K. Atkinson: An Introduction to Numerical Analysis, Wiley, (2nd ed.), 1989. P.G. Ciarlet and J. L. Lions (eds), Handbook of Numerical Analysis, North Holland, 1990. E. W. Cheney and D. R. Kincaid: Numerical Mathematics and Computing, Brooks Cole, 6 edition, 2007. S. Conte and C. de Boor: Elementary Numerical Analysis, McGraw-Hill, 1980. G. Dahlquist and A. Bjorck: Numerical Methods, Prentice Hall, 1974. P. Deuflhard and A. Hohmann, Numerical Analysis in Modern Scientific Computing, 2nd ed., Springer, 2003. W. Gautschi: Numerical Analysis: an introduction, Birkhauser, 1997. M. T. Heath, Scientific Computing: An Introductory Survey, 2nd ed., McGraw-Hill, 2002. E. Isaacson and H. Keller: Analysis of Numerical Methods, Wiley, 1966 (or Dover 1994). D. Kahaner, C. Moler, and S. Nash: Numerical Methods and Software, Prentice-Hall, 1989. D. Kincaid and W. Cheney: Numerical Analysis: Mathematics of Scientific Computing, American Mathematical Society, 3rd edition, 2001. A. Quarteroni, R. Sacco, and F. Saleri: Numerical Mathematics, 2nd Edition, Springer, 2004. A. Ralston and P. Rabinowitz: A First Course in Numerical Analysis, McGraw-Hill, 1978. L. Shampine, Allen, and Pruess: Fundamentals of Numerical Computing, G. W. Stewart: Afternotes on Numerical Analysis, SIAM, 1996. G. W. Stewart: Afternotes Goes to Graduate School: Lectures on Advanced Numerical Analysis, SIAM, 1998 J. Stoer and R. Bulirsch: Introduction to Numerical Analysis, Springer, 3rd edition, 2002. E. Suli and D. Mayers: An Introduction to Numerical Analysis, Cambridge, 2003.
U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, 1998 J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd ed., Wiley, 2003. J. C. Butcher: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and general linear methods, Wiley, 1987. K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations, North Holland, 1984. P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations, Springer, 2002 S. O. Fatunla: Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press, 1988. C. W. Gear: Numerical Initial Problems in Ordinary Differential Equations, Prentice Hall, 1971. E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations, Springer-Verlag, I: nonstiff problems (1993), II (1991). P. Henrici: Discrete Variable Methods in Ordinary Differential Equations, Wiley, 1962. I. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 1996. J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, Wiley, 1991. J. Lambert, Computational Methods in Ordinary Differential Equations, 1973. L. Shampine: Numerical solution of ordinary differential equations, Chapman & Hall, 1994. L. Shampine and M. Gordon: Computer Solution of Ordinary Differential Equations, Freeman, 1975. L. Shampine, I. Gladwell, and S. Thompson, Solving ODEs with MATLAB, Cambridge, 2003.
J. E. Dennis and J. More: Quasi-Newton methods, motivation, and theory, SIAM Review, vol 19 #1, Jan. 1977. J. E. Dennis and R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983, SIAM, 1996. P. Deuflhard: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer, 2004. C. T. Kelley: Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995. C. T. Kelley, Iterative Methods for Optimization, SIAM, 1999. C. T. Kelley: Solving Nonlinear Equations with Newton's Method, SIAM, 2003. J. Nocedal and S.J. Wright: Numerical Optimization, Springer, 2000. J. Ortega and W. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, 1970.
O. Axelsson: Iterative Solution Methods, Cambridge University Press, 1994. J. W. Demmel: Applied Numerical Linear Algebra, SIAM, 1997. G. Forsythe and C. Moler: Computer Solution of Linear Algebraic Systems, Prentice Hall, 1967. G. Golub and C. Van Loan: Matrix Computations, (3rd ed.), Johns Hopkins University Press, 1996 A. Gourley and G. Watson: Computational Methods for Matrix Eigenproblems, Wiley, 1973. W. W. Hager: Applied Numerical Linear Algebra, Prentice-Hall, 1988. G. W. Stewart: Introduction to Matrix Computations, Academic Press, 1973. G. W. Stewart: Matrix Algorithms: Basic Decompositions, SIAM, 1998 G. W. Stewart: Matrix Algorithms, Volume II: Eigensystems, SIAM, 2001 G. W. Stewart, J-q. Sun: Matrix Perturbation Theory, Academic Press, 1990 L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997. J. H. Wilkinson: The Algebraic Eigenvalue Problem, Oxford, 1988. J. H. Wilkinson and C. Reinsch: Linear Algebra
D. Braess: Finite Elements: Theory, fast solvers, and applications in solid mechanics, Cambridge University Press, 3 edition, 2007. S. Brenner and L. R. Scott: The Mathematical Theory of Finite Element Methods, Springer-Verlag, 3rd edition, 2007. D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, Vol 44, 2013. P. G. Ciarlet: The Finite Element Method for Elliptic Problems, SIAM, 2002 (Originally published by North Holland, 1980). K. Eriksson, D. Estep, P. Hansbo, C. Johnson: Computational Differential Equations, Cambridge University Press, 1996. A. Ern and J-L. Guermond: Theory and Practice of Finite Elements, Springer, 2004. V. A. Girault and P-A. Raviart: Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986. M. S. Gockenbach: Understanding and Implementing the Finite Element Method, SIAM, 2006. C. Grossmann, H-G. Roos, and M. Stynes: Numerical Treatment of Partial Differential Equations, Springer, 2007. M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic Press, 1989. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice Hall, 1987. C. Johnson: Numerical Solutions of Partial Differential Equations by the Finite Element Method, Cambridge University Press, 1987. S. Larsson and V. Thomee, Partial Differential Equations with Numerical Methods, Springer, 2008. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge, 2002. G. Strang and G. Fix: An Analysis of the Finite Element Method, Prentice-Hall, 1973. B. Szabo and I. Babuska: Finite Element Analysis, Wiley, 1991. L. N. Trefethen: Spectral Methods in MATLAB, SIAM 2000. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (4th edition), McGraw Hill, 1989.
S. K. Godunov and V. S. Ryabenki, Difference Schemes: an introduction to the underlying theory, North Holland, 1987. C. Grossmann, H-G. Roos, and M. Stynes: Numerical Treatment of Partial Differential Equations, Springer, 2007. C. Hall and T. Porsching: Numerical Analysis of Partial Differential Equations, Prentice Hall, 1990. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, SIAM, 2007. R. J. LeVeque, Numerical methods for conservation laws, Birkhauser Verlag, 1992. I. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 1996. H. Keller: Numerical Methods for Two-Point Boundary Value Problems, SIAM, 1976. R. D. Richtmyer and K. W. Morton: Difference Methods for Initial Value Problems, Wiley-Interscience, 1967. G. Sod: Numerical Methods in Fluid Mechanics: Initial and Initial Boundary Value Problems, Cambridge University Press, 1985. J. Strikwerda: Finite Difference Schemes and Partial Differential Equations, Second Edition, SIAM, 2004.
T. Davis and K. Sigmon: MATLAB Primer, Seventh Edition, Chapman and Hall, 2004. D. J. Higham and N. J. Higham: MATLAB Guide, Second Edition, SIAM, 2005. C. Moler: Numerical Computing with MATLAB, SIAM, 2004. A. Quarteroni and F. Saleri, Scientific Computing with Matlab, Springer, 2003.