MATH 574 ASSIGNMENT 1

1a. Let

$$
A=\left(\begin{array}{rrr}
1 & 1 & 3 \\
3 & -1 & 1 \\
1 & 3 & 0
\end{array}\right)
$$

Find a lower triangular matrix L, a unit upper triangular matrix U, and a permutation matrix P, such that $L U=P^{T} A$. Use the algorithm given in class, incorporating the partial pivoting strategy.

1b. Use Matlab's lu command (type help lu to learn about it) to find a unit lower triangular matrix l, an upper triangular matrix u, and a permutation matrix p such that $p A=l u$. Note that p should be the transpose of the matrix found in part(a). To enter the matrix A into Matlab, type the following (the semicolons separate the rows):

1c. Determine a diagonal matrix D such that $L D=l$ and $D^{-1} U=u$.

2a. Show that the $L U$ decomposition of the matrix $\left(\begin{array}{ll}0 & a \\ 0 & b\end{array}\right)$ in which L is unit lower triangular and U is upper triangular is not unique by finding the general form of this decomposition.

2b. Does this matrix have an $L U$ decomposition in which L is lower triangular and U is unit upper triangular? If so, find it, and if not, give a reason why not.
3. In this problem we consider the question of whether a small value of the residual $\|A z-b\|_{2}$ means that z is a good approximation to the solution x of the linear system $A x=b$. We showed in class that when $\delta A=0$,

$$
\frac{\|x-z\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|A z-b\|}{\|b\|}
$$

which implies that if the condition number $\|A\|\left\|A^{-1}\right\|$ of A is small, a small relative residual implies a small relative error in the solution. We now show computationally what can happen if the condition number is large. A standard example of a matrix that is ill-conditioned is the Hilbert matrix H, with entries $\left(H_{i j}\right)=1 /(i+j-1)$. For $n=8,12,16$ (where H is of dimension $n \times n$), use Matlab to solve the linear system of equations $H x=b$, where b is the vector $H y$ and y is the vector with $y_{i}=1 / \sqrt{n}, i=1 \ldots n$. Clearly, the true solution is given by $x=y$, and we let z denote the approximation obtained by Matlab. Then calculate for each value of n the following quantities: (i) the relative error $\|x-z\|_{2} /\|x\|_{2}$, (ii) the relative residual $\|H z-b\|_{2} /\|b\|$, (iii) the condition number $\|H\|_{2}\left\|H^{-1}\right\|_{2}$, and (iv) the product of the quantities in (ii) and (iii). Arrange all these numbers in a table. The Matlab commands
norm and cond can be used to compute the norm and condition numbers, respectively. When vectors are input, Matlab writes them as row vectors. To convert y to a column vector, write it as y'. To solve the linear system $H z=b$ in Matlab, type $z=H \backslash b$. An example of a Matlab loop is given below; the semicolon keeps Matlab from writing unwanted output to the screen. To avoid potential problems, type clear before running a new value of n.

Example of a Matlab Loop:

```
for i=1:10
y(i) = 1/sqrt(10);
end
```

4. Suppose x is a vector with n components and A is an $n \times n$ matrix.
a) Show that $\|x\|_{1} \leq n\|x\|_{\infty}$.
b) Find a vector x such that equality holds in (a).
c) Show that $\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$.
d) Find a vector x such that equality holds in (c).
e) Show that $\|x\|_{\infty} \leq\|x\|_{2}$.
f) Use parts (c) and (e) and the facts that

$$
\|A\|_{2}=\max _{x \neq 0}\|A x\|_{2} /\|x\|_{2}, \quad\|A\|_{\infty}=\max _{x \neq 0}\|A x\|_{\infty} /\|x\|_{\infty}
$$

to show that

$$
\|A\|_{2} / \sqrt{n} \leq\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}
$$

