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13.4. Predictor-corrector methods. We consider the Adams methods, obtained from the
formula

y(xn+1 − y(xn) =

∫ xn+1

xn

y′(x) dx =

∫ xn+1

xn

f(x, y(x)) dx

by replacing f by an interpolating polynomial. If we use the points xn, xn−1, . . . , xn−p, we get
the Adams-Bashforth methods. If we use the points xn+1, xn, . . . , xn−p, we get the Adams-
Moulton formulas.

In a p + 1-step method, implicit methods have one additional parameter (b−1) to specify.
Hence, one can show that the highest attainable order of a zero-stable p + 1-step method is
less in the case of an explicit method than for an implicit method. If we compare methods of
the same order, then explicit methods require an additional starting value, but we might still
prefer an explicit method with a higher stepnumber to an implicit method of the same order,
(but lower stepnumber). To see the advantages of implicit methods, consider the following
table comparing explicit Adams-Bashforth methods to implicit Adams-Moulton methods.

Table 5. Adams-Bashforth explicit methods

stepnumber k 1 2 3 4
order r 1 2 3 4

error constant Cr+1 1/2 5/12 3/8 251/720
abs. stab. interval (α, 0) -2 -1 -6/11 -3/10

Table 6. Adams-Moulton implicit methods

stepnumber k 1 2 3 4
order r 2 3 4 5

error constant Cr+1 -1/12 -1/24 -19/720 -3/160
abs. stab. interval (α, 0) −∞ -6 -3 -90/49

If we want a 4th order Adams method, then the choices are a 4-step explicity method or
a 3-step implicit method. Note that the implicit method has an error constant smaller by
a factor of ≈ 1/13 and an absolute stability interval 10 times that of an explicit method.
Hence for stabilty and accuracy, we would like to use the implicit method. To do so, we
must solve at each step the nonlinear equation:

yn+1 =

p
∑

i=0

aiyn−i +

p
∑

i=−1

bif(xn−i, yn−i)

(note yn+1 also appears on the right hand side of the equation).

A simple iteration procedure for this is:

yj+1

n+1 =

p
∑

i=0

[aiyn−i + bif(xn−i, yn−i)] + hb−1f
j
n+1,
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where f j
n+1 = f(xn+1, y

j
n+1). Hence, the error between yn+1 and the approximation yj+1

n+1

satisfies:

yn+1 − yj+1

n+1 = hb−1[fn+1 − f j
n+1].

Assuming f satisfies a Lipschitz condition with Lipschitz constant L, we get

|yn+1 − yj+1

n+1| ≤ h|b−1|L|yn+1 − yj
n+1|.

It easily follows that

|yn+1 − yj
n+1| ≤ [h|b−1|L]j|yn+1 − y0

n+1|.

Hence, if h|b−1|L < 1, the iteration converges.

Since each iteration involves an evaluation of the function f , we would like a good starting
guess to minimize the number of iterations needed to meet a given error tolerance. We do
this by using an explicit method (called a predictor) to produce the initial guess y0

n+1. The
iteration then consists of the following steps: PECECE ..., where P denotes the application
of the predictor method, E denotes the evaluation of f at this value of yj

n+1, and C denotes
the application of the corrector method (the implicit method), using the evaluation of f just
produced on the right hand side. There are two basic possibilities for stopping this iteration.
The first is to iterate to convergence. In practice this would mean until |yj+1

n+1 − yj
n+1| < ǫ,

where ǫ is a preassigned tolerance. The advantage of this is that the final result is independent
of the starting guess and the local trunction error and stability properties are those of the
corrector alone. The disadvantage is that we don’t know how many function evaluations
this may take and hence it may be time consuming. The second possibility is to specify in
advance the number of times the corrector is applied. In this case, the number of function
evaluations is known, but the local truncation error and stability properties now depend on
the combination of the predictor and corrector. These methods are denoted by P(EC)m or
P(EC)mE, depending on whether a final evaluation is done. The common practice is to use
m = 1 or m = 2.

The Adams-Bashforth, Adams-Moulton p + 1-step methods provide good combinations
for predictor-corrector pairs. In that case, the order of the corrector will be one higher than
the order of the predictor. A variable order, variable step-size code, written by Shampine
and Gordon, uses these methods and the iteration PECE. Changes in step-size and order
are based on estimating the local error by comparing the difference between a kth and k + 1
order corrector, both using a kth order predictor.

In using multistep methods, one needs a way of generating the additional starting values
and also additional values when the step-size is changed. Starting values can be obtained
by using Runge-Kutta or Taylor series methods. When the step-size is changed, additional
values can be obtained by Runge-Kutta methods or by interpolation. In the Shampine-
Gordon code, the codes are started with a 1-step Adam’s method, then a 2-step method,
and so on until all the starting values are generated. The step-size is changed using the
divided difference form of the interpolating polynomial, which allows the method to be
generalized to unequally spaced points.
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13.5. Generalization to first order systems. We consider the first order system

Y ′ = F (x, Y ), Y (a) = η,

where Y = (y1, . . . , ym)T and F (x, Y ) = (f 1(x, y1, . . . , ym), . . . , fm(x, y1, . . . , ym))T . We
showed previously that Runge-Kutta methods are applicable to such systems. Multistep
methods are also applicable, although we need to extend some of the theory. The stability
theory previously developed was for the model problem y′ = λy, where λ was considered
a local approximation of ∂f/∂y. For systems, the analogous model problem is: Y ′ = AY ,
where A is a matrix with constant coefficients, considered a local approximation to the
Jacobian matrix, i.e., Aij ≈ (∂f i/∂yj). Applying the multistep method, we obtain

[I − hb−1A]Yn+1 =

p
∑

i=0

[aiI + hbiA]Yn−i.

If A is diagonalizable, i.e., there exists a nonsingular matrix H and a diagonal matrix Λ such
that H−1AH = Λ, (where the eigenvalues of A lie on the diagonal of Λ), then multiplying
the above on the left by H−1, we get

[H−1 − hb−1H
−1A]Yn+1 =

p
∑

i=0

[aiH
−1 + hbiH

−1A]Yn−i.

Setting HZn = Yn, we get

[I − hb−1Λ]Zn+1 =

p
∑

i=0

[aiI + hbiΛ]Zn−i.

Since I and Λ are diagonal matrices, the system decouples and we get for each component
j,

[1 − hb−1λj]z
j
n+1 =

p
∑

i=0

[ai + hbiλj]z
j
n−i.

The definition of absolute stability depended on the interval of hλ for which all solutions
of the multistep method applied to the model problem y′ = λy remain bounded as n → ∞.
Since H is constant, the components of Yn will remain bounded if the components of Zn

do. Now the difference equation obtained above is the same one obtained previously. Hence,
the solutions remain bounded if all roots r of the characteristic polynomial ρ(z) − hλσ(z)
satisfy |r| ≤ 1 (and roots of magnitude one are simple). To be absolutely stable, we require
these conditions to hold when λ is any eigenvalue of the matrix A. Although A is real, its
eigenvalues might be complex. Hence, for first order systems, we modify our definition to
read:

Definition: A linear multistep method is absolutely stable in the region R of the complex
plane if for all hλ ∈ R, all roots of the characteristic polynomial ρ(z) − hλσ(z) associated
with the method satisfy |r| ≤ 1 (and roots of magnitude one are simple).

A similar modification is made for the definition of relative stability.
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Example: Euler’s method: Yn+1 = Yn + hFn. We apply the method to y′ = λy to get
the difference equation yn+1 = (1 + hλ)yn. The characteristic polynomial has one root
r = 1 + hλ, so we want |1 + hλ| ≤ 1. Now λ = λ1 + iλ2 may be complex, so |1 + hλ| =
√

(1 + hλ1)2 + (hλ2)2 ≤ 1, i.e., (1 + hλ1)
2 + (hλ2)

2 ≤ 1. Thus R is a circle in the complex
plane (with real axis hλ1 and imaginary axis hλ2) centered at (−1, 0) and radius 1. The
interval of absolute stability (−1, 0) is the intersection of R with the hλ1 axis.

Example: Trapezoidal rule: Yn+1 = Yn + (h/2)(Fn+1 + Fn). There is only one root
of the characteristic polynomial given by r = (1 + hλ/2)/(1 − hλ/2). Hence, we require
|1 + hλ/2| ≤ |1 − hλ/2|, i.e.,

(1 + hλ1/2)2 + (hλ2/2)2 ≤ (1 − hλ1/2)2 + (hλ2/2)2.

Clearly, this will hold for hλ1 ≤ 0, so the region of absolute stability is the entire left
half-plane (the largest possible region of absolute stability).


