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13.10. Additional types of stability.

Definition: A method for which the region of absolute stability is equal to the entire left
hand plane is said to to A-stable.

For such methods, there will no restriction on the step size to achieve stability. However,
A-stability is a severe restriction as shown by the following results.

Theorem 16. (Dahlquist) (i) An explicit linear multistep method cannot be A-stable.

(ii) The order of an A-stable implicit linear multistep method cannot exceed 2.

(7ii) The second order A-stable implicit linear multistep method with smallest error constant
1s the trapezoidal rule.

This restriction on order is quite severe since it means that one must take a very small
stepsize to achieve reasonable accuracy. However, there are a number of other definitions
that are less demanding, but sufficiently restrictive so that stability problems do not occur.

Definition: A numerical method is said to be A(«a)-stable, o € (0,7/2), if its region of
absolute stability contains the infinite wedge W, = {hA : m — a < argh\ < m + a. The
method is A(0)-stable it is it A(«)-stable for some « € (0, 7/2).

Note: For a given A, with ReA < 0, the point hA either lies inside W, for all positive A or lies
outside W, for all positive h. Hence, if one can determine in advance that all the eigenvalues
lie in the wedge W, then an A(«a)-stable method can be used without any restriction on the
stepsize. In particular, an A(0)-stable method can be used if the eigenvalues are known to
be real, e.g., if the Jacobian is symmetric.

Theorem 17. (i) An explicit linear multistep method cannot be A(0)-stable.

(ii) There is only one A(0)-stable k-step method whose order exceeds k, (the Trapezoidal
rule).

(i11) For all o € [0,7/2), there exist A(a)-stable linear k-step methods of order r for which
k=r=3andk=r=4.

13.11. Stiff differential equations. Roughly speaking, a stiff system of ordinary differen-
tial equations is one in which solution components of interest are slowly varying, but other
components are rapidly decaying. Although the rapidly decaying components are only a
small perturbation of the true solution, they can place a severe stability restriction on the
step size used to compute the numerical approximation.

More specifically, consider the m x m linear system of ordinary differential equations:
Y’ = AY 4 ®(x), where we assume that A has distinct eigenvalues A; and corresponding
eigenvectors Vj, j =1,...,m.

Definition: This linear system is said to be stiff if
(i) ReA; <0,j=1,...,m
(i) max; |[ReA;| >> min; |[Re);|.
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The ratio max; |Re);|/ min; |[Re)\;| is called the stiffness ratio (as much as 10° in some prac-
tical problems).

The general solution of this system has the form

m

V(e) = 3 eV, + W),
j=1
where W(z) is a particular solution. Since Re); < 0 for j = 1,...,m, Z;n:l c;eN*V; — 0

as x — oo. This part of the solution is called the transient solution, while W(z) is the
steady-state solution. Next suppose A, and ), are eigenvalues of A satisfying

|ReA,| > |[Re)j| > |ReA,|, j=1,....m

To approximate the steady-state solution, we must numerically integrate until the slowest
decaying exponent e™? is negligible. However, if [Re)\,| is large, then stability forces the
use of a very small stepsize h in order that hA, lies in the region of absolute stability. If
|[ReA,| >> |Re),|, then one must integrate over a long interval using a stepsize which is
everywhere excessively small relative to the size of the interval — this is the problem of
stiffness.

The following multistep methods, developed by W. Gear, are called backward differenti-
ation formulas. The methods of order 1-6 (but not 7-15) satisfy another type of stability
definition call stiffly stable. The starting point of the methods is the equation y'(x,11) =
f(@ni1,y(xns1)). We then replace y by the polynomial interpolating y at the points 1,
Tpy ooy Tp—pt1, 1.6

p k-1
T) ~ Z Y[Tnt1s Ty -y Tnr1—k) H(x — Tpt1-i)-
k=0 i=0
To compute an approximation to y'(z,11), we observe that
k-1 k—1
(d/dz) [ [(z = wny1-0) = (@/d)[(@ = 2p2) [ [ (2 = 2as1)]
i=0 =1

k-1 k-1

= (2 = 2pn1)(d/dz) [ (& = 2nirs) + [ [ (2 = 2nra0).

i=1 i=1
Evaluating this last expression at x,.1, we get in the case of equally spaced points that

k—1 k-1
[[@ne1 = zngaze) = [[ ik = 21k - 1)!
=1 =1

In that case, the family of methods becomes:

P
Zy[$n+1,$m-- y Tn41— k]hk 1( ) fn+1

p=1 y[rpi1, 0] & for1. 1€ Yny1 = Yn + A fni1 (backward Euler method).
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P =2: y[Tpi1, Tnl + hy[Tni1, Tn, Tno1] = for1. After some algebra, we obtain the method:
Ynt1 = (4/3)yn — (1/3)yn—1 + (2/3) A fri1.

To determine the local truncation error for these methods, (i.e, how well the true solution
satisfies the discrete equations), we write

D k—1 P
y(l’) = Zy[anrl? Lps oo 7$n+17k] H(.T _xn+1*i) +y[$n+17 Tpsooos Tntl—p, $] H(x _$n+17i)'
k=0 1=0 =0
Then
p
y,(anrl) = Z y[anrla Tpyooo >$n+17k]hk_1(k - 1)' + y[a:nJrla Tny - - 7xn+17p7 $n+1]hpp!'
k=1

Since ¥ (zp41) = f(Tnt1, Y(Tni1)), the local truncation error, defined by

p
hzy[xn+l7 Tny - 7$n+1fk]hkil(k - 1)‘ - hf($n+17 y(anrl))
k=1

is given by
= _hp+1p!y[xn+l7 Lnyevvy Tntl—p, l‘n—‘rl] = _hp+1y(p+1) (5)/(]) + ].)

To be A-stable, A(«)-stable, or stiffly-stable, a linear multistep method must be implicit.
Hence, it is used in predictor-corrector format, i.e., one solves the nonlinear equation given
by the corrector with initial guess given by the predictor. Previously, we considered the
simple iteration ' ‘

y;jlill = hbflf('rnJrh yngrl) +9,
where g is already known from past values. For convergence, we required h|Lb_;| < 1, where
L is the Lipschitz constant. For stiff systems, L is extremely large and hence this condition
poses a severe restriction on the stepsize h, about the same severity as that imposed by the
stability requirements of a method. Hence, we solve this nonlinear equation using Newton’s
method or some variation. Recall, Newton’s method for the nonlinear system F(Y) = 0 is
given by:

Yt =y — YY) (YY),
where J(Y') is the Jacobian matrix 0F;/JY;. In this case, F(y) =y — hb_1 f(x,y) — g.
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Backward differentiation orders 1-6 {exteriors of clrves)
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FIGURE 7. Stability regions for Backward Differentiation Formulas (1-6)



