
16 MATH 574 LECTURE NOTES

4. Optimization methods

If A is a symmetric and positive definite matrix, (i.e., xTAx > 0 for x 6= 0), then the
solution x̂ of the linear system Ax = b is also the minimizer of the functional φ(x) =
1
2
xTAx− xT b. Note the minimum will occur where ∇φ(x) = 0. But ∇φ(x) = Ax− b, so the

solution of the minimization problem is the solution of the linear system of equations.

A typical minimization algorithm is to let {pk}k≥0 be a set of search directions and {αk}k≥0

a set of scalars and define an iteration

xk+1 = xk + αkp
k.

The simplest example is the method of steepest descent, in which we choose

pk = −∇φ(xk) = −[Axk − b].

To determine the best choice of αk, we then minimize φ(xk + αkp
k) with respect to αk,

considering xk and pk now fixed. Since

φ(xk + αkp
k) =

1

2

[

(xk)TAxk + 2αk(p
k)TAxk + α2

k(p
k)TApk

]

− xT b− αkp
T b,

minimizing with respect to αk gives:

(pk)TAxk + αk(p
k)TApk − (pk)T b = 0,

i.e.,

αk =
(pk)T (b− Axk)

(pk)TApk
=

(pk)Tpk

(pk)TApk
.

Thus, the algorithm looks like:
choose an initial iterate x0

for k = 0, 1, . . .,
set pk = b− Axk

set αk = (pk)Tpk/(pk)TApk

set xk+1 = xk + αkp
k

end

Writing the iteration in this way, it appears we need two matrix-vector multiplications
per iteration, one to compute Axk and one to compute Apk. We can reduce the work
involved by defining qk = Apk and noticing that once we have computed qk and αk, we can
compute the next residual pk+1 without an additional matrix-vector multiplication. Since
xk+1 = xk + αkp

k, we have pk+1 = b − Axk+1 = b − Axk − αkAp
k = pk − αkq

k. Hence, we
can write the algorithm as:
choose an initial iterate x0

Set p0 = b− Ax0

for k = 0, 1, . . .,
set qk = Apk

set αk = (pk)Tpk/(pk)T qk

set xk+1 = xk + αkp
k

set pk+1 = pk − αkq
k

end

MATH 574 LECTURE NOTES 17

To understand the convergence of such an algorithm, consider the simpler choice, αk = α
for all k. Then we get the iteration

xk+1 = xk − α[Axk − b] = [I − αA]xk + αb.

If we let x denote the exact solution of Ax = b, then we get the error equation

x− xk+1 = x− [I − αA]xk − αb = [I − αA](x− xk) = αAx− αb = [I − αA](x− xk).

Iterating this equation, we find that

x− xk = [I − αA]k(x− x0).

This iteration will converge for all x0 ∈ R
n if and only if ρ(I − αA) < 1.

Now if λ is an eigenvalue of A, then 1 − αλ is an eigenvalue of I − αA (with the same
eigenvector). Hence, for convergence, we need −1 < 1− αλ < 1 for all eigenvalues λ of the
matrix A. Since A is positive definite, all its eigenvalues are positive, so we require

0 < α < 2/λ, i.e., 0 < α < 2/ρ(A).

To determine the optimal choice of the parameter α, we minimize the norm of the iteration
matrix I − αA. If we consider ‖I − αA‖2, then since A is assumed symmetric, so is I − αA.
Hence,

‖I − αA‖2 = ρ(I − αA) = max
i

|1− αλi|,
where λi are the eigenvalues ofA. SinceA is positive definite, we have that 0 < λ1 ≤ . . . ≤ λn.
Then maxi |1− αλi| = max{|1− αλ1|, |1− αλn|} and this maximum will occur where these
two quantities are equal, i.e., 1−αλ1 = αλn−1. Hence, the optimal value is α = 2/(λ1+λn).
In this case,

ρ(I − αA) = 1− 2λ1

λ1 + λn

=
λn − λ1

λn + λ1

=
(λn/λ1)− 1

(λn/λ1) + 1
.

Let κ = ‖A‖2‖A−1‖2 be the condition number measured in the ‖ · ‖2 norm. Since A is
symmetric and positive definite, ‖A‖2 = ρ(A) = λn. Since the eigenvalues of A−1 are the
reciprocals of the eigenvalues of A, ‖A−1‖2 = ρ(A−1) = 1/λ1. Hence, κ = λn/λ1. Thus,
ρ(I − αA) = (κ− 1)/(κ+ 1), and we have proved the following result.

Theorem 12. If A is symmetric and positive definite, then the iteration scheme defined by

xk+1 = [I − αA]xk + αb, with α = 2/(λ1 + λn) satisfies:

‖x− xk‖2 ≤
(

κ− 1

κ+ 1

)k

‖x− x0‖2,

where the spectral condition number κ = λmax(A)/λmin(A).

For the solution of Poisson’s problem by standard finite elements, we can show that there
is a constant independent of h such that κ(A) ≤ c2h−2. Thus, implementing this iteration
in its present form leads to a small reduction in error (1−O(h2)) and slow convergence.

We can use the above estimate to determine how many iterations it would take so that
the error satisfies: ‖x − xk‖2 ≤ ǫ‖x − x0‖2. We choose k so that [(κ − 1)/(κ + 1)]k < ǫ, or

18 MATH 574 LECTURE NOTES

equivalently, [(κ + 1)/(κ − 1)]k > 1/ǫ. Taking logs, we need k ln[(κ + 1)/(κ − 1)] > ln[1/ǫ],
i.e.,

k >
ln[1/ǫ]

ln[(κ+ 1)/(κ− 1)]
.

Using the fact that ln[(1 + x)/(1 − x)] ≥ 2x for 0 < x < 1, we get by choosing x = λ1/λn

that

ln[(κ+ 1)/(κ− 1)] = ln[(λn/λ1 + 1)/(λn/λ1 − 1)] = ln[(1 + λ1/λn)/(1− λ1/λn)] ≥ 2λ1/λn.

Hence, if we choose

k >
λn

2λ1

ln
1

ǫ
≥ ln[1/ǫ]

ln[(κ+ 1)/(κ− 1)]
,

we will have ‖x− xk‖ ≤ ǫ‖x− x0‖.

To get a more precise understanding of what the method is doing, we consider an eigen-
function expansion of the error, i.e., we suppose that Aφi = λiφi, where {φi}Ni=1 are a set of
orthonormal eigenvectors of A. We then set ek = x− xk and write

e0 =
N
∑

i=1

[(e0)Tφi]φi.

Suppose we choose α = λN , the largest eigenvalue of A. Then

ek = [I − αA]ke0 =
N
∑

i=1

[(e0)Tφi](1− λi/λN)
kφi.

Now for large eigenvalues 1− λi/λN is small, so the high frequency components of the error
are damped out quickly, while for small eigenvalues 1 − λi/λN ≈ 1, and there is not much
decay in the error and so the low frequency components are not changed much. Thus, a few
iterations of this method has the effect of “smoothing” the error. We shall come back to this
idea in a later lecture.

4.1. Conjugate-Gradient method (CG). A better choice of search directions {pk} is to
choose them to be A-orthogonal, i.e, to satisfy (pj)TApi = 0 for i 6= j. In this case, the best
choice of the αk is given by

αk =
(pk)T [b− Axk]

(pk)TApk
.

The CG method generates the A-orthogonal directions pk recursively using the Gram-
Schmidt orthogonalization process, but can be written in a simplified way (not obvious).

choose an initial iterate x0

Set p0 = r0 = b− Ax0

for k = 0, 1, . . .,
set αk = (rk)T rk/[(pk)TApk]
set xk+1 = xk + αkp

k

set rk+1 = rk − αkAp
k

MATH 574 LECTURE NOTES 19

set pk+1 = rk+1 + rk+1)T rk+1

(rk)T rk
pk

end

If A is an n×n matrix, the CG method gives the exact solution in n iterations. However,
it is most commonly used as an iterative method. If we stop after k iterations, we get the
following error estimate:

‖x− xk‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖x− x0‖A,

where ‖x‖2A = xTAx. Since now
√
κ enters, the reduction is like 1−O(h), better than before,

but still slow.

In practice, one uses the idea of preconditioning. Instead of solving the system Ax = b, we
solve the system B−1Ax = B−1b, where B is an approximation to A and the linear system
Bz = c is relatively easy to solve. Then the rate of convergence depends on the condition
number of B−1A instead of A. If B is a good approximation to A, then B−1A ≈ I, and so
κ(B−1A) will be close to 1, and we will get a substantial error reduction at each iteration.

One can show that the CG iteration for the linear system B−1Ax = B−1b can be written
in the following form. choose an initial iterate x0

Set r0 = b− Ax0, z0 = B−1r0, p0 = z0

for k = 0, 1, . . .,
set αk = (rk)T zk/[(pk)TApk]
set xk+1 = xk + αkp

k

set rk+1 = rk − αkAp
k

set zk+1 = B−1rk+1

set pk+1 = zk+1 + pk[(rk+1)T zk+1]/[(rk)T zk]
end

Hence, we need to compute zk+1 = B−1rk+1 at each iteration (which we do by solving the
system Bzk+1 = rk+1). If this can be done quickly, the work involved will be essentially the
same as for the CG method applied to the system Ax = b.

Some common choices are to choose B to be: (i) a diagonal matrix with the same diagonal
entries as A, (ii) a tridiagonal matrix with its nonzero entries agreeing with those of A, (iii)
an incomplete Cholesky factorization of A, in which a lower triangular matrix L is computed,
but only the non-zero elements of A are changed, (iv) domain decomposition methods, and
(v) multigrid methods. The last two are among the most effective for solving the linear
systems that arise from the discretization of partial differential equations.

