
4 MATH 373 LECTURE NOTES

2.1. Iterative methods for roots of a single nonlinear equation. Suppose f(x) is a
continuous function on the interval [a, b] and satisfies f(a)f(b) < 0. Then the Intermediate
Value Theorem says there is at least one number s, with a < s < b, such that f(s) = 0.

Example: f(x) = x3 − x − 1 = 0. Now f(1) = −1 and f(2) = 5 so there is at least one
root in the interval (1, 2). In some cases, it is possible to show there is only one root in an
interval. For example, f ′(x) = 3x2 − 1 and on the interval [1, 2], f ′(x) ≥ 2 > 0. Hence, f(x)
is strictly increasing on [1, 2], so there is only one root.

Example: f(x) = x3 − 3x − 1 = 0. Now f(−2) = −3, f(2) = 1, so there is at least one
root in (−2, 2). In fact, there are three roots in this interval. Note that f(−1) = 1, so there
is at least one root in (−2,−1). f(0) = −1, so there is a second root in (−1, 0). The third
root is in the interval (0, 2). Note that we cannot draw any conclusion about whether there
are roots in the interval [−1, 2] from the fact that both f(−1) and f(2) are positive.

The simplest scheme to find a root s is to use the method of bisection.

Bisection Algorithm: Set a0 = a and b0 = b. For n = 0, 1, . . .,
Set xn = (an + bn)/2.
If f(an)f(xn) < 0, set an+1 = an, bn+1 = xn.
If f(xn)f(bn) < 0, set an+1 = xn, bn+1 = bn.
Then at each stage of the iteration, the root lies in the interval spanned by an and bn. Hence

|s − xn| ≤ |bn − an|/2.

Now since |bn − an| = |bn−1 − an−1|/2, we easily get that

|s − xn| ≤ |b − a|/2n+1, n ≥ 0.

Thus, we can achieve any desired accuracy by taking n sufficiently large.

Example: Given a tolerance ǫ, find a number of iterations n that guarantees that |s−xn| ≤
ǫ. We choose n so that |b − a|/2n+1 ≤ ǫ. This will guarantee that |s − xn| ≤ ǫ. To do this,
we need to find a value of n such that 2n+1 ≥ |b − a|/ǫ. Hence, we choose n so that

(n + 1) ln 2 ≥ ln[|b − a|/ǫ], i.e., (n + 1) ≥
ln[|b − a|/ǫ]

ln 2
.

Implementation in a Matlab computer code.

% Bisection

% a = left end point of interval containing the root

% b = right end point of interval containing the root

% tolx = error tolerance in x

% tolf = error tolerance in the function value

% N = the current iteration number

% Nmax = maximum number of iterations

% fcn.m is the name of the file containing the function

format long

a=1;

MATH 373 LECTURE NOTES 5

b=4;

N=1;

Nmax = 50;

tolx = .001;

tolf = 0.000001;

fa = feval(’fcn’,a);

fb = feval(’fcn’,b);

m =(a+b)/2;

fm = feval(’fcn’,m);

while (abs(b-a) > tolx) & (abs(fm) > tolf) & (N < Nmax)

[N,a,b,m,fm]

if fa*fm <=0;

b = m;

fb = fm;

else a = m;

fa= fm;

end

m = (a+b)/2;

fm = feval(’fcn’, m);

N= N+1;

end

To use this program, first create a Matlab m-file with the name fcn.m. Note that such
a file must have the extension .m and must be placed in the directory from which you are
running Matlab. For example, for the function f(x) = x − cos x, the contents of the file
fcn.m would be:

function f = fcn(x)

f = x - cos(x);

Method of False Position: Instead of choosing xn as the midpoint of the points bracket-
ing the root, we choose it as the weighted average of these points, with the weights depending
on the size of the function values. This can be done by choosing xn as the point where the
secant line joining the points (an, f(an) and (bn, f(bn)) crosses the x axis. This line is given
by

y − f(an) =
f(bn) − f(an)

bn − an

(x − an).

When y = 0, we get that

x ≡ xn = an −
bn − an

f(bn) − f(an)
f(an)

To maintain the root bracketing property, we could then proceed as in the bisection algo-
rithm, i.e.,
If f(an)f(xn) < 0, set an+1 = an, bn+1 = xn.
If f(xn)f(bn) < 0, set an+1 = xn, bn+1 = bn.
However, although the method of false position produces a point at which |f(x)| is small

6 MATH 373 LECTURE NOTES

somewhat faster than the bisection method, it does not give a small interval in which the
root is known to lie.

Consider the following example: f(x) = x2 − 2 on the interval [0, 2].

Then all the iterates xn lie to the left of the root s, so although s ∈ [xn, b], |b−xn| ≥ |b−s|
for all n, i.e., the size of the interval in which the root is know to lie is not converging to
zero.

Secant method: This method is similar to the method of false position, except that we
drop the requirement that the root be bracketed. This, starting from two values x0 and x1

which do bracket the root, we simply define the sequence {xn} by

xn+1 = xn −
xn − xn−1

f(xn) − f(xn−1)
f(xn).

When it converges, this method converges faster than the method of false position.

The Dekker-Brent method This method combines the secant method and the method
of bisection to produce an algorithm that has the advantages of both methods, i.e., it retains
the root-bracketing property of the bisection method, but uses the secant method when
appropriate to attain a higher rate of convergence. This method has been implemented in
the Matlab routine fzero to find the root of a single nonlinear equation.

Newton’s method: Geometrically, starting from an initial guess x0, we define at each
step a new approximation xn+1 as the position where the tangent line to the curve y = f(x)
at x = xn crosses the x-axis. Since the equation of this tangent line is given by

y − f(xn) = f ′(xn)(x − xn),

we get that when y = 0,
x = xn+1 = xn − f(xn)/f ′(xn).

Another way to think of Newton’s method is that it is the approximation given by truncating
the Taylor series expansion, i.e., we have

0 = f(s) = f(xn) + f ′(xn)(s − xn) + f ′′(ξ)(s − xn)2.

If xn is close to s, then s− xn is small, so that (s− xn)2 is even smaller. Discarding this last
term, we define xn+1 as the approximation to s which restores equality to this equation, i.e.,

f(xn) + f ′(xn)(xn+1 − xn) = 0.

Solving for xn+1, we recover Newton’s method.

One convenient way to write Newton’s method is in the form xn+1 = xn + δn, where the
increment δn is the solution of f ′(xn)δn = −f(xn).

