
42 MATH 574 LECTURE NOTES

9. Minimization problems

We consider two classes of problems: the first is the unconstrained minimization problem
(UCMP) and the second is nonlinear least squares (NLLS).

UCMP: Given f : RN → R, find x ∈ R
N which minimizes f(x).

NLLS: Given F = (f1, . . . , fm)
T : RN → R

m, with m ≥ N , find x ∈ R
N which minimizes

φ(x) = (1/2)
∑m

k=1
[fk(x)]

2.

Note that the second problem is a special case of the first, but with more structure.

9.1. Newton’s method and steepest descent. To solve UCMP, we can look for x∗ at
which

∇f = (∂f/∂x1, . . . , ∂f/∂xN) = 0

and the Hessian matrix Hf = (∂2f/∂xi∂xj) is symmetric and positive definite. Thus the
problem becomes one of solving a nonlinear systems of equations F (x) = 0, where F = ∇f ,
i.e., F i = ∂f/∂xi.

If we apply Newton’s method, we get the iteration

xn+1 = xn − J∇f (x
n)−1∇f(xn) = xn −Hf (x

n)−1∇f(xn),

since (JF )ij = ∂Fi/∂xj and hence

(J∇f )ij =
∂

∂xj

∂f

∂xi

=
∂2f

∂xi∂xj

= Hf .

Note that Hf is symmetric, so for a minimum at x∗, it will be sufficient to have Hf (x
∗) to

be positive definite.

In the special case of UCMP where f = (1/2)xTAx− xT b, we considered methods of the
form xn+1 = xn + αnp

n, where pn is a search direction and αn is a scalar. In the method of
steepest descent, we choose pn = −∇f(xn). With this choice and the special form of f , we
can solve explicitly for the best choice of αn. In the more general case, we would consider
methods of the form

xn+1 = xn − αn∇f(xn),

where αn is chosen to guarantee that f(xn+1) < f(xn). The advantage of this approach is
that we do not need to compute the Hessian. However, the method converges slowly. To
compromise, we could consider methods of the form

xn+1 = xn − αnB
−1

n ∇f(xn),

where Bn is symmetric and positive definite and αn is chosen to insure that f(xn+1) < f(xn).
For example, let Bn = (Hf (x

n) + µnI), with µn > 0 chosen so that Bn is positive definite.
For large values of µn this method behaves like steepest descent and for small values of µn,
it behaves like Newton’s method. The difficult part is deciding how to choose the parameter
µn.



MATH 574 LECTURE NOTES 43

9.2. Quasi-Newton methods. Analogous to the case of quasi-Newton methods for non-
linear equations, we now wish to avoid computation of the Hessian at each iteration. In this
case, we want to generate a sequence of symmetric, positive definite matrices Bn such that
Bn approximates Hf (x

n), but can be computed easily from Bn−1. Since we are now solving
the system ∇f(x) = 0, the appropriate Taylor series expansion is:

∇f(xn) = ∇f(xn+1) +Hf (x
n+1)(xn − xn+1) +O(xn − xn+1)2.

Thus, we want the approximation Bn+1 to Hf (x
n+1) to satisfy the quasi-Newton equation

∇f(xn) = ∇f(xn+1) + Bn+1(x
n − xn+1).

To simplify notation, let

yn = ∇f(xn+1)−∇f(xn), sn = xn+1 − xn,

so the quasi-Newton equation is Bn+1s
n = yn. If we look for a symmetric, single rank (the

maximium number of linearly independent rows is one) update satisfying the quasi-Newton
equation, then provided (yn − Bns

n)Tsn 6= 0, the only one is given by

Bn+1 = Bn +
(yn − Bns

n)(yn − Bns
n)T

(yn − Bnsn)Tsn
.

It turns out that this method does not work well, so we look for a double rank update. It
can be shown that the general symmetric rank 2 update is given by:

Bn+1 = Bn +
(yn − Bns

n)(cn)T + cn(yn − Bns
n)T

(cn)Tsn
−

(yn − Bns
n)Tsncn(cn)T

[(cn)Tsn]2
,

where c is an arbitrary vector such that (cn)Tsn 6= 0.

If we choose cn = sn, we get the Powell symmetric Broyden update. Since we would also
like to have the property that Bn positive definite implies that Bn+1 is positive definite, a
better choice is cn = yn (called the Davidon-Fletcher-Powell method).

Finally, as in the case of nonlinear equations, instead of updating Bn and then having to
solve a linear system of equations at each step, we can update the inverse directly. If we let
Hn = B−1

n , we then get the iteration xn+1 = xn − αnHn∇f(xn), where

Hn+1 = Hn +
(sn −Hny

n)(sn)T + sn(sn −Hny
n)T

(sn)Tyn
−

(sn −Hny
n)Tynsn(sn)T

[(sn)Tyn]2
.

This method in which the inverse is updated directly is known as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method.

9.3. Nonlinear least squares. Finally, we consider the nonlinear least squares problem
of minimizing φ(x) = (1/2)

∑m

k=1
[fk(x)]

2. Let F = [f1, · · · , fm]
T . Then JF , the Jacobian

matrix of partial derivatives of F is given by [Jf (x)]kj = (∂fk/∂xj).

Now

∂φ

∂xj

=
m
∑

k=1

fk(x)
∂fk
∂xj

= {[Jf (x)]
TF (x)}j, (Hφ)ij =

∂2φ

∂xi∂xj

=
m
∑

k=1

[

fk(x)
∂2fk

∂xi∂xj

+
∂fk
∂xi

∂fk
∂xj

]

.



44 MATH 574 LECTURE NOTES

Hence, ∇φ(x) = JF (x)
TF (x) and

Hφ(x) = JF (x)
TJF +

m
∑

k=1

fk(x)Hfk(x).

Newton’s method for the system ∇φ(x) = JF (x)
TF (x) = 0, is then given by

xn+1 = xn − [Hφ(x
n)]−1∇φ(xn).

= xn − [JF (x)
TJF +

m
∑

k=1

fk(x)Hfk(x)]
−1[JF (x

n)]TF (xn).

Since this is fairly complicated to compute, we seek a simpler method. One approach is
to linearize fk(x) about x

n and minimize the resulting quadratic functional instead. Using
Taylor series, we approximate

fk(x) ≈ fk(x
n) + [∇fk(x

n)]T (x− xn),

since we expect the remainder to be small if x− xn is small. Inserting this approximation,

φ(x) ≈ (1/2)
m
∑

k=1

[fk(x
n)]2+

m
∑

k=1

fk(x
n)[∇fk(x

n)]T (x−xn)+(1/2)
m
∑

k=1

{[∇fk(x
n)]T (x−xn)}2.

Then

∇φ(x) ≈
m
∑

k=1

fk(x
n)∇fk(x

n) +
m
∑

k=1

∇fk(x
n)[∇fk(x

n)]T (x− xn).

Since we want to find x such that ∇φ(x) = 0, we choose xn+1 to satisfy
m
∑

k=1

∇fk(x
n)[∇fk(x

n)]T (xn+1 − xn) = −

m
∑

k=1

fk(x
n)∇fk(x

n).

This may be written in the form

JT
F (x

n)JF (x
n)(xn+1 − xn) = −JT

F (x
n)F (xn).

Hence, this approximation amounts to dropping the term
∑m

k=1
fk(x)Hfk(x) in Newton’s

method. We would expect this to be small if the minimum of φ is near zero. This method
is known as the Gauss-Newton method.

In practice, a modified version of Gauss-Newton, known as the Levenberg-Marquardt
method, is used. This method is given by the iteration

[αnI + JT
F (x

n)JF (x
n)](xn+1 − xn) = −JT

F (x
n)F (xn),

where αn ≥ 0 is an appropriately chosen scalar. The idea is that for αn large, the method
behaves like steepest descent (to ensure that the function φ(x) is being decreased), while for
αn small, it behaves more like Newton’s method, which will converge faster. In general, we
would increase αn if we take a step that increases φ(x), and decrease αn if φ(x) is decreasing.


