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2.3. Interpolation of moments. In some applications, it is useful to interpolate quantities
other than function or derivative values. One quantity that arises frequently is the moments

of a function f over an interval [a, b], i.e., quantities of the form
∫ b

a
xrf(x) dx.

Example: Interpolation of f by a quadratic function P2(x) on the interval [a, b]. So far,
we have defined P2(x) by requiring that it interpolate f at the points x0 = a, x1 = b, and
a third point, say z in the interior of [a, b]. Another possibility is to replace interpolation of
one or more of the point values of f by interpolation of moments. In particular, we could

replace the requirement that P2(z) = f(z) by the condition
∫ b

a
P2(x) dx =

∫ b

a
f(x) dx. To

find such a function, we can save some work by writing it on the interval [x0, x1] in the form

P2(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1) + A(x− x0)(x− x1).

Note that for any value of the constant A, P2(x0) = f(x0) and P2(x1) = f(x1). We now
determine A by the integral condition, i.e.,

∫ x1

x0

f(x) dx =

∫ x1

x0

P2(x) dx =
x1 − x0

2
[f(x0) + f(x1)]− A

[x1 − x0]
3

6
.

Hence A =
3

[x1 − x0]2

{

[f(x0) + f(x1)]−
2
∫ x1

x0

f(x) dx

x1 − x0

}

.

This representation is useful for many purposes. However, we can also rewrite it in the form:

P2(x) =

{

x− x1

x0 − x1

+
3

[x1 − x0]2
(x− x0)(x− x1)

}

f(x0)

+

{

x− x0

x1 − x0

+
3

[x1 − x0]2
(x− x0)(x− x1)

}

f(x1)

−

{

6

[x1 − x0]3
(x− x0)(x− x1)

}
∫ x1

x0

f(x) dx.

This representation shows we can write any quadratic polynomial in the form

P2(x) =

{

x− x1

x0 − x1

+
3

[x1 − x0]2
(x− x0)(x− x1)

}

P2(x0)

+

{

x− x0

x1 − x0

+
3

[x1 − x0]2
(x− x0)(x− x1)

}

P2(x1)

−

{

6

[x1 − x0]3
(x− x0)(x− x1)

}
∫ x1

x0

P2(x) dx,

i.e., in terms of the degrees of freedom P2(x0), P2(x1), and
∫ x1

x0

P2(x) dx.

Abstractly, we are writing

P2(x) = B1(x)φ1(P2) + B2(x)φ2(P2) + B3(x)φ3(P2)

where the Bi depend only on x, the φi are degrees of freedom of P2 and we have the key
property: φi(Bj) = 1 if i = j and 0 if i 6= j. This is exactly what we did when we
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constructed the Lagrange form of the interpolating polynomial. The basis Bi is the one that
most simplifies this interpolation problem. Of course, one has to find it.

More generally, given a space of polynomial functions V , a set of degrees of freedom for
the space V are a set of linear functionals, (i.e., linear mappings {φi} such that φi(p) is a
real number for each p ∈ V ), which can be assigned values arbitrarily to determine a unique
polynomial p ∈ V . We refer to such a set as a unisolvent set of degrees of freedom. Checking
that a proposed set of degrees of freedom is unisolvent can be done in the following way.
First note that determining a unique polynomial from its proposed set of degrees of freedom
is equivalent to solving a square linear system of equations for the unknown coefficients of
the polynomial in an expansion of the polynomial in a fixed basis. (Of course we assume
the number of linear functionals is equal to the dimension of the space V .) From the theory
of solutions of linear equations, we know that a square linear system will have a unique
solution for every right hand side if and only if the only solution of the homogeneous system
(i.e., when the right hand side is zero) is the zero solution. So this is what we check. For
example, to check that the degrees of freedom P (x0), P (x1),

∫ x1

x0

P (x) dx are a unisolvent set
of degrees of freedom for the space of polynomials of degree ≤ 2, we set these equal to zero
and show the resulting quadratic polynomial must be zero. But if P (x0) = P (x1) = 0, then
P (x) = A(x− x0)(x− x1), for some constant A. Since (x− x0)(x− x1) ≤ 0, x ∈ [x0, x1], its
integral over this interval 6= 0, so then A = 0 and hence P (x) = 0.

The basis we constructed at the beginning of this example is an illustration of a hierarchical
basis, i.e., first we constructed a basis for the linear functions interpolating at 2 points. Then
we added a quadratic that vanishes at those points. In a more general setting, we would
choose basis functions in such a way that the linear system we have to solve to satisfy the
conditions of the interpolation problem is triangular and therefore easy. If we don’t choose
special basis functions, then in general, the solution of the interpolation problem will require
the solution of a linear system of equations involving a full matrix.

2.4. Runge example. One might infer from the error formula for polynomial interpola-
tion that as one adds more and more interpolation points, one gets a better and better
approximation. This fact is not true in general and depends on how the points are added.

Example: Runge f(x) = 1/(1 + x2), x ∈ [−5, 5]. Set xj = −5 + j∆x, j = 0, 1, . . . , n,
∆x = 10/n. For each n, there is a unique polynomial Pn(x) of degree ≤ n satisfying
Pn(xj) = f(xj). However, |f(x)−Pn(x)| will become arbitrarily large at points in [−5, 5] as
n becomes large. One can show that for n = 2r,

f(x)− Pn(x) =
n
∏

j=0

x(x− xj)
f(x)(−1)r+1

∏r

j=0
(1 + x2

j)
.

For n = 2,

|f(x)− P2(x)| ≤
|x2(x+ 5)(x− 5)

26(1 + x2)
≤ 1,

by looking at the graphs. For n = 10, x = −4.5, |f(x)− Pn(x)| = 1.53166, so the maximum
error is not getting smaller as n increases.
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3. Piecewise Polynomial Approximation

Consider a partition P of [a, b] by points x0, . . . , xn, i.e., a = x0 < x1 < . . . < xn = b.

Definition: We say Q(x) is a Cr piecewise polynomial of degree ≤ k with respect to the
partition P if Q ∈ Cr[a, b] and Q has the form Q(x) = qj(x) for x ∈ (xj−1, xj), j = 1, . . . n,
where qj(x) is a polynomial of degree ≤ k for each value of j.

Note that since Q(x) ∈ Cr and the qj are polynomials, its first r derivatives are continuous
and its r + 1st derivative is defined everywhere except possibly at the points xj.

Examples of piecewise polynomials:

k = 0: Piecewise constants (dimension = n). Degrees of freedom are: values of Q on each
subinterval.

k = 1: Discontinuous piecewise linears (dimension = 2n). Degrees of freedom are: 2
values of Q on each subinterval. Continuous piecewise linears (dimension = n+ 1). Degrees
of freedom are: values of Q at points xj. Note, in this case, we choose the mesh points xj to
insure continuity of Q, i.e., to have qj(xj) = qj+1(xj).

k = 2: Discontinuous piecewise quadratics (dimension = 3n). Degrees of freedom are:
3 values of Q on each subinterval. Continuous piecewise quadratics (dimension = 2n + 1).
Degrees of freedom are: values of Q at xj and at one interior point in each subinterval. C1

piecewise quadratics (dimension = 2n+ 1− (n− 1) = n+ 2. Degrees of freedom are: values
of Q at xj and Q′(x0).

k = 3: C−1, C0, C1, C2 piecewise cubics. C−1: (dimension = 4n). Degrees of freedom
are: 4 values of Q on each subinterval. C0: (dimension = 3n + 1). Degrees of freedom are:
values of Q at xj and at 2 interior points in each subinterval. C1: (dimension = 2n + 2).
Degrees of freedom are: values of Q and Q′ at xj. Note that this choice will guarantee that
Q and Q′ will be continuous across mesh points. C2: (dimension = 2n+2− (n−1) = n+3).
Degrees of freedom are: values of Q at xj plus 2 additional conditions.

Note: A Cr piecewise polynomial of degree ≤ r is a global polynomial of degree ≤ r. If
r = k− 1, Q is called a spline function. To compute the dimension of the space of Cr piece-
wise polynomials of degree ≤ k starting from the dimension of the space of Cr−1 piecewise
polynomials of degree ≤ k, we subtract the number of additional constraints imposed, i.e.,
n− 1, one at each interior mesh point.

Number of Degrees of Freedom

Pn C−1 C0 C1 C2

0 n 1
1 2n n+ 1 2
2 3n 2n+ 1 n+ 2 3
3 4n 3n+ 1 2n+ 2 n+ 3


