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13.7. Strong, weak, absolute, and relative stability. To formalize the stability problem
discussed above, we now define several concepts of stability that seek to differentiate between
methods which exhibit numerical instability and those that do not. These definitions usually
refer to the difference equations obtained by applying the multistep method to the model
problem:

y′ = λy, y(x0) = y0,

whose exact solution is y(x) = y0e
λ(x−x0). In this case, the resulting difference equation is:

yn+1 =

p
∑

i=0

aiyn−i + h

p
∑

i=−1

biλyn−i,

which may be rewritten as:

yn+1[1− hλb−1] =

p
∑

i=0

[ai + hλbi]yn−i.

This is a linear constant coefficient difference equation. The associated characteristic poly-
nomial is:

zp+1[1− hλb−1] =

p
∑

i=0

[ai + hλbi]z
p−i.

When h = 0, this becomes just ρ(z) = 0. In general, it is ρ(z)− hλσ(z) = 0.

We previously defined zero-stability as requiring that all roots of ρ(z) have modulus ≤ 1
and all roots of modulus one to be simple. Since we want our method to be consistent
(necessary for convergence), z = 1 is always a root of ρ(z) = 0.

Definition: The roots of ρ(z) of modulus one are called essential roots. The root z = 1 is
called the principal root. The roots of ρ(z) of modulus < 1 are called nonessential roots.

Definition: A linear multistep method is strongly stable if all roots of ρ(z) are ≤ 1 in
magnitude and only one root has magnitude one. If more than one root has magnitude one,
the method is called weakly or conditionally stable. Note, we still require only simple roots
of magnitude one. Also, note these definitions refer to the case h = 0.

Returning to the example yn+1 = yn−1 + 2hfn, we have ρ(z) = z2 − 1, so the roots are
z = ±1. Hence, this is a weakly stable method. For the specific problem y′ = −y, y(0) = 1,
the roots of the difference equation were

z1 = −h+
√
1 + h2, z2 = −h−

√
1 + h2.

The problem was that since |z2| > 1, the corresponding parasitic solution blew up. The basic
idea of strong stability is that since the roots of a polynomial are continuous functions of the
coefficients, for hλ near zero, the roots of ρ(z)− hλσ(z) = 0 are near the roots of ρ(z) = 0.
If the method is strongly stable, all extraneous roots have magnitude < 1, so for |hλ| small
enough, all roots of ρ(z) − hλσ(z) = 0 will also have magnitude < 1. Hence the parasitic
solution corresponding to this root will decay as n → ∞, instead of blowing up to ruin the
approximate solution. Other definitions of stability try to be more precise in defining the
values of hλ for which the parasitic solutions remain bounded.
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Definition: A linearly multistep method is said to be absolutely stable for those values of
hλ for which all roots rs of π(r, hλ) = ρ(r) − hλσ(r) = 0 satisfy |rs| ≤ 1 (and if |rs| = 1,
then rs is simple).

In other words, all solutions of the test problem

yn+1[1− b−1hλ] =

p
∑

i=0

(ai − hλbi)yn−i

remain bounded as n → ∞. If the method is absolutely stable for all hλ ∈ (α, β), the
interval (α, β) is called the interval of absolute stability.

Example: midpoint rule yn+1 = yn−1+2hλyn. The characteristic polynomial is r2−2hλr−
1 = 0, so r = hλ±

√
h2λ2 + 1. Clearly if hλ < 0, then |hλ−

√
h2λ2 + 1| > 1 and if hλ > 0,

then |hλ+
√
h2λ2 + 1| > 1. Hence, this method is only absolutely stable for hλ = 0, so there

is no interval of absolute stability.

The definition of absolutely stable determines an interval in which parasitic solutions do
not grow. However, if the true solution is increasing, i.e., λ > 0, then it is not a problem if
parasitic solutions grow, provided they do not grow faster than the true solution.

Definition: A linear multistep method is said to be relatively stable for those values of hλ
for which all roots rs of π(r, hλ) satisfy |rs| ≤ |r0|, and if |rs| = |r0|, then rs is simple. Here
r0 is the principle root, i.e., the root with the property that limh→0 r0(h) = 1. If the method
is relatively stable for all hλ ∈ (α, β), the interval (α, β) is called the interval of relative

stability.

Example: midpoint rule r0 = hλ+
√
h2λ2 + 1, r1 = hλ−

√
h2λ2 + 1. For relative stability,

we require |hλ −
√
h2λ2 + 1| ≤ |hλ +

√
h2λ2 + 1|, i.e., hλ ≥ 0. So the interval of relative

stability is [0,∞).

Remark: There are various similar definitions in the literature that make slight changes
(e.g., using < instead of ≤ and not requiring simple roots).

Note that the concept of relative stability does not apply to one-step methods since there
is only one root of ρ(r), but the concept of absolute stability does apply.

Example: Euler’s method: yn+1 = yn+hfn. When f(x, y) = λy, we get yn+1 = yn+hλyn,
so r0 = 1 + hλ. For absolute stability, we need −1 ≤ 1 + hλ ≤ 1, i.e., −2 ≤ hλ ≤ 0. Hence,
the interval of absolute stability is [−2, 0].

Example: Trapezoidal rule yn+1 = yn + (h/2)(fn+1 + fn). When f(x, y) = λy, we get
yn+1 = yn + (hλ/2)(yn+1 + yn). Hence, (1− hλ/2)yn+1 = (1 + hλ/2)yn. So the only root of
the characteristic polynomial is r0 = (1 + hλ/2)/(1− hλ/2). For absolute stability, we need
|r0| ≤ 1, i.e., hλ ≤ 0.

This is the best one can obtain, since one can show that hλ > 0 cannot belong to the
interval of absolute stability.
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What do these definitions (referring to the model linear problem) tell us about solving the
full nonlinear problem, i.e., the application of the (p+ 1)-step method

yn+1 =

p
∑

i=0

aiyn−i + h

p
∑

i=−1

bifn−i

to the problem y′ = f(x, y), y(x0) = y0?

The true solution y(x) satisfies

y(xn+1) =

p
∑

i=0

aiy(xn−i) + h

p
∑

i=−1

bif(xn−i, y(xn−i)) + Tn,

where Tn = L[y(xn);h] is the local truncation error of the method. Letting en = y(xn)− yn,
we get

en+1 =

p
∑

i=0

aien−i + h

p
∑

i=−1

bi[f(xn−i, y(xn−i))− f(xn−i, yn−i)] + Tn.

Suppose ∂f/∂y exists and is continuous. Then, by the Mean Value Theorem, there exists
ξn−i in the interval spanned by y(xn−i) and yn−i such that

f(xn−i, y(xn−i))− f(xn−i, yn−i) =
∂f

∂y
(xn−i, ξn−i)en−i.

Hence,
[

1− hb−1
∂f

∂y
(xn+1, ξn+1)

]

en+1 =

p
∑

i=0

[

ai + hbi
∂f

∂y
(xn−i, ξn−i)

]

en−i + Tn.

If we look at this equation locally, and assume that ∂f/∂y and Tn do not vary much, then
we expect the local behavior to be what we get by replacing ∂f/∂y by a constant λ and Tn

by a constant T . Thus, we are led to look at the constant coefficient difference equation:

[1− hb−1λ]en+1 =

p
∑

i=0

[ai + hbiλ]en−i + T.

If the roots of the characteristic polynomial (1−hb−1λ)r
p+1 =

∑p

i=0[ai+hbiλ]r
p−i are distinct,

then the general solution is en =
∑p

s=0 dsr
n
s plus a particular solution. It is easy to check

that a particular solution is given by −T/(hλ
∑p

i=−1 bi) (just set ek = e for all k and use the
fact that

∑p

i=0 ai = 1). This is exactly the equation we have been studying. So λ represents
a local approximation to ∂f/∂y. For λ > 0, we restrict the step size h so that hλ falls
within the interval of relative stability, and for λ < 0, we restrict the step size h so that hλ
falls within the interval of absolute stability. We can also use these definitions to compare
intervals of stability for different methods and use it as a criteria for selecting a desirable
method.

Example: We have seen that the interval of absolute stability for Euler’s method is −2 ≤
hλ ≤ 0. If we solve the model problem y′ = λy, y(0) = 1, then the true solution is
y(x) = eλx. For λ < 0 y(x) is decreasing. If we apply Euler’s method to this problem, then
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yn+1 = yn + hλyn = (1 + hλ)yn, so the approximate solution is yn = (1 + hλ)n. For λ < 0,
unless we choose h so that hλ > −2, we will have 1 + hλ < −1 and so |yn| will grow as we
increase n. Thus, in addition to choosing h to control the local error, we must also choose
h sufficiently small to control the stability of the approximation scheme. Note that in the
case of the trapezoidal rule, since the interval of absolute stability is hλ ≤ 0, there would be
no restriction on h coming from stability.


