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7. Solution of Nonlinear Equations

We consider the numerical approximation of the roots of a single nonlinear equation
F (x) = 0 (e.g., F (x) = x − e−x = 0) and of a system of nonlinear equation F (x) = 0,
where F = (F1, . . . , Fn) and F i(x) = F i(x1, . . . , xn).

The methods will be iterative and we consider the issues (i) under what conditions does
the iteration converge (to a root) and (ii) how fast does the iteration converge.

In some cases, we will be able to show that the iteration defining the method converges
for all initial guesses in some specific range. In general, we will settle for a local convergence
result which says that the iteration converges if the starting guess is sufficiently close to the
root.

7.1. Iterative methods for roots of a single nonlinear equation. Suppose F (x) is a
continuous function on the interval [a, b] and satisfies F (a)F (b) < 0. Then the Intermediate
Value Theorem says there is at least one number s, with a < s < b, such that F (s) = 0. The
simplest scheme to find a root s is to use the method of bisection.

Bisection Algorithm: Set a0 = a and b0 = b. For n = 0, 1, . . .,
Set xn = (an + bn)/2.
If F (an)F (xn) < 0, set an+1 = an, bn+1 = xn.
If F (xn)F (bn) < 0, set an+1 = xn, bn+1 = bn.
Then at each stage of the iteration, the root lies in the interval spanned by an and bn. Hence

|s− xn| ≤ |bn − an|/2.

Now since |bn − an| = |bn−1 − an−1|/2, we easily get that

|s− xn| ≤ |b− a|/2n+1, n ≥ 0.

Thus, we can achieve any desired accuracy by taking n sufficiently large.

Method of False Position: Instead of choosing xn as the midpoint of the points bracket-
ing the root, we choose it as the weighted average of these points, with the weights depending
on the size of the function values. This can be done by choosing xn as the point where the
secant line joining the points (an, F (an) and (bn, F (bn)) crosses the x axis. This line is given
by

y − F (an) =
F (bn)− F (an)

bn − an
(x− an).

When y = 0, we get that

x ≡ xn = an −
bn − an

F (bn)− F (an)
F (an).

To maintain the root bracketing property, we could then proceed as in the bisection algo-
rithm, i.e.,
If F (an)F (xn) < 0, set an+1 = an, bn+1 = xn.
If F (xn)F (bn) < 0, set an+1 = xn, bn+1 = bn.
However, although the method of false position produces a point at which |F (x)| is small
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somewhat faster than the bisection method, it does not give a small interval in which the
root is known to lie.

Consider the following example: f(x) = x2 − 1, a = 0, b = 2.

Then all the iterates xn lie to the left of the root s, so although s ∈ [xn, b], |b−xn| ≥ |b−s|
for all n, i.e., the size of the interval in which the root is known to lie is not converging to
zero.

Secant method: This method is similar to the method of false position, except that we
drop the requirement that the root be bracketed. Thus, starting from two values x0 and x1

which do bracket the root, we simply define the sequence {xn} by

xn+1 = xn −
xn − xn−1

F (xn)− F (xn−1)
F (xn).

When it converges, this method converges faster than the method of false position.

Newton’s method: Geometrically, starting from an initial guess x0, we define at each
step a new approximation xn+1 as the position where the tangent line to the curve y = F (x)
at x = xn crosses the x-axis. Since the equation of this tangent line is given by

y − F (xn) = F ′(xn)(x− xn),

we get that when y = 0,
x = xn+1 = xn − F (xn)/F

′(xn).

Another way to think of Newton’s method is that it is the approximation given by truncating
the Taylor series expansion, i.e., we have

0 = F (s) = F (xn) + F ′(xn)(s− xn) + F ′′(ξ)(s− xn)
2.

If xn is close to s, then s− xn is small, so that (s− xn)
2 is even smaller. Discarding this last

term, we define xn+1 as the approximation to s which restores equality to this equation, i.e.,

F (xn) + F ′(xn)(xn+1 − xn) = 0.

Solving for xn+1, we recover Newton’s method.

To study the convergence of some of these methods, we next consider a scheme called
fixed point iteration. In this method, instead of seeking a root of F (x) = 0, we look for a
fixed point of a function f(x), i.e., a value of x satisfying x = f(x). Note that if we define
f(x) = x− F (x)/F ′(x), then a simple root x∗ of F (i.e., F ′(x∗) 6= 0) will be a fixed point of
f(x).

Fixed point iteration: Given a starting guess x0, we define the iteration xn+1 = f(xn).
We then have the following convergence result for this iteration scheme.

Theorem 23. Let I = [a, b], where a and b are finite and assume that f satisfies the following
conditions: (i) f is continuous on I, (ii) f(x) ∈ I for all x ∈ I, and (iii) |f(x2)− f(x1)| ≤
L|x2 − x1|, with L < 1 for all x1, x2 ∈ I. Then there is a unique fixed point s of f (i.e.,
s = f(s)) in the interval I and for any choice of x0 ∈ I, the sequence {xn} defined by the
iteration xn+1 = f(xn) converges to s.
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Proof. To prove existence of a fixed point, we set g(x) = x−f(x). Since by (ii), a ≤ f(a) ≤ b
and a ≤ f(b) ≤ b, g(a) = a− f(a) ≤ 0 and g(b) = b− f(b) ≥ 0. Since f is continuous on I,
so is g. Hence, by the Intermediate Value Theorem, there exists at least one point s in [a, b]
such that g(s) = 0, i.e., s = f(s). To see there can be only one such point, we suppose there
are two fixed points s1 and s2. Then using (iii),

|s2 − s1| = |f(s2)− f(s1) ≤ L|s2 − s1|.

Since L < 1, we must have s2 = s1. To establish convergence, we note that

|s− xn| = |f(s)− f(xn−1)| ≤ L|s− xn−1| ≤ L2|s− xn−2| ≤ . . . ≤ Ln|s− x0|.

Since L < 1, limn→∞ = 0 and so limn→∞ |s− xn| = 0, i.e., limn→∞ xn = s. �

We can also derive error bounds on the approximation that do not depend on the unknown
solution.

Corollary 5.

|s− xn| ≤ Ln max{b− x0, x0 − a}.

From the proof of the theorem, we know that |s− xn| ≤ Ln|s− x0|. Since both x0 and s
belong to I, either s ∈ [a, x0] or s ∈ [x0, b]. Hence, |s− x0| ≤ Ln max{b− x0, x0 − a}.

It is also possible to establish the following result.

Corollary 6.

|s− xn| ≤
Ln

1− L
|x1 − x0|.

Note that if f ′ is also continuous and |f ′(ξ)| ≤ L < 1 for all ξ ∈ [a, b], then by the Mean
Value Theorem, we have for all x1, x2 ∈ [a, b], there exists ξ ∈ [a, b] such that

|f(x2)− f(x1)| = |f ′(ξ)||x2 − x1| ≤ L|x2 − x1|,

so this is a simple way to show that (iii) is satisfied.

Example: Use the theorem on fixed point iteration to prove the convergence of the iteration
scheme: xn+1 = g(xn) for any x0 ∈ [−1, 1], when g(x) = (x2 − 1)/3. (i) Since g is a
polynomial, it is continuous and differentiable everywhere. (ii) We find the maximum and
minimum of g(x) on I = [−1, 1]. Now g′(x) = 2x/3 = 0 only for x = 0. Hence the max
and min can occur only at x = −1, 0, 1. Since g(−1) = 0, g(1) = 0 and g(0) = −1/3, we
get −1/3 ≤ g(x) ≤ 0. Hence g(x) ∈ [−1, 1] for all x ∈ [−1, 1] and (ii) is satisfied. (iii) is
also satisfied since |g′(x)| = |2x/3| ≤ 2/3 = L < 1 for x ∈ [−1, 1]. Hence, the iteration
xn+1 = (x2

n
− 1)/3 converges to the unique fixed point of g in [−1, 1].


