NUMERICAL ANALYSIS : 642:574 79

6.10. Multigrid method in terms of finite element methods. We consider

to solve the following discrete weak formulation : Find uy € V}, such that

a(un,vn) = (f,vn) VYou € Vi,

where V}, is the space of continuous piecewise linear functions on a grid of mesh size
h. We assume that the mesh was obtained from a mesh size H = 2h by joining the
midpoints of each triangle to form 4 sub triangles. We denote 7;, and 7y by the
triangulation for the space V}, and Vi, respectively. Let Vj, = span{¢y, -+, ¢n, }
and Vi = span{t, -+ 9., }. We also denote {z"} and {z} be nodes for 7,
and 7y, respectively. In this setting, we can say that ¢; is the linear continuous
piecewise function defined on the mesh 7; such that ¢, (zl) = 0;; and for any

vy, € Vi, we have

nh

Up = Z n (@) i
i=1

We shall use the notation that vfl = vy, (gc?) and vy, = (vt .-+ ,v")T. The discrete

weak form can then be written in terms of the following
(6.10) Apiiy, = fn,

where f,{ = (f,¢;) for j =1,--- ,np and (Ar):; = a(@;, ¢;). To solve the equation
(6.10), we shall basically apply the iterative method given by (given u} and Bj, ~
A,
W =T 4 Bu(fn — Anil).

It is well-known that the classical iterative methods applied on the space V}, can
handle error components whose frequencies are supported in domain of size h and
it is slow to handle the frequencies that are supported in domain of size 2h scales
and larger scales. This is because the classical iterative method can be interpreted
as a sequence of local solvers that can handle errors that are supported on small
scale of size h. Therefore, to detect larger scale error components, we shall have to
use iterative methods defined on larger scale. To achieve this goal, we consider to
construct two level scheme. Given ﬂﬁ, the k—th iterate on the fine grid with the
mesh size h. We perform the following:

Step 1: Presmoothing : Apply few single step iterative methods to obtain
u= smoothing(fh, Y, #presmoothing)

Remark 6.6. Let u, = Y " u'¢;. This is an approzimate solution to
uy, in which h—scale errors are already controlled. This only contains large

scale error component, which can not be handled in the fine grid.
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Step 2: Coarse grid correction : Compute wy € Vi by solving the following equa-
tion
a(up, +wg,vyg) = (f,og) Yoy € Vg
and update
uZ‘H =up + wy.
One can add additional step :
Step 3: Postsmoothing : Apply few single step iterative methods to obtain

ﬂffl = smoothing(fh , ﬂflﬂ , #postsmoothing)

To write it convenient for the implementation, we shall need to define inter grid

transfer operator
I VgV, and I} :Vj,— Vg

Note that for a fixed 1 < j < ng, there exists ¢; = (ck, -, )T € R™ such that

J %5
nhp )
b= cii
i=1
Example 6.6. Fxamples in 1D and 2D are presented here.

We then consider the matrix P = [c1,- -+, €y, | € R™ "7, We call this matrix
as a prolongation matrix. We can also think of R = PT € IR™*™¥  which we call
a restriction matrix. Using these matries, we can define the prolongation operator

as follows : for any given wy € Vy,

nyg nyg Nnhp
) YR S ol
j=1 j=1 i=1
np N MNh
= D (2w | 6= D (PE)': € Vi,
i=1 \j=1 i=1
where w = (w',--- ,w™#)T. We shall not use the specific form of the restriction

operator IIh{ : Vi, — Vg, therefore, we skip to write it. We are in a position to
write the coarse grid correction step in terms of the matrix and vector notation as
follows. The coarse grid equation is equivalent to write in the following form : Find
wy € Vg such that

G(UJH,UH):(f,UH)—CL(Uh7’I)H> vg € V.

We set wy = ZLI wl1p; and convert the aforementioned equation to find w. To

make it possible, we note that

a(y,1;) = (PTARP)ji,



NUMERICAL ANALYSIS : 642:574 81

where (Ap)ke = a(de, dr). We also note that

f’% f7zc¢z ZC fa(bz PTfh)

Lastly, to compute a(@p,1;), we note that

nh

a($i, 1) = @,Zc%k = cka(di, ¢r) = (PTAn)ji.
k=1

Therefore, a(uy, ;) = (PTAp)u)! for j =1, ,ng, where u is the vector repre-
sentation of wy,. We then arrive at the following :

PT Ay Pw = PT(fy — Aptl).
I did up to here !

In the aforementioned algorithm, In the two level scheme, we computed the
exact solution of the linear system on the coarse level. Instead, we could extend
this idea by incorporating additional levels. To describe the complete algorithm for
several levels, we first choose a coarse triangulation 7y with mesh size hg. We then
subdivide each triangle into four congruent triangles by joining the midpoints of
the edges and denote by 77 the resulting triangulation. Continue in this manner,
we produce meshes 77,75, - -+ ,7;. With each triangulation 7y, we associate a space
of continuous, piecewise linear polynomials that we denote by Vj. The problem we

want to solve is : Find u; € V; such that
a(uy,v) = (f,v) YveVj.
The kth level iteration : We let MG(k, zo,g) denote the approximate solution
of the equation Apz = g obtained by the kth level iteration with initial guess zg.
For k =0, MG(0, 29, 9) = Aalg, i.e., the solution obtained from a direct method.
For k > 1, M(k, 29, g) is obtained recursively in 3 steps. Let m; > 0 and ms > 0
be integers and p = 1 or 2.
Step 1: Presmoothing : For 1 </ < mjy,
20 = ze-1 + Bi(g9 — Agze-1)
Step 2: Coarse grid correction :
(1) Form residual equation : Apwg =1 = g — Akzm,
(2) Restriction of the residual : 11 = If rg. IF | is the restriction
operator.

(3) Solve the coarse grid residual equation from the recursive call : with
wo = 0. For 1 <4 < p,

= MG(]{Z — Lwi,l, kal).
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(4) Update 2y, 41 = zm, + IF jwp.
Step 3: Postsmoothing : For 1 < ¢ < meg, with 20 = 2;m,+1,

20 =201+ Br(9g — Arze—1)-

The advantage of applying the multigrid method to approximately solve the
linear system is that the work involved is proportional to the dimension of the
finite element space and it could produce a uniformly convergent iterate for fairly
general problems including the elliptic second order partial differential equation.

We now consider another type of multigrid methods. The Full Multigrid method
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FIGURE 6.19. FMG : Full multigrid cycle

reads as follows :
For k =0, let g = Aglfo.
For k = 1,---,J, the approximate solutions u; are obtained recursively by the

following algorithm :

k ~
uy = A qUp

K MG(k,uf |, fr) 1<1<r

ﬂk = uf

£
|
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So we start at level 0 and at each finer level, we take the initial guess to be
I ,’g_lak_l. For this type of algorithm, we have some nice convergence estimate,

which can be referred to the Lecture note 14, by Professor Falk.



