
46 MATH 573 LECTURE NOTES

11. Adaptive Quadrature

Previously, we considered a simple iterative algorithm based on interval doubling for com-
puting an approximation to the value of an integral. In such a method, based on the com-
posite trapezoidal rule, for example, a simple stopping criterion might be to quit when two
successive approximations agree to a given tolerance. The problem with such a procedure is
that at each iteration, all the subintervals are cut in half without taking into account that
we may already have a very good approximation on some subintervals. Thus, the procedure
is inefficient since we are doing function evaluations that do not lead to improved accuracy.

For example, if we consider the composite trapezoidal rule on N not necessarily equally
spaced subintervals, we have:

I(f) =

∫ b

a

f(x) dx =
N∑
i=1

Ii(f) =
N∑
i=1

∫ xi

xi−1

f(x) dx =
N∑
i=1

(xi − xi−1)[f(xi−1 + f(xi)]/2

−
N∑
i=1

f ′′(ηi)(xi − xi−1)
3/12, ηi ∈ (xi−1, xi).

Hence the contribution to the error formula from the ith subinterval, f ′′(ηi)(xi − xi−1)
3/12,

depends on both the size of the subinterval and the size of f ′′ on the subinterval. Where f ′′

is large, we expect to have to take smaller subintervals to control the error.

11.1. Estimating the error on a subinterval. Since we don’t know the size of f ′′ on the
subintervals, we need some way to estimate the error on the subinterval. There are several
ways this can be done. One is to make use of the interval doubling strategy on a subinterval.

Recall that the approximation of Ii(f) =
∫ x−i

xi−1

f(x) dx given by the trapezoidal rule using

only one subinterval is

Ii(f) = (xi − xi−1)[f(xi−1) + f(xi)]/2− f ′′(ηi)(xi − xi−1)
3/12.

If we break up the subinterval (xi−1, xi) into two equal sized subintervals and use the trape-
zoidal rule on each, then we get the formula

Ii(f) = (xi−1/2 − xi−1)[f(xi−1 + f(xi−1/2)]/2 + (xi − xi−1/2)[f(xi−1/2 + f(xi)]/2

− f ′′(η1i)(xi−1/2 − xi−1)
3/12− f ′′(η2i)(xi − xi−1/2)

3/12

= (xi − xi−1)[f(xi−1) + 2f(xi−1/2) + f(xi)]/4

− f ′′(ξi)(xi − xi−1)
3/48.

Now, if f ′′ does not change much on the subinterval (xi−1, xi), we might assume that f ′′(ηi) ≈
f ′′(ξi). For example, if f ′′′ is continuous on (xi−1, xi), then by the Mean Value Theorem,

|f ′′(ηi)− f ′′(ξi)| = |f ′′′(δi)(ηi − ξi)| ≤ M3|ηi − ξi| ≤ M3|xi − xi−1|.

MATH 573 LECTURE NOTES 47

Setting ξi = ηi, we get

f ′′(ηi)(xi − xi−1)
3/12− f ′′(ηi)(xi − xi−1)

3/48

≈ (xi − xi−1)[f(xi−1) + f(xi)]/2− (xi − xi−1)[f(xi−1) + 2f(xi−1/2) + f(xi)]/4.

Hence,

f ′′(ηi)(xi − xi−1)
3/16 ≈ (xi − xi−1)[f(xi−1)− 2f(xi−1/2) + f(xi)]/4.

Thus an estimate for the error (using the trapezoidal rule on one subinterval) is given by:

Ii(f)− (xi − xi−1)[f(xi−1) + f(xi)]/2 ≈ −(1/3)(xi − xi−1)[f(xi−1)− 2f(xi−1/2) + f(xi)].

An estimate for the error (using the trapezoidal rule on two subintervals) is given by:

Ii(f)− (xi − xi−1)[f(xi−1) + 2f(xi−1/2) + f(xi)]/4

≈ −(1/12)(xi − xi−1)[f(xi−1)− 2f(xi−1/2) + f(xi)].

Another way of obtaining such estimates is to approximate f ′′(x) on the interval [xi−1, xi]
by the second difference

f(xi−1)− 2f(xi−1/2) + f(xi)

[(xi − xi−1)/2]2
.

A second approach is to approximate the integral on a subinterval by two different formu-
las, say A1

i (f) and A2
i (f), with different orders of accuracy, e.g.,

|Ii(f)− A1

i (f)| = O(hr), |Ii(f)− A2

i (f)| = O(hs),

where we assume s > r. Then

|Ii(f)− A1

i (f)| ≤ |Ii(f)− A2

i (f)|+ |A2

i (f)− A1

i (f)| ≤ |A2

i (f)− A1

i (f)|+O(hs).

Since |Ii(f) − A1
i (f)| = O(hr), |A2

i (f) − A1
i (f)| gives an estimate for the dominant part

of the error. For example, we could approximate Ii(f) by the trapezoidal rule using two
subintervals, or using the same function evaluations, by Simpson’s rule

Ii(f) ≈ (xi − xi−1)[f(xi−1) + 4f(xi−1/2) + f(xi)]/6.

Then, an estimate for the error using the trapezoidal rule on two subintervals is given by:

|(xi − xi−1)[f(xi−1) + 4f(xi−1/2) + f(xi)]/6− (xi − xi−1)[f(xi−1) + 2f(xi−1/2) + f(xi)]/4|
= (xi − xi−1)|f(xi−1)− 2f(xi−1/2) + f(xi)|/12.

Of course, we expect that the use of Simpson’s rule gives better accuracy, so if we accept
the approximation, we should use the approximation given by Simpson’s rule.

These approaches are easily generalized to higher order closed Newton-Cotes formulas
using equally spaced points.

48 MATH 573 LECTURE NOTES

11.2. An adaptive algorithm. In an adaptive algorithm for numerical integration, we use
our estimates for the local error on each subinterval to decide whether we have a sufficiently
accurate approximation or whether we need to decrease the size of some subintervals to
increase the accuracy of the approximation. We now discuss how this can be done. First, we
need to supply an error tolerance. This might be an absolute error tolerance, i.e., |E| ≤ ǫa
or a relative error tolerance, |E| ≤ ǫrI(f). Many codes ask for both, and quit when |E| ≤
ǫa + ǫrA(f), where A(f) denotes the current approximation to I(f).

Suppose we are trying to make the total error ≤ ǫ. One way to proceed (simpler to
program) is to allow an error of ǫhi/(b−a) on a subinterval of length hi, where b−a denotes
the total length of the interval of integration. Then, if we had say N subintervals, i.e.,∑N

i=1
hi = b− a, the total error would be

N∑
i=1

ǫhi/(b− a) = ǫ.

If on any subinterval, our estimate of the local error exceeds this threshold, then we cut the
subinterval size in half and apply our method on each piece with the aim of satisfying the
above criterion. Note that if we cut the interval size in half, then we are allowing an error of
only ǫhi/(2[b − a]) on each piece. However, even using the trapezoidal rule, our local error
estimate is of order h3

i , so cutting hi in half, should reduce the error by a factor of 8. This
is why we expect that halving the subinterval size will reduce the total error. This way of
proceeding assumes we want to equidistribute the error in the sense that we are trying to
make the error proportional to the subinterval size. However, the goal is to make the total
error less than ǫ, so we may be doing unnecessary work. Another possibility is the following.
Suppose we have on each interval Ii = [xi−1, xi] an estimate of the error given by ǫi. Then the
total error is given by

∑
i ǫi. We now simply pick the largest ǫi and divide the corresponding

interval Ii in half.

An adaptive code based on Simpson’s rule is used in Matlab. As in the trapezoidal rule
discussion above, rather than compare Simpson’s rule based on one and two subintervals,
the code compares Simpson’s rule based on two subintervals with a higher order formula
obtained by extrapolation of Simpson’s rule (i.e., as done in Romberg integration). Note
that the extrapolated formula does not require any new function evaluations.

11.3. Adaptive Gauss codes. Just as we have developed composite Newton-Cotes quad-
rature formulas, we can also develop composite Gauss quadrature formulas. If we use these in
an adaptive way, then we need a means of adding new quadrature points to produce a higher
order formula that can be used to estimate the local errors on each subinterval. In addition,
we do not want the calculation of this higher order formula to be too expensive. This is a
problem for Gauss quadrature formulas, since the points used for lower order formulas are
not a subset of the points used for higher order formulas. This has led to the development of
quadrature formulas based on the following idea. Suppose we have a Gaussian quadrature

MATH 573 LECTURE NOTES 49

formula of the form ∫ b

a

w(x)f(x) dx =
n∑

j=0

Hjf(xj)

and we want to produce a new formula (using x0, . . . , xn andm new abscissas xn+1, . . . , xn+m)
of the form ∫ b

a

w(x)f(x) dx =
n+m∑
j=0

Kjf(xj)

that is exact for polynomials of as high a degree as possible. Since there are 2m+ n+1 free
parameters (m abscissas and n+m+1 weights), we hope to produce a formula that is exact
for polynomials of degree ≤ 2m + n. In general, it is not clear that this can be done with
points xn+1, . . . , xn+m ∈ (a, b). Kronrod studied the case when m = n + 2 and produced
successful formulas pairing a Gauss rule with a higher order Konrod formula that reused the
points from the Gauss rule.

Example: The 3-point Gauss rule on [-1,1] (n = 2) is given by

I(f) ≈ (8/9)f(0) + (5/9)[f(−
√
.6) + f(

√
.6)].

The Konrod rule adds 4 points to produce a rule of the form

I(f) ≈ α0f(0) + α1[f(−
√
.6) + f(

√
.6)] + α2[f(−β1) + f(β1)] + α3[f(−β2) + f(β2)]

with β2
1 and β2

2 the smallest and largest roots, respectively, of x2 − (10/9)x+(155/891) = 0.
As before, the weights α0, α1, α2, α3 are determined by integrating the Lagrange polynomial
of degree 6 interpolating f(x) at the nodes (0,±

√
.6,±β1,±β2).

For the case w(x) ≡ 1, Patterson produced a sequence of formulas starting from a given
Gauss-Legendre rule In0

(f) =
∑n0

i=0
Hjf(xj) and adding exactly n + 2 points at each step,

where n denotes the number of points used in the current formula. All the new abscissas lie
in (a, b) and all the weights are positive. For example, choosing n0 = 2, i.e., a 3-point Gauss
rule, we get the formulas I2, I6, I14, I30, I62, Thus, the points for each successive higher
order formula include all the points from the previous formula.

11.4. Gauss-Radau and Gauss-Lobatto integration. In some applications, it is impor-
tant to use one or both of the end points of the interval of integration as quadrature points.
If we require one of the end points to be a quadrature point and choose the remaining points
and weights to make the formula exact for polynomials as high a degree as possible, we get
a Radau quadrature formula. Analogous formulas in which both end points are chosen as
quadrature points are called Lobatto quadrature formulas.

Gauss-Lobatto integration rules are reasonable choices for composite formulas, since the
endpoints are used on two adjoining subintervals. An effective adaptive scheme has been
written based on a Gauss-Lobatto formula and a Konrod-type formula to estimate the error.
See W. Gander and W. Gautschi, Adaptive Quadrature - Revisited, BIT Vol. 40, No. 1,
March 2000, pp. 84–101.

