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13.10. Additional types of stability.

Definition: A method for which the region of absolute stability is equal to the entire left
hand plane is said to to A-stable.

For such methods, there will no restriction on the step size to achieve stability. However,
A-stability is a severe restriction as shown by the following results.

Theorem 16. (Dahlquist) (i) An explicit linear multistep method cannot be A-stable.
(ii) The order of an A-stable implicit linear multistep method cannot exceed 2.
(iii) The second order A-stable implicit linear multistep method with smallest error constant
is the trapezoidal rule.

This restriction on order is quite severe since it means that one must take a very small
stepsize to achieve reasonable accuracy. However, there are a number of other definitions
that are less demanding, but sufficiently restrictive so that stability problems do not occur.

Definition: A numerical method is said to be A(α)-stable, α ∈ (0, π/2), if its region of
absolute stability contains the infinite wedge Wα = {hλ : π − α < arg hλ < π + α. The
method is A(0)-stable it is it A(α)-stable for some α ∈ (0, π/2).

Note: For a given λ, with Reλ < 0, the point hλ either lies insideWα for all positive h or lies
outside Wα for all positive h. Hence, if one can determine in advance that all the eigenvalues
lie in the wedge Wα, then an A(α)-stable method can be used without any restriction on the
stepsize. In particular, an A(0)-stable method can be used if the eigenvalues are known to
be real, e.g., if the Jacobian is symmetric.

Theorem 17. (i) An explicit linear multistep method cannot be A(0)-stable.
(ii) There is only one A(0)-stable k-step method whose order exceeds k, (the Trapezoidal
rule).
(iii) For all α ∈ [0, π/2), there exist A(α)-stable linear k-step methods of order r for which
k = r = 3 and k = r = 4.

13.11. Stiff differential equations. Roughly speaking, a stiff system of ordinary differen-
tial equations is one in which solution components of interest are slowly varying, but other
components are rapidly decaying. Although the rapidly decaying components are only a
small perturbation of the true solution, they can place a severe stability restriction on the
step size used to compute the numerical approximation.

More specifically, consider the m × m linear system of ordinary differential equations:
Y ′ = AY + Φ(x), where we assume that A has distinct eigenvalues λj and corresponding
eigenvectors Vj, j = 1, . . . ,m.

Definition: This linear system is said to be stiff if
(i) Reλj < 0, j = 1, . . . ,m
(ii) maxj |Reλj| >> minj |Reλj|.
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The ratio maxj |Reλj|/minj |Reλj| is called the stiffness ratio (as much as 106 in some prac-
tical problems).

The general solution of this system has the form

Y (x) =
m∑

j=1

cje
λjxVj +Ψ(x),

where Ψ(x) is a particular solution. Since Reλj < 0 for j = 1, . . . ,m,
∑m

j=1 cje
λjxVj → 0

as x → ∞. This part of the solution is called the transient solution, while Ψ(x) is the
steady-state solution. Next suppose λµ and λν are eigenvalues of A satisfying

|Reλµ| ≥ |Reλj| ≥ |Reλν |, j = 1, . . . ,m.

To approximate the steady-state solution, we must numerically integrate until the slowest
decaying exponent eλνx is negligible. However, if |Reλµ| is large, then stability forces the
use of a very small stepsize h in order that hλµ lies in the region of absolute stability. If
|Reλµ| >> |Reλν |, then one must integrate over a long interval using a stepsize which is
everywhere excessively small relative to the size of the interval – this is the problem of
stiffness.

The following multistep methods, developed by W. Gear, are called backward differenti-
ation formulas. The methods of order 1-6 (but not 7-15) satisfy another type of stability
definition call stiffly stable. The starting point of the methods is the equation y′(xn+1) =
f(xn+1, y(xn+1)). We then replace y by the polynomial interpolating y at the points xn+1,
xn, . . ., xn−p+1, i.e,

y(x) ≈

p∑

k=0

y[xn+1, xn, . . . , xn+1−k]
k−1∏

i=0

(x− xn+1−i).

To compute an approximation to y′(xn+1), we observe that

(d/dx)
k−1∏

i=0

(x− xn+1−i) = (d/dx)[(x− xn+1)
k−1∏

i=1

(x− xn+1−i)]

= (x− xn+1)(d/dx)
k−1∏

i=1

(x− xn+1−i) +
k−1∏

i=1

(x− xn+1−i).

Evaluating this last expression at xn+1, we get in the case of equally spaced points that

k−1∏

i=1

(xn+1 − xn+1−i) =
k−1∏

i=1

ih = hk−1(k − 1)!

In that case, the family of methods becomes:
p∑

k=1

y[xn+1, xn, . . . , xn+1−k]h
k−1(k − 1)! = fn+1.

p = 1: y[xn+1, xn] ≈ fn+1. i.e., yn+1 = yn + hfn+1 (backward Euler method).
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p = 2: y[xn+1, xn] + hy[xn+1, xn, xn−1] ≈ fn+1. After some algebra, we obtain the method:
yn+1 = (4/3)yn − (1/3)yn−1 + (2/3)hfn+1.

To determine the local truncation error for these methods, (i.e, how well the true solution
satisfies the discrete equations), we write

y(x) =

p∑

k=0

y[xn+1, xn, . . . , xn+1−k]
k−1∏

i=0

(x−xn+1−i)+y[xn+1, xn, . . . , xn+1−p, x]

p∏

i=0

(x−xn+1−i).

Then

y′(xn+1) =

p∑

k=1

y[xn+1, xn, . . . , xn+1−k]h
k−1(k − 1)! + y[xn+1, xn, . . . , xn+1−p, xn+1]h

pp!.

Since y′(xn+1) = f(xn+1, y(xn+1)), the local truncation error, defined by

h

p∑

k=1

y[xn+1, xn, . . . , xn+1−k]h
k−1(k − 1)!− hf(xn+1, y(xn+1))

is given by

= −hp+1p!y[xn+1, xn, . . . , xn+1−p, xn+1] = −hp+1y(p+1)(ξ)/(p+ 1).

To be A-stable, A(α)-stable, or stiffly-stable, a linear multistep method must be implicit.
Hence, it is used in predictor-corrector format, i.e., one solves the nonlinear equation given
by the corrector with initial guess given by the predictor. Previously, we considered the
simple iteration

yj+1
n+1 = hb−1f(xn+1, y

j
n+1) + g,

where g is already known from past values. For convergence, we required h|Lb−1| < 1, where
L is the Lipschitz constant. For stiff systems, L is extremely large and hence this condition
poses a severe restriction on the stepsize h, about the same severity as that imposed by the
stability requirements of a method. Hence, we solve this nonlinear equation using Newton’s
method or some variation. Recall, Newton’s method for the nonlinear system F (Y ) = 0 is
given by:

Y j+1 = Y j − J−1(Y j)F (Y j),

where J(Y ) is the Jacobian matrix ∂Fi/∂Yj. In this case, F (y) = y − hb−1f(x, y)− g.
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Figure 7. Stability regions for Backward Differentiation Formulas (1-6)


