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6.3. Convergence of the QR algorithm. We now state a convergence result for the QR
algorithm in the special case that there is only one eigenvalue of a given modulus.

Theorem 22. Suppose that A has eigenvalues λ1, . . . , λn satisfying |λ1| > |λ2| > · · · > |λn|.
Let X denote the matrix whose ith column is a eigenvector of A corresponding to λi and

suppose that X−1 has an LU decomposition. Then the subdiagonal elements of the matrices

As of the basic QR algorithm tend to zero and for i = 1, 2, . . . , n, (As)ii → λi.

Note that since we are assuming that the eigenvalues are distinct, we know there are a
complete set of linearly independent eigenvectors and hence X−1 exists.

Without giving a formal proof, let us try to understand what makes this algorithm work.
Recall that the QR algorithm sets A1 = A, factors Ai = QiRi and then sets Ai+1 = RiQi.
Since Q−1

i = QT
i , we have Ri = QT

i Ai and so

Ai+1 = QT
i AiQi.

Thus, we have performed a similarity transformation, which preserves the eigenvalues. If we
iterate the above equation, we get

Ai+1 = QT
i AiQi = QT

i Q
T
i−1Ai−1Qi−1Qi = · · ·QT

i · · ·QT
1A1Q1 · · ·Qi = P T

i A1Pi,

where Pi = Q1 · · ·Qi. Note that Pi is the product of orthogonal matrices and hence is
orthogonal.

Now under our assumptions, we can write A = XDX−1 where D = diag(λ1, . . . , λn) and
X is a real matrix of eigenvectors of A. We know there is a factorization of X = QR, where
Q is orthogonal and R is upper triangular. Then

A = QRDR−1Q−1 and so Q−1AQ = RDR−1.

Since RDR−1 is the product of upper triangular matrices, it is also upper triangular, and
hence we know that Q−1AQ = QTAQ is upper triangular. Note that the eigenvalues of A
will then lie of the diagonal of QTAQ.

The theorem is proved by showing that limi→∞ Pi = Q, since this implies that

lim
i→∞

Ai+1 = lim
i→∞

P T
i A1Pi = QTAQ.

In other words, the matrices Ai are converging to an upper triangular matrix whose diagonal
elements are the eigenvalues of A.

To see why limi→∞ Pi = Q, we look at the quantity PiUi, where Ui = RiRi−1 · · ·R1. Then

PiUi = Q1 · · ·QiRi · · ·R1 = Q1 · · ·Qi−1AiRi−1 · · ·R1 = Pi−1AiUi−1.

But since Ai+1 = P T
i A1Pi, we have PiAi+1 = A1Pi, or after reducing the indices by one,

Pi−1Ai = A1Pi−1. Hence,

PiUi = A1Pi−1Ui−1.

If we iterate this identity, we get

PiUi = (A1)
i−1P1U1 = (A1)

i−1Q1R1 = Ai.
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Using the fact that A = XDX−1, we also have that Ai = XDiX−1. We know that X = QR
and by hypothesis X−1 = LU . Hence,

Ai = QRDiLU = QR(DiLD−i)DiU.

Equating these two expressions for Ai, we get that

PiUi = QR(DiLD−i)DiU.

The key step in the proof is to show that

lim
i→∞

DiLD−i = I.

Assuming for the moment that this is true, the right hand side becomes QRDiU . But RDiU
is the product of upper triangular matrices and is therefore upper triangular. Hence, we
are essentially able to identify limi→∞ Pi with Q, since both are orthogonal matrices, and
limi→∞ Ui with limi→∞ RDiU since both quantities are upper triangular matrices. We have
ignored a subtle point; namely that the QR factorization is only unique if R is chosen to have
positive diagonal entries. So we must choose all the decompositions to insure this property
so that we can identify the individual pieces of the decomposition. Returning to the key
step, we observe that the matrix DiLD−i is a lower triangular matrix whose j, kth element
is given by ljk(λj/λk)

i, when j > k. Since |λj/λk| < 1 for j > k,

lim
i→∞

DiLD−i = I.

So, the convergence is very similar to that of the power method.

Using the similarity to the power method, we expect to be able to improve the convergence
by changing the method to correspond to the inverse power method. Thus, we consider the
QR method with origin shift, described by the algorithm: Let si be any number. (i) Factor
Ai − siI = QiRi and then (ii) set Ai+1 = RiQi + siI. Note that

Ai+1 = QT
i QiRiQi +QT

i siQi = QT
i (Ai − siI)Qi +QT

i siQi = QT
i AiQi.

Hence Ai+1 is similar to Ai.

Since we expect that (Ai)nn is converging to an eigenvalue of A, we can choose si = (Ai)nn.
We will then get an iteration similar to the Rayleigh quotient iteration.

Remark: In general, the method produces a sequence of matrices that do not converge to
a triangular matrix, but rather to a block triangular matrix (for example if we have complex
conjugate eigenvalues), from which we can also determine the eigenvalues. In this case, a
more complicated shift strategy is used.


