
NUMERICAL ANALYSIS : 642:574 79

6.10. Multigrid method in terms of finite element methods. We consider
to solve the following discrete weak formulation : Find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh,

where Vh is the space of continuous piecewise linear functions on a grid of mesh size
h. We assume that the mesh was obtained from a mesh size H = 2h by joining the
midpoints of each triangle to form 4 sub triangles. We denote Th and TH by the

triangulation for the space Vh and VH , respectively. Let Vh = span{φ1, · · · , φnh}
and VH = span{ψ1, · · · , ψnH}. We also denote {xhi } and {xHi } be nodes for Th
and TH , respectively. In this setting, we can say that φj is the linear continuous

piecewise function defined on the mesh Th such that φj(xhi ) = δij and for any

vh ∈ Vh, we have

vh =
nh∑
i=1

vh(xhi )φi.

We shall use the notation that vjh = vh(xhj ) and ṽh = (v1, · · · , vnh)T . The discrete

weak form can then be written in terms of the following

(6.10) Ahũh = f̃h,

where f jh = (f, φj) for j = 1, · · · , nh and (Ah)ij = a(φj , φi). To solve the equation

(6.10), we shall basically apply the iterative method given by (given ũkh and Bh ≈

A−1
h ),

ũk+1
h = ũkh +Bh(f̃h −Ahũkh).

It is well-known that the classical iterative methods applied on the space Vh can
handle error components whose frequencies are supported in domain of size h and
it is slow to handle the frequencies that are supported in domain of size 2h scales
and larger scales. This is because the classical iterative method can be interpreted
as a sequence of local solvers that can handle errors that are supported on small
scale of size h. Therefore, to detect larger scale error components, we shall have to
use iterative methods defined on larger scale. To achieve this goal, we consider to

construct two level scheme. Given ũkh, the k−th iterate on the fine grid with the

mesh size h. We perform the following:

Step 1: Presmoothing : Apply few single step iterative methods to obtain

ũ = smoothing(f̃h, ũkh,#presmoothing)

Remark 6.6. Let uh =
∑nh
i=1 ũ

iφi. This is an approximate solution to

uh in which h−scale errors are already controlled. This only contains large
scale error component, which can not be handled in the fine grid.



80 YOUNG-JU LEE

Step 2: Coarse grid correction : Compute wH ∈ VH by solving the following equa-
tion

a(uh + wH , vH) = (f, vH) ∀vH ∈ VH
and update

uk+1
h = uh + wH .

One can add additional step :
Step 3: Postsmoothing : Apply few single step iterative methods to obtain

ũk+1
h = smoothing(f̃h, ũk+1

h ,#postsmoothing)

To write it convenient for the implementation, we shall need to define inter grid
transfer operator

IHh : VH 7→ Vh and IhH : Vh 7→ VH .

Note that for a fixed 1 ≤ j ≤ nH , there exists cj = (c1j , · · · , c
nh
j )T ∈ IRnh such that

ψj =
nh∑
i=1

cijφi.

Example 6.6. Examples in 1D and 2D are presented here.

We then consider the matrix P = [c1, · · · , cnH ] ∈ IRnh×nH . We call this matrix

as a prolongation matrix. We can also think of R = PT ∈ IRnh×nH , which we call
a restriction matrix. Using these matries, we can define the prolongation operator
as follows : for any given wH ∈ VH ,

IHh wH = wH =
nH∑
j=1

wjψj =
nH∑
j=1

wj

(
nh∑
i=1

cijφi

)

=
nh∑
i=1

 nH∑
j=1

cijw
j

φi =
nh∑
i=1

(Pw̃)iφi ∈ Vh,

where w̃ = (w1, · · · , wnH )T . We shall not use the specific form of the restriction

operator IhH : Vh 7→ VH , therefore, we skip to write it. We are in a position to

write the coarse grid correction step in terms of the matrix and vector notation as
follows. The coarse grid equation is equivalent to write in the following form : Find
wH ∈ VH such that

a(wH , vH) = (f, vH)− a(uh, vH) vH ∈ VH .

We set wH =
∑J
i=1 w

jψj and convert the aforementioned equation to find w̃. To

make it possible, we note that

a(ψj , ψi) = (PTAhP )ji,



NUMERICAL ANALYSIS : 642:574 81

where (Ah)k` = a(φ`, φk). We also note that

(f, ψj) = (f,
nh∑
i=1

cijφi) =
nh∑
i=1

cij(f, φi) = (PT f̃h)j .

Lastly, to compute a(uh, ψj), we note that

a(φi, ψj) = a(φi,
nh∑
k=1

ckjφk) =
nh∑
k=1

ckj a(φi, φk) = (PTAh)ji.

Therefore, a(uh, ψj) = ((PTAh)ũ)j for j = 1, · · · , nH , where ũ is the vector repre-

sentation of uh. We then arrive at the following :

PTAhPw̃ = PT (f̃h −Ahũ).

I did up to here !
In the aforementioned algorithm, In the two level scheme, we computed the

exact solution of the linear system on the coarse level. Instead, we could extend
this idea by incorporating additional levels. To describe the complete algorithm for
several levels, we first choose a coarse triangulation T0 with mesh size h0. We then
subdivide each triangle into four congruent triangles by joining the midpoints of
the edges and denote by T1 the resulting triangulation. Continue in this manner,
we produce meshes T1, T2, · · · , TJ . With each triangulation Tk, we associate a space
of continuous, piecewise linear polynomials that we denote by Vk. The problem we
want to solve is : Find uJ ∈ VJ such that

a(uJ , v) = (f, v) ∀v ∈ VJ .

The kth level iteration : We let MG(k, z0, g) denote the approximate solution

of the equation Akz = g obtained by the kth level iteration with initial guess z0.

For k = 0, MG(0, z0, g) = A−1
0 g, i.e., the solution obtained from a direct method.

For k ≥ 1, M(k, z0, g) is obtained recursively in 3 steps. Let m1 > 0 and m2 ≥ 0

be integers and p = 1 or 2.

Step 1: Presmoothing : For 1 ≤ ` ≤ m1,

z` = z`−1 +Bk(g −Akz`−1)

Step 2: Coarse grid correction :

(1) Form residual equation : Akwk = rk = g −Akzm1

(2) Restriction of the residual : rk−1 = Ikk−1rk. Ikk−1 is the restriction

operator.

(3) Solve the coarse grid residual equation from the recursive call : with

w0 = 0. For 1 ≤ i ≤ p,

wi = MG(k − 1, wi−1, rk−1).



82 YOUNG-JU LEE

(4) Update zm1+1 = zm1 + Ikk−1wp.

Step 3: Postsmoothing : For 1 ≤ ` ≤ m2, with z0 = zm1+1,

z` = z`−1 +Bk(g −Akz`−1).

The advantage of applying the multigrid method to approximately solve the
linear system is that the work involved is proportional to the dimension of the
finite element space and it could produce a uniformly convergent iterate for fairly
general problems including the elliptic second order partial differential equation.
We now consider another type of multigrid methods. The Full Multigrid method

Figure 6.19. FMG : Full multigrid cycle

reads as follows :
For k = 0, let û0 = A−1

0 f0.

For k = 1, · · · , J , the approximate solutions ûk are obtained recursively by the
following algorithm :

uk0 = Ikk−1ûk−1

ukl = MG(k, ukl−1, fk) 1 ≤ l ≤ r

ûk = ukr .



NUMERICAL ANALYSIS : 642:574 83

So we start at level 0 and at each finer level, we take the initial guess to be

Ikk−1ûk−1. For this type of algorithm, we have some nice convergence estimate,

which can be referred to the Lecture note 14, by Professor Falk.


