MATH 575 ASSIGNMENT 3

1. Let T be the triangle with vertices $\boldsymbol{a}_{1}=(1,0), \boldsymbol{a}_{2}=(1,1)$, and $\boldsymbol{a}_{3}=(0,1)$. Find the barycentric coordinates $\lambda_{i}(\boldsymbol{x}), i=1,2,3$ of a point $\boldsymbol{x} \in T$ with respect to $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3}.

2a. Let T be an arbitrary triangle with vertices $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3} and let $\lambda_{i}(\boldsymbol{x}), i=1,2,3$ be the barycentric coordinates of a point $\boldsymbol{x} \in T$ with respect to $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$, and \boldsymbol{a}_{3}. Let $\boldsymbol{m}_{i j}$ denote the midpoint of the edge joining \boldsymbol{a}_{i} and \boldsymbol{a}_{j}. Find a function ϕ_{k} of the form $c_{1} \lambda_{1}(\boldsymbol{x})+c_{2} \lambda_{2}(\boldsymbol{x})+c_{3} \lambda_{3}(\boldsymbol{x})$, where c_{1}, c_{2}, c_{3} are constants, that satisfies

$$
\phi_{k}\left(\boldsymbol{m}_{i j}\right)=0 \text { if } k=i \text { or } k=j, \quad \phi_{k}\left(\boldsymbol{m}_{i j}\right)=1, \text { if } k \neq i \text { and } k \neq j .
$$

b. Use the result of (2a) to find a linear polynomial P on T that satisfies

$$
P\left(\boldsymbol{m}_{12}\right)=4, \quad P\left(\boldsymbol{m}_{23}\right)=5, \quad P\left(\boldsymbol{m}_{31}\right)=6
$$

HINT: Your solution should use the functions $\phi_{1}, \phi_{2}, \phi_{3}$.
3a. Show that a quadratic polynomial P on a triangle T is uniquely determined by the six degrees of freedom consisting of the values of P at the three vertices and the average values of P along the three triangle sides. HINT: Use the representation formula

$$
P(x)=\sum_{i=1}^{3} \lambda_{i}\left(2 \lambda_{i}-1\right) P\left(a_{i}\right)+\sum_{i<j} 4 \lambda_{i} \lambda_{j} P\left(m_{i j}\right)
$$

to show that if the six degrees of freedom described above are zero, then $P \equiv 0$.
USEFUL FACT: The one-dimensional quadrature formula

$$
\int_{a}^{b} f(t) d t \approx \frac{b-a}{6}[f(a)+4 f([a+b] / 2)+f(b)]
$$

is exact when $f(t)$ is a cubic polynomial in t.
3b. Show that if $g(t)$ is a quadratic polynomial and

$$
\int_{a}^{b} g(t) d t=0, \quad \int_{a}^{b} g(t)(t-[a+b] / 2) d t=0
$$

then $g(a)=g(b)$ and $g([a+b] / 2)=-g(a) / 2$. Hint: Use the quadrature formula given above. 3c. Use the result of (3b) and the representation formula of (3a) to show that if P is a quadratic polynomial on a triangle T which satisfies on each edge e of T

$$
\int_{e} P d s=0, \quad \int_{e} P s d s=0
$$

then P is not necessarily zero. Hence, the average value and first moment on each edge do not comprise a unisolvent set of degrees of freedom for the space of quadratic polynomials.

