2

We shall obtain local L2(D) error estimates for u, assuming u € Hn+1(D;) and
minimal regularity in 2 — D,'i'. To get these local results, we make use of the following
lemma.
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LEMMA 5.4. There is a positive constant A such that

I
(5.4 Aol < [ 1ol e < Joll, + lnevapoz
(5.5) Ny < [ T e

where |I| denotes the length of I.
Proof.

/ ol o dt* < / Wt Y02 (s, t) ds dt + / Wt )02 (s, ) ds dt
I Df Q-Df

1 \/w *
< - e—lt—t I/\/’—ldt*] v2(s,t)dsdt
/Dx [2\/5 o0 (51
n / L =172\ 1v2(s, 1) ds dt
Q-Df 2

L.
< ol + S5 2ol

‘We also have that
[l adee > [ o,
I D

where
1
Tn(t) = —— / eIt/ g,
n(t) WA

A simple computation shows that if t € I = [t',t"], then
Jn(t) =1 (1 _ e—(tu_t)/\/ﬁ) +1 (1 - e—(t—t')/\/ﬁ) > (1 - e—|1|/(2\/ﬁ>) .

Hence, Jj(t) is uniformly positive (independent of k) for ¢ € I, which completes the
proof of (5.4). The proof of (5.5) is obtained in an analogous manner. O

Because of the lack of global smoothness of the solution u, we cannot use the same
interpolant as in the smooth case. We redefine u; for this situation as follows. In D,*L',
we take ur to be the interpolant of §2, as before. At degrees of freedom which belong
neither to D} nor T'in(€2), we use the method of Clement [2], i.e., by letting A; denote
the support of the basis function associated with the point v;, we define ur(v;) = q(v;),
where ¢ is the L2 projection of u over A; into P,(A;). Finally, at degrees of freedom
lying on I'in(2), we use the one-dimensional version of the Clement method, involving
projections of u only along I'i,(©2). Note the similarity to the interpolant developed in
[19]. The approximation properties (2.4), (2.5) remain valid for this new interpolant.
Using standard techniques, it is not difficult to show that u; also satisfies the following
bound, whose proof we omit.

LEMMA 5.5.

l[urlle < C(llulle + lulr,.@) + llully,py)-
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Integrating (5.2) with Q; = Q over t* € I and using the preceding results, we
obtain

len outl + 3/21el, ol + B2 (en)slB + llenlB + K372 Vel
1/2 — 2 — _ 2
< € (W/201u = wr)all?yy + Al = ur)ald_pe )
< C (W2l = un)slde +hE(lusly + h=2uz]3))

< C(h2n+l/2"u”2

n

it T HEHUAR + A2l + h2(ul, g
+h=2ul? ).

Again, using the approximation properties of ur, we conclude the following.
THEOREM 5.6. For £ > 2n +7/2,

|uh,0u‘5 - uO‘“’l% + llun — u”% + h3/2|u;1,out - u:)utﬁ + h3/2”V(Uh - u)“2D
+ h1/2||(un — u)s|l}
< Ch2nt1/2 [||u||2

n

41,04 T e(llul, + [ulf,, @ + ||f||?1)] ;

where ¢ — 0 as h — 0.

These localization results generalize (1.4)—(1.6). Computational results in [18] for
n = 2 show a somewhat more favorable crosswind spread, =~ O(h-7). This corresponds
closely to the discontinuous Galerkin method with n = 1, via the parallelism of §3.
For the discontinuous Galerkin method, computational estimates of crosswind spread
can be found in [13]. These results indicate a decrease in crosswind spread with
increasing n.

6. The general convection-diffusion problem. We next consider a class of
convection-diffusion equations of the form

o - Vu — (a(un)zz + b(un)zy + c(un)yy) = f,
and we consider the corresponding finite element method
(6.1) (- Vun,vn) — (a(un)ze + b(un)ey + c(un)yy, vr) = (f,vn), vp € Ppy(T),

as described in the introduction.
Now since s = a1z + agy and t = a2z — a1y, we get for any function v that

vl = advl + 2a1020f + advlk,

vl

—a1avf + (a2 — a?)vl + araovls,

vhy = a?vl — 2010208 + 02vl.
Hence, we may express

avly + by + cvy = [a02 — baras + ca2|vl + [2aci02 + b(a3 — of) — 2caran]vl
+ [ao + baraz + colvls

= ovly + v, + yvls.
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In the analysis of this problem which follows, we shall assume that the coefficients
o, 6, and vy satisfy

(6.2) 0<o<gh, |§|]<Co, |y|<Co

for some constant ¢ independent of h. As mentioned in the introduction, this frame-
work includes as special cases the parabolic and elliptic equations

o-Vu—ougs = f,

a-Vu—ocAu=f,
provided o < O(h). To analyze the effect of the additional terms now present, it will
be convenient to first prove some preliminary results. We begin with a stability result
for (6.1), valid over a single triangle.

LEMMA 6.1. Assuming q is sufficiently small, (4.1) and (4.2) remain valid, and
in place of (4.3), we have

1Cun)slly + [1Cun)e = BQn—1up solly + VRt guy = Up ks

< O [VAIU = Ques)ty ol + ollndeells + 1Paiflly] -
Proof. The convection-diffusion problem (6.1) is of the form (3.1) with f replaced

by B
f = f + a(uh)tt + 6(Uh)ts + '7(uh)ss-

Via repeated use of inverse inequalities, we have

1Pa-tfllw < |1Pa-iflly + oll(un)eelly + Call(un)slly
SN Pa-iflly + CqllVurlly
< 1 Paiflly + Cagh=2luny.
Using the above three bounds together with (4.3), (4.2), and (4.1), respectively, we
obtain the desired results. O
The next three lemmas contain some technical results which will facilitate the

analysis.
LEMMA 6.2. Let vy, and wy € Pp(T). Then

ll(wn)e + 9 (wn)elly < C (h2|vn + wlly + h=1/2 max p||whlly) -
Proof. Let 1y denote the average value of 1) on T. Then
[(wa)e + Y(wn)elly < [(vn + hown)elly + (¥ — o) (wr)elly
< Ch=H|vn + Yownlly + [|(% — to) (wa)lly
< Ch=1|vp + Ypwh|ly + Ch=1||(¥ — Yo)wrl|y
+ 1% — o) (wn)ely-
Now using (2.7) and standard inverse estimates,
(% — Yo)wnlly < Chmax |¢)'|lwnlly < Ch'/2maxp|jwnlly,
(% — %0) (wn)tlly < Chmax|y|[|(wh)elly < Ch=/2 maxep||lwaly.

Combining these results establishes the lemma. 0O
Recalling that Muy, = Qn—l"/’Qn—l(U’h,out + u;%in), we next prove the following.
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LEMMA 6.3.
| Mup, — 2¢Q‘n‘1u;1,in|¢ < Cmaxy [lu;r,,out - u;l,,inl"p + h1/2|u;z,in|"/1] .
Proof. Letting 1o again denote the average value of 9 on [to,t1], we have that
|Mup, ~ 2 Qn—-1%, 5|y
< C (1M~ 2Qn-1%Qn-1t aly + (I = Q1) ¥Q@n-1t 1l
<C [max YIQn—1(Up e — Upin)lw
1T = @n1)(@ — $0)@n- 123 ol
Now

l(I - Qn—l)("/" - ¢0)Qn-lu;,,’in|1/) < C|(¢ - ¢0)Qn—1u;‘z,in|¢
< Chmax |9 ||Qn—1ty, 1,|v
< ChY? max | Q-1 3o |y-

Combining these results, we obtain

| Mup, — 2¢Qn—1“;1,in|¢ <C [maxd)lQn—l(“Ih,out - u;b,in)l"/’
+h1/2 max"/-l)lQn—lulh,inl’!/J]
< Omaxh [t g, =t b+ 20l -
LEMMA 6.4.
=1 EMunle — 2(un)eelly < C(qll(un)sclly + h=1/2R),

where
R = (I = Qn-1)uy inly + 72wy, s ly +h=1 2| Pac i fly.

Proof. Using Lemma 6.2 and the triangle inequality, we have

Y= [ EMun]e — 2(un)sclly
< max ¢~1|[[EMup]: — 20 (un)eelly
< C'max 9=t [h=1|| EMun — 20(un)elly + h=2/2 max || (un)zlly]

< Cmax ! [h=Y | EMu, — 2E4Qn-1t7
+2R Y (un )t — BYQuo1t il + h=/2 maxcp (unel | -
Now using Lemma 6.3 and standard inverse estimates, we get

| EMup, — 2E9Qn—1uy, 1y lly < ChY/2|Mup, — 200Qn—1ty ;|

< Cmaxvy [hl/zluh,out - uh,inl’/’ + hluh,ir"d}] ’
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Using (2.2) and (2.3), we get
ll(un)e — Bp@n-1uy yully = ¥ (un)e — YEQn—1 1ol
< max || (un)e — EQn-1ty i ly-
Combining these results and using Lemma 6.1, we obtain
Y= {EMunle — 2(un)etly

< C[h_l/zlulh,out - u;z,inl'l’ + |u;z,in|"/’ + h_l”(uh)t - EQn_lu;z.,in""/’
+ h=1/2 (un)elly |

< C [h120(1 = Quor)u sl + B0l @ndeely + BN Paally + i ] -

The lemma follows immediately. O

Using these results, we now proceed as in §4, deriving, for a single triangle, a
stability result that can be iterated to obtain a global stability result for the method.
To avoid technical problems involving terms which are not central to the analysis of
the new diffusion terms, we limit our stability result to the derivative of uj, rather
than also include wuy, itself. The key result is then to obtain an analogue of Lemma 4.5
and the essential new feature of the analysis is the handling of the terms

(a(un)es + b(un)zy + c(un)yy, [EMup]t) = (0 (un)et + 8(un)ts +v(un)ss, [EMun]t)

and (f, [EMug]t). The next lemma contains the neccessary estimates for these terms.
LEMMA 6.5. For arbitrary ¢ € L2(T) and q sufficiently small, we have

(0(un)et + 6(un)s +V(un)ss + 0, [EMunlt) > ol|(un)eelly, — C(aR? + ol|8]13).

Proof. Using Lemma 6.4, the triangle inequality, and the arithmetic-geometric
mean inequality, we get, for arbitrary € > 0,

(o (un)et, [EMuple) = 20| (un)eellZ, + (o(un)ee, = [EMuple — 2(un)et)y
> 20||(un)uelly, — Coll(un)eelly (A2 R + qll (un)eelly)
> o||(un)eel% (2 — Cq) — C(Voll(un)eelly) (vVaR)
> ol|(un)ullZ (2 — Cqg — €) — Ce~1qR2.
Now using Lemma 6.4, the triangle inequality, and the fact that ¢ = O(1), we infer
¥~ [EMunlelly < C(ll(un)eelly + h~1/2R).

Using this result, together with Lemma 6.1, the arithmetic-geometric mean inequality,
and the fact that ch—1 < q, we get

|(5(uh)ts + y(up)ss + o, [EM'u,h]t)|
< (16(un)is + v (un)sslly + oliglly)llo— [EMurlely
< C(oh=H|(un)slly + ollllw) (I (un)eelly + h1/2R)
< C(oh=12R + goll(un)ally + o) N (un)eelly + h-2/2R)
< C(vaR + gvoll(un)elly + Vallglly) (Voll(un)ally + aR)
< e(oll(un)ull} + qR?) + Ce=(qR? + 2o | (un)ull}, + oll¢ll3)
< (e+ Cg*e Yol (un)ul, + (e + Ce~t)gR? + Ce~o||gll3.

The lemma follows by combining these results and choosing first € and then ¢ suffi-
ciently small. O
Using Lemma 6.5, we get the following analogue of Lemma 4.5 when f = fi1+o0fa.
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LEMMA 6.6. For a triangle of either type, there exists a positive constant A such
that

(1 — OR)lup ouel% + Ab=I(un)s I3 + 1 Vunll3 + 3ol (un)el?,
< (1+ CWlup l3, + C (A2 Pacs fI3 + A2\ Paza ful} + ol £2ll3 ) -
Proof. From Lemma 6.5 and the definition of R, we have

(6.3)
(o(un)et + 6(un)ts + Y(un)ss + o f2, [EMup]t)

> ol (un)elly, — Ca (1L = Quor)ty %, + bl o3 + B[ Puct FIB) = Coll ol
For a type II triangle, we get from (4.6), (4.7), and Lemma 6.1 that

—((un)s = f1, [EMun]t)
(6.4) > (1= OR)lup, guel3, = (1 + Ch)uy, 5,13
+ 31U = Quo1)th ol = € (R Pazafuly = 1 PaafII3) -

Combining these results via (6.1) and then using Lemma 6.1 to also control ||Vua||3,
and adding a suitably small positive multiple of h=1||(us)s||7, we obtain

(1=Ch)lt oue | +(3—Ca=Ce)) (I~ Q1) 1o |3+ (1=Ce)or || (un)eel|Z+eh || (un)s 13
FI9unl} < (1 + Ch)fup o3 +C (A2 Paafilll + A Pacafl3, + ollfall3)
The desired inequality now follows on a type II triangle by choosing g and € sufficiently

small.
For a type I triangle, we use (4.5), (4.7), and Lemma 6.1 to get, in place of (6.4),

—((Uh)s - f1, [EMUh]t)
> (1= Ch)lup, guelfy = (1+ Ch)luy, 3
— C (qoliwn)ally, + b2l Pa-2fall3 + A1 Pa-a fII3)
Combining this result with (6.3) via (6.1), and again using Lemma 6.1 to also control
[Vun||?, and a suitably small positive multiple of h=1||(us)s||2, we obtain
(1~ CR)lup, guel3 + IVunl + eh=1|(un)s |13 + (1 — Cgq — Ce)oll(un)eel?,
< (1 OWltgal3, + C (B2 Paca il + ot Pacs fI + 011 fal13)

The desired inequality now follows on a type I triangle by again choosing g and €
sufficiently small. O

As in §5, this result may now be converted to an analogous result along fronts

and then iterated using Lemma 5.1. When summed over layers, we get the following
global stability result, analogous to Theorem 5.2.
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THEOREM 6.7. For h sufficiently small,
(6.5)

[wh ol m + B (wn)sllG 0, + IVuslly 0, + oll(a)all} 4 0,
< Cllupinly @) + 1 HIPa-1 fIR 4 0, + 2721 Pa2fillf y 0, + ol f2llf 4 0,

where we use the notation

"U”i,ap,n.- = Z “U“?/;,T‘

TeR;

The reason for introducing this notation is that some of the terms in the estimate
do not belong to L2(Y;).

To obtain error estimates, we again set e, = up — ur. It easily follows that for
vp € Pry(T),

((er)ssvn) — (o(en)e + 6(en)ts + Y(en)ss; va)
= ([U — UI]s,'Uh) - (O'[U - uI]tt + 5[’” - uI]ts + "Y[u - ul]ss, 'Uh)-

Hence, we may apply (6.5) with

6
up=en fi=@w—ur)s fo=[u—uru+ ;[u —urles + g[u — Ur]ss-

From (5.3), we have that P,_2f1 = 0. Again assuming up = ur on I'in(2), and using
(6.2), (6.5) gives

len,outl%,m + B (en)sllG 0, + I Venlly o, + oll(en)ull} 4 0,

(66) 1 2 2
<Ch—Yu— UI||1,1/,,Qi +ollu— uIllz,h,¢,Qi)-

Thus, using the approximation properties (2.4), (2.5) of uy, we obtain the following
error estimates for the method in the case of a smooth solution u.
THEOREM 6.8.

! ’
|uh.,out = Uougly, B + [[V(un — vy, < Ch"_1/2”u”n+1,¢,gi,
l(un)s — uslly,0; < Ch™|ullnti,p,0.-

Local estimates can also be obtained from (6.6), following the method used in §5.
Since the main ideas are essentially the same, we only give a statement of the main
result.

THEOREM 6.9. For £ > 2n+17/2,

[t o = Uoutl3 + B (= w)all% + [V (= w)[1%
< Ornt [l o+ ellully + ul?, () + I£13)]
where ¢ — 0 as h — 0.

We have thus established a crosswind spread of O(v/hlog £) for the continuous
method (6.1) for convection-diffusion equations with an O(h) diffusion term. The
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same crosswind spread was shown for the streamline diffusion method (8] and later
improved, for the case of linear approximation, to O(h3/4log ) for o = h3/2 [10].
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