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8. Solution of nonlinear systems of equations

We next wish to generalize some of the approaches used to derive methods to approx-
imate solutions of a single nonlinear equation to approximate solutions of a system of
nonlinear equations. We consider the problem F (x) = 0, where x = (x1, . . . , xN) and
F = (F1, . . . , FN), i.e., we consider the system

F1(x1, . . . , xN) = 0, . . . , FN(x1, . . . , xN) = 0.

8.1. Newton’s method for nonlinear systems. Many of the methods for this problem
are variations of Newton’s method, so we consider this first. For the single equation f(x) = 0,
Newton’s method is the iteration scheme:

xn+1 = xn − f(xn)/f
′(xn).

To generalize this method, we recall that one derivation of Newton’s method was to view
xn+1 as the approximation obtained by truncating the Taylor series expansion

0 = f(x∗) = f(xn) + f ′(xn)(x
∗ − xn) +O(x∗ − xn)

2,

i.e., we define xn+1 as the approximation to x∗ which gives equality when we drop the last
term. So xn+1 is the solution of

f ′(xn)(xn+1 − xn) = −f(xn).

One way to write this is to define xn+1 = xn + sn, where sn solves f ′(xn)sn = −f(xn). This
derivation generalizes to systems of nonlinear equations. Applying Taylor series to each Fk,
we get

0 = Fk(x
∗) = Fk(x

n) +
N
∑

i=1

∂Fk

∂xi

(xn)(x∗

i − xn
i ) +O(

N
∑

i=1

[(x∗

i − xn
i )

2], k = 1, . . . , N.

To avoid confusion, the iteration number is now a superscript and the components of the
vectors are subscripts. As before, we define xn+1 as the approximation to x∗ which gives
equality when we drop the last term. Let J(xn) denote the Jacobian matrix





∂F1/∂x1 · · · ∂F1/∂xN

· · · · · · · · ·
∂FN/∂x1 · · · ∂FN/∂xN



 .

Then xn+1 satisfies
J(xn)(xn+1 − xn) = −F (xn).

Hence, as before we can write xn+1 = xn + sn, where sn is the solution of the linear system

J(xn)sn = −F (xn).

Note that we can also write Newton’s method in the form

xn+1 = xn − [J(xn)]−1F (xn).

However, it is more efficient to solve the linear system, then to compute the inverse of J and
multiply it times the vector F .

A typical local convergence theorem for Newton’s method is the following.



40 MATH 574 LECTURE NOTES

Theorem 26. Suppose F satisfies (i) F is continuously differentiable in an open convex set
D and (ii) there is an x∗ in D such that F (x∗) = 0 and J(x∗) is nonsingular. Then there is
an open set S that contains x∗ such that for any x0 ∈ S, the Newton iterates are well-defined,
remain in S, and converge to x∗. Moreover, there is a sequence {αn} that converges to zero
such that

‖xn+1 − x∗‖2 ≤ αn‖x
n − x∗‖2, k = 0, 1, · · ·

(i.e., superlinear convergence). If in addition, F satisfies

(iii) ‖J(x)− J(x∗)‖2 ≤ κ‖x− x∗‖2, x ∈ D

for some constant κ > 0, then there exists a constant β such that

‖xn+1 − x∗‖2 ≤ β‖xn − x∗‖22, k = 0, 1, · · · ,

i.e., we have quadratic convergence. Note that the last condition is satisfied if D is sufficiently
small and F is twice differentiable at x∗.

Some advantages of Newton’s method: (i) There is a domain of attraction, i.e., there is a
set S such that if one of the Newton iterates lands in S, then all future iterates remain in S
and converge to x∗, (ii) we get at least superlinear and sometimes quadratic convergence.

Some disadvantages of Newton’s method: (i) It is not clear how to get a starting guess
that is sufficiently close to the solution x∗ to ensure convergence of the method. (ii) J(xk)
must be computed at each iteration. This involves the computation of N2 scalar functions at
each step. (iii) For some problems, exact expressions for ∂Fi/∂xj may be difficult to obtain
(since the user is only supplying F ).

We next consider some variations of Newton’s method designed to overcome some of these
disadvantages. To avoid (iii), we could replace ∂Fi/∂xj(x) by a finite difference approxi-
mation such as [Fi(x + hje

j) − Fi(x)]/hj, where ej is a unit vector with a one in the jth
position and zeroes elsewhere and (h1, . . . , hN) is a suitable vector with small components.

If F satisfies the hypotheses of the previous theorem and if ‖hn‖ ≤ γ‖F (xn)‖ for some
constant γ, then the conclusions of the previous theorem hold for this finite difference version
of Newton’s method. Note that ‖hn‖ is reduced at each iteration as ‖F (xn)‖ → 0.

To avoid (ii), one can hold the Jacobian fixed for a given number of iterations. Not only
does this save function evaluations, but since the same LU decomposition is used, there is
also a savings in the number of operations needed to solve the linear systems. Note, however,
that this will decrease the rate of convergence, so there is a trade-off.

8.2. Broyden’s method. Another approach to avoiding the problem of recomputing the
Jacobian at each step is to approximate J(xn) by a matrix Bn in such a way that Bn+1

can be computed from Bn in O(N2) arithmetic operations per iteration by evaluating F at
only xn and xn+1. The price paid for such a savings will be a reduction from quadratic to
superlinear convergence. We consider a method due to Broyden (1965).
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We first observe that if we have sufficient smoothness, then by Taylor series,

F (xn) = F (xn+1) + J(xn+1)(xn − xn+1) +O(‖xn − xn+1‖2).

If ‖xn−xn+1‖ is small, then it is reasonable to ask that the approximation Bn+1 to J(xn+1)
satisfy the quasi-Newton equation:

F (xn) = F (xn+1) + Bn+1(x
n − xn+1).

If N = 1, this completely determines Bn+1, i.e., Bn+1 = [F (xn)−F (xn+1]/[xn −xn+1], and
we get the secant method. When N > 1, this equation does not specify how Bn+1 acts on
vectors orthogonal to (xn − xn+1), so we need to add additional conditions.

Since we want to compute Bn+1 easily from Bn, one way of uniquely determining Bn+1 is
to require that

Bn+1z = Bnz, if (xn − xn+1)Tz = 0.

One can easily check that the solution is given by:

Bn+1 = Bn +
[F (xn)− F (xn+1)− Bn(x

n − xn+1)][xn − xn+1]T

(xn − xn+1)T (xn − xn+1)
.

Broyden’s method then consists of the iteration: xn+1 = xn + sn, where sn is the solution
of the linear system

Bns
n = −F (xn).

Setting yn = F (xn+1)− F (xn), we then update Bn using the formula

Bn+1 = Bn +
[yn − Bns

n][sn]T

[sn]Tsn
.

There are also variations of Broyden’s method in which one can update Hn = B−1
n directly

(thus avoiding the solution of a linear system at each step), but these do not seem to be as
stable. Under the conditions that give local convergence for Newton’s method, it is known
that Broyden’s method is locally and superlinearly convergent.

8.3. Obtaining a good initial approximation. An important issue in solving nonlinear
systems of equations is obtaining a good enough initial approximation so that the iterative
method one is using will converge. One such approach is to try embedding techniques, i.e.,
we embed the problem of solving F (x) = 0 in a family of problems, parametrized by t. This
is done in a way so that the solution x0 is easy determined for t = 0. We then consider a
sequence of problems corresponding to the choices t = t0, t1, . . . and use the solution obtained
for the problem with t = tn as the initial guess for the problem with t = tn+1. If tn+1 is close
to tn, we expect the corresponding solutions to be close.

For example, defining H(t,x) = F (x)−(1−t)F (x0), 0 ≤ t ≤ 1, we note that the problem
H(0,x) = 0 has solution x = x0 and that the solution of the problem H(1,x) = 0 is the
solution of F (x) = 0. Another possible embedding is to define H(t,x) = F (x)− e−tF (x0),
0 ≤ t < ∞. Again, H(0,x) = 0 has solution x = x0 and as t → ∞, the limiting solution
corresponds to the solution of F (x) = 0.


