MATH 575 ASSIGNMENT 5

1. Let x be the solution of Ax = b and consider approximations to x given by the iteration:
" = [I — aAlz® + ab,

where A is the n x n matrix given by

1+c c c
c 1+c¢

A= |
cC c 1+C

la. Show that if ¢ > 0, then for all z # 0, 27 Az > 0, i.e., A is positive definite.
1b. Show that z = (1,1,...,1)T is an eigenvector of A and find the corresponding eigenvalue.

le. Fori=1,...,n—1, let 2" denote the vector defined by z} = 1, z, = —1, and 2 = 0 if
j #iand j # n. Show that ¢ is an eigenvector of A and find the corresponding eigenvalue.

1d. Use these results and the result proved in class about the convergence of this iterative
method to find the values of a for which this iteration converges when ¢ = 1/n.

2. Let = be the solution of Az = b and consider approximations to x given by the iteration:
2" = [ — aA]z* + ab.

Assuming that A is symmetric and positive definite and o« = 2/(A\; + A,), where A; is the

smallest eigenvalue of A and )\, is the largest eigenvalue of A, show that if
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then ||zF — x|]; < €||2° — z||y. Hint: Start from the result proved in class that under the

hypotheses of the problem, ||z — 2%, < (n+1) |z —2°||, where K = Apax(A)/Amin(A). Then
use the fact that In[(1+z)/(1 — z)] > 2z for 0 < < 1. Choose x = A;/A,,.

3. Use FeNiCS to approximate the solution of the stationary Stokes equations
—Au+Vp=fin Q, divu =0 in €, u = 0 on 012,
where Q = (0,1) x (0,1), and
fi=12(1 = 2y)2*(1 — 2)® — 4y(1 — y)(1 — 2y)(62% — 62 + 1) + 5(z — 1/2)*,

fo=—12(1 = 22)y*(1 — y)* + 4da(1 — 2)(1 — 22)(6y* — 6y + 1) + 5(y — 1/2)~.
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The exact solution of this problem is given by

2 2(1 . y>2] — < 21:2(1 - x)2y(1 - y)(l - 2y> ) 7

_ 201 _
u = curl[z*(1 — )%y Z902(1 — )21 — 2)(1 — 22)
p=(r—1/2)"+ (y —1/2)".
Do this computation for two choices of finite element spaces: (i) V}, = continuous piecewise
quadratic functions and @), = piecewise constants, and (ii) V}, = continuous piecewise qua-
dratic functions and (), = continuous piecewise linear functions. Use the mesh command
mesh = UnitSquare(n,n), where n takes the values 4,8,16,64. Hand in a table of L? and

H?' errors for the approximation of w and L? errors for the approximation of p. Also include
in the table a calculation of the rates of convergence.

It is a little tricky to compute the errors and rates of convergence for p because p is not
uniquely defined (i.e., if p is a solution, so is p+ ¢ for any constant ¢). The formula given for
the exact p has average value zero on the domain. Hence, the computed p;, must be modified
so that it also has mean value zero, before the errors and convergence rates are computed.

Some useful FeNiCS commands to help you write the programs are:
pow(x[0]-.5,5.) implements (z — 1/2)°.

# Define function spaces

deg = 2

V = VectorFunctionSpace(mesh, "CG", deg) # CG -- continuous elements
Q = FunctionSpace(mesh, "DG", 0) # DG -- discontinuous elements

W = VxQ

U = Function(W) # finite element solution (includes both u and p)

# Define variational problem
(v,q) = TestFunctions(W)
(u,p) = TrialFunctions(W)
b = inner(grad(u), grad(v))*dx - div(v)*pxdx + gxdiv(u)*dx

Once the variational problem is defined and U computed, the command
u, p = U.split() will split U into the two functions u and p.



