
MATH 573 LECTURE NOTES 59

13.4. Estimation of local error. In practice, we not only want to produce an approxima-
tion to the solution at each step of the algorithm, we also want to produce an estimate of
the local error. If this error is too big, we will reduce the step size to reduce the local error.

To proceed further, we need a more precise definition of local error. Consider the initial
value problem:

u′ = f(x, u), u(xn) = yn.

This is the same differential equation, but the initial condition is now given at xn and the
value is yn, the approximate solution at that point.

The global error at xn+1 is y(xn+1) − yn+1. We define the local error at xn+1 to be
u(xn+1) − yn+1. We note that the local error would equal the global error if all previous
computations were exact, i.e., if yn = y(xn), then u(xn+1) = y(xn+1).

To obtain a formula for the local error for the Taylor algorithm of order k, we expand
u(xn+1) in a Taylor series at the point xn. Then

u(xn+1) = u(xn) + hu′(xn) + · · ·+
hk

k!
u(k)(xn) +

hk+1

(k + 1)!
u(k+1)(ξ)

= yn + hf(xn, yn) + · · ·+
hk

k!
f (k−1)(xn, yn)) +

hk+1

(k + 1)!
u(k+1)(ξ)

= yn+1 +
hk+1

(k + 1)!
u(k+1)(ξ).

Hence the local error

u(xn+1)− yn+1 =
hk+1

(k + 1)!
u(k+1)(ξ) =

hk+1

(k + 1)!
f (k)(ξ, u(ξ)),

where xn ≤ ξ ≤ xn+1. Thus we see that the local error can be thought of as the local
truncation error for u instead of for y. This also holds true for Runge-Kutta methods.

Another way to think of the local truncation error for one step methods of the form
yn+1 = yn + hΦ(xn, yn), n = 0, 1, . . . is to define vn+1 = vn + hΦ(xn, vn), vn = y(xn).
Since vn+1 = y(xn) + hΦ(xn, y(xn)), the local truncation error in the step from xn to xn+1 is
equal to y(xn+1)−vn+1. Thus, we have defined three quantities (i) global error: y(xn+1)−yn+1,
(ii) local truncation error: y(xn+1)− vn+1, and (iii) local error: u(xn+1)− yn+1. Note that u
and y satisfy the same differential equation, but with different initial conditions at xn, and
vn+1 and yn+1 satisfy the same difference equations, but with different initial conditions at
xn.

One can prove a theorem showing that one can control the global error by contolling the
local error, but the bound is quite pessimistic and not so useful in practice.

We can estimate the local error using a technique similar to the one we used to estimate
the local error in numerical quadrature, i.e., by using two methods of different orders of
accuracy to compute approximate solutions and then using their difference as an estimate
of the local error.

60 MATH 573 LECTURE NOTES

More specifically, consider two one-step methods defined by

yn+1 = yn + hΦ(xn, yn), ỹn+1 = yn + hΦ̃(xn, yn),

and suppose the local error for the first method is µn = O(hp) and the local error for the
second method is µ̃n = O(hq), where q > p. For example, if the first method is Euler’s
method and the second method is the simplified Runge-Kutta method of order 2, then
µn = O(h2) and µ̃n = O(h3).

Hence,
µn+1 = u(xn+1)− yn+1 = [u(xn+1)− ỹn+1] + [ỹn+1 − yn+1].

Now u(xn+1)−ỹn+1 = O(hq), while µn+1 = O(hp), where q > p. Hence, we expect ỹn+1−yn+1

to be of size O(hp) and thus be the dominant part of the local error. Thus, we estimate µn+1

by ỹn+1 − yn+1.

As in numerical quadrature, we look for pairs of formulas that use many of the same
function evaluations, so that the extra work done to estimate the local error is minimized.
The Runge-Kutta-Fehlberg method uses a Runge-Kutta method of order 5 (but involving 6
function evaluations per step) to estimate local errors for a 4th order scheme using a subset
of these function evaluations.

Next, we consider how one can control the local error once we have an estimate for it.
The situation is somewhat different than for quadrature, where the approximation on each
subinterval is independent of the approximation on other subintervals. In that case, one
could use a stategy based on computing approximations on all subintervals, and if a global
error tolerance was not met, attempt to reduce the error by subdividing the subinterval for
which the error estimate was the largest.

For the initial value problem for ordinary differential equations, we are using a marching
procedure in which the value of the approximate solution at one mesh point depends (at
least) on the approximation at the previous mesh point.

Thus, trying to use a strategy that involves having an approximation at all mesh points
means one would have to recompute the entire approximation if the error tolerance was
not met. Thus, we return to an idea that we considered first in the discussion of estimating
quadrature errors, and that is trying to control the local error per unit step, i.e., the quantity
µn+1/hn where hn = xn+1−xn. Note that if µn+1 = O(hp) for p ≥ 2, then µn+1/hn = O(hp−1),
and so will decrease as h decreases. Thus, we can control this error by taking a smaller step
size.

To decide how much to change the step size, we could employ the following strategy.
Suppose that we have an estimate est for the local error per unit step (in going from xn to
xn+hn), i.e., for µn+1/hn. From our discussion above, we could take est = (ỹn+1−yn+1)/hn.
Next suppose the local error has the form

µn+1(h) = τnh
p +O(hp+1),

where τn is a constant. For example, if we consider Euler’s method, then τn = u′′(xn)/2 and
p = 2. Suppose that the estimate of the local error per unit step, est, satsifies |est| > ǫ,

MATH 573 LECTURE NOTES 61

where ǫ is the given error tolerance per unit step. If we instead take a step size of length γh,
with 0 < γ < 1, then the local error in going from xn to xn + γh is given by

µn+1(γh) = τnγ
php +O([γh]p+1) = γpτnh

p +O(hp+1).

Hence, the local error per unit step over this subinterval is

µn+1(γh)/(γh) = τnγ
p−1hp−1 +O([γh]p) = γp−1τnh

p−1 +O(hp).

We then want to choose γ so that this new error is less than ǫ. Now

γp−1τnh
p−1 +O(hp) = γp−1µn+1(h)/h+O(hp).

Hence an estimate for µn+1(γh)/(γh) is γ
p−1est. We could now choose γ so that |γp−1est| ≤ ǫ,

For example, we could take γ = (ǫ/|est|)1/(p−1).

If |est| < ǫ, we can accept this step, but may want to increase the step size for the next
step, since we expect the error is smaller than it needs to be to satisfy the error tolerance.
Hence, a typical adaptive algorithm might use a stategy such as the following.

If |est| > ǫ, reject yn+1 and recompute it with a new step size. If |est| ≤ ǫ accept yn+1

and use a larger step size for the next step. A reasonable choice in either case is to use
δ(ǫ/|est|)1/(p−1)h as the new step size, where 0 < δ < 1 (e.g., δ = .8). The reason for using
the factor δ is that rejections are expensive, so we don’t want to use a new step size that
we think will just satisfy the error tolerance, since our choice is only an estimate of what we
think will work.

As a practical matter, most codes add other heuristic rules such as not allowing a step
size greater than hmax or less than hmin and not allowing a step size to increase or decrease
too rapidly.

