MATH 575 ASSIGNMENT 5

1. Let x be the solution of $A x=b$ and consider approximations to x given by the iteration:

$$
x^{k+1}=[I-\alpha A] x^{k}+\alpha b,
$$

where A is the $n \times n$ matrix given by

$$
A=\left(\begin{array}{cccc}
1+c & c & \cdots & c \\
c & 1+c & \cdots & c \\
\vdots & & \ddots & \vdots \\
c & c & \cdots & 1+c
\end{array}\right)
$$

1a. Show that if $c \geq 0$, then for all $x \neq 0, x^{T} A x>0$, i.e., A is positive definite.
1b. Show that $x=(1,1, \ldots, 1)^{T}$ is an eigenvector of A and find the corresponding eigenvalue.
1c. For $i=1, \ldots, n-1$, let x^{i} denote the vector defined by $x_{i}^{i}=1, x_{n}^{i}=-1$, and $x_{j}^{i}=0$ if $j \neq i$ and $j \neq n$. Show that x^{i} is an eigenvector of A and find the corresponding eigenvalue.
1d. Use these results and the result proved in class about the convergence of this iterative method to find the values of α for which this iteration converges when $c=1 / n$.
2. Let x be the solution of $A x=b$ and consider approximations to x given by the iteration:

$$
x^{k+1}=[I-\alpha A] x^{k}+\alpha b .
$$

Assuming that A is symmetric and positive definite and $\alpha=2 /\left(\lambda_{1}+\lambda_{n}\right)$, where λ_{1} is the smallest eigenvalue of A and λ_{n} is the largest eigenvalue of A, show that if

$$
k \geq \frac{1}{2} \frac{\lambda_{n}}{\lambda_{1}} \ln \frac{1}{\epsilon}
$$

then $\left\|x^{k}-x\right\|_{2} \leq \epsilon\left\|x^{0}-x\right\|_{2}$. Hint: Start from the result proved in class that under the hypotheses of the problem, $\left\|x-x^{k}\right\|_{2} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|x-x^{0}\right\|$, where $\kappa=\lambda_{\max }(A) / \lambda_{\min }(A)$. Then use the fact that $\ln [(1+x) /(1-x)] \geq 2 x$ for $0<x<1$. Choose $x=\lambda_{1} / \lambda_{n}$.
3. Use FeNiCS to approximate the solution of the stationary Stokes equations

$$
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \text { in } \Omega, \quad \operatorname{div} \boldsymbol{u}=0 \text { in } \Omega, \quad \boldsymbol{u}=0 \text { on } \partial \Omega,
$$

where $\Omega=(0,1) \times(0,1)$, and

$$
\begin{gathered}
f_{1}=12(1-2 y) x^{2}(1-x)^{2}-4 y(1-y)(1-2 y)\left(6 x^{2}-6 x+1\right)+5(x-1 / 2)^{4} \\
f_{2}=-12(1-2 x) y^{2}(1-y)^{2}+4 x(1-x)(1-2 x)\left(6 y^{2}-6 y+1\right)+5(y-1 / 2)^{4}
\end{gathered}
$$

The exact solution of this problem is given by

$$
\begin{gathered}
\boldsymbol{u}=\operatorname{curl}\left[x^{2}(1-x)^{2} y^{2}(1-y)^{2}\right]=\binom{2 x^{2}(1-x)^{2} y(1-y)(1-2 y)}{-2 y^{2}(1-y)^{2} x(1-x)(1-2 x)}, \\
p=(x-1 / 2)^{5}+(y-1 / 2)^{5} .
\end{gathered}
$$

Do this computation for two choices of finite element spaces: (i) $V_{h}=$ continuous piecewise quadratic functions and $Q_{h}=$ piecewise constants, and (ii) $V_{h}=$ continuous piecewise quadratic functions and $Q_{h}=$ continuous piecewise linear functions. Use the mesh command mesh $=\operatorname{UnitSquare}(\mathrm{n}, \mathrm{n})$, where n takes the values $4,8,16,64$. Hand in a table of L^{2} and H^{1} errors for the approximation of \boldsymbol{u} and L^{2} errors for the approximation of p. Also include in the table a calculation of the rates of convergence.

It is a little tricky to compute the errors and rates of convergence for p because p is not uniquely defined (i.e., if p is a solution, so is $p+c$ for any constant c). The formula given for the exact p has average value zero on the domain. Hence, the computed p_{h} must be modified so that it also has mean value zero, before the errors and convergence rates are computed.

Some useful FeNiCS commands to help you write the programs are:

```
    pow(x[0]-.5,5.) implements (x-1/2)
# Define function spaces
    deg = 2
    V = VectorFunctionSpace(mesh, "CG", deg) # CG -- continuous elements
    Q = FunctionSpace(mesh, "DG", 0) # DG -- discontinuous elements
    W = V*Q
    U = Function(W) # finite element solution (includes both u and p)
# Define variational problem
    (v,q) = TestFunctions(W)
    (u,p) = TrialFunctions(W)
        b = inner(grad(u), grad(v))*dx - div(v)*p*dx + q*div(u)*dx
```

Once the variational problem is defined and U computed, the command $u, p=U . s p l i t() \quad$ will split U into the two functions u and p.

