MATH 574 ASSIGNMENT 2

1. Consider the tridiagonal matrix

$$
A=\left(\begin{array}{ccccccc}
a_{1} & c_{1} & 0 & & & \ldots & 0 \\
b_{2} & a_{2} & c_{2} & 0 & & \ldots & 0 \\
0 & b_{3} & a_{3} & c_{3} & 0 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \vdots \\
0 & \ldots & & b_{n-1} & a_{n-1} & & c_{n-1} \\
0 & \ldots & & 0 & b_{n} & & a_{n}
\end{array}\right) .
$$

If A is irreducible and weakly diagonally dominant, show that all a_{i}, b_{i}, and c_{i} are nonzero.
2. Show that if A is strictly diagonally dominant, then

$$
\left\|A^{-1}\right\|_{\infty} \leq \frac{1}{\min _{i}\left|a_{i i}\right|\left[1-\max _{i} \sum_{j \neq i}\left|a_{i j} / a_{i i}\right|\right]}
$$

Hint: Write $A=D\left[I+D^{-1}(L+U)\right]$ and use $\left\|(I+E)^{-1}\right\| \leq 1 /(1-\|E\|)$, for $\|E\|<1$.
3. Let

$$
A=\left(\begin{array}{rr}
1 & -1 \\
-1 & 4
\end{array}\right)
$$

a) Find the iteration matrix M for the Jacobi method, Gauss Seidel method, and SOR method.
b) Compute the spectral radius in each case (for SOR, take $\omega=4(2-\sqrt{3})$). Use exact arithmetic until the last step of your computation. Note that with this choice of ω, we have $\omega^{2} / 8-2 \omega+2=0$.

4a. Find the values of the constant a for which the matrix

$$
A=\left(\begin{array}{ll}
1 & a \\
a & 1
\end{array}\right)
$$

is positive definite.
Hint: Use the fact that a symmetric matrix is positive definite if and only if all its eigenvalues are >0.

4b. Find a vector $x=\left(x_{1}, x_{2}\right)^{T}$ and a constant a not satisfying the conditions of part (a) for which $x^{T} A x \leq 0$.

