46 MATH 373 LECTURE NOTES

11. ADAPTIVE QUADRATURE

Previously, we considered a simple iterative algorithm based on interval doubling for com-
puting an approximation to the value of an integral. In such a method, based on the com-
posite trapezoidal rule, for example, a simple stopping criterion might be to quit when two
successive approximations agree to a given tolerance. The problem with such a procedure is
that at each iteration, all the subintervals are cut in half without taking into account that
we may already have a very good approximation on some subintervals. Thus, the procedure
is inefficient since we are doing function evaluations that do not lead to improved accuracy.

For example, if we consider the composite trapezoidal rule on N not necessarily equally
spaced subintervals, we have:

N

b N N T
10) = [Ha)ds =310 =3 [fayde = 3w = i) fwins) + Fla)) /2

=1
N

- Z F i) (s — 2i21)?/12, s € (wimy, 23).
=1

Hence the contribution to the error from the ith subinterval, i.e., the term f”(n;)(z; —
x;_1)%/12, depends on both the size of the subinterval and the size of f” on the subinterval.
Where f” is large, we expect to have to take smaller subintervals to control the error.

11.1. Estimating the error on a subinterval. Since we don’t know the size of f” on the
subintervals, we need some way to estimate the error on the subinterval. There are several
ways this can be done. One is to make use of the interval doubling strategy on a subinterval.
For example, if we break up the subinterval (z;_1,z;) into two equal sized subintervals and
use the trapezoidal rule on each, then we get the formula

L(f) = (xic1y2 — im)[f (wic1) + f(ric12)]/2 + (5 — 21 2) [[(@iz1y2) + f(23)]/2
— [)(@icaje = wi1)* /12 = ' (0F) (0 = 2im1y2)° /12
= (i — @) [f(@i) + 2f (wimayo) + f(2:)]/4 = (&) (i — 5-1)° /48,
where we have use the fact that x;_1/0 — 2,21 = ¥, — @12 = (2, — 2,-1) /2.

Equating this to the formula for I;(f) given by the trapezoidal rule using only one subin-
terval plus error term, we have

L(f) = (zi — i) [f(@ica) + f(23)]/2 = £ () (2 — 24-1)° /12
= (27 — zio)[f (wic1) 4+ 2f (wicay2) + f(@0)] /4 — ['(&) (2 — 2i-1)° /48

Then, if f” does not change much on the subinterval (z;_1,z;), we might assume that
f"(m) = f"(&). For example, if f” is continuous on (x;_1,x;), then by the Mean Value
Theorem,

|f7 (i) — 7l = | F"(06) (i — &) < Ms|n; — & < Ma|w; — 4]

MATH 373 LECTURE NOTES 47
Setting & = n;, we get

F' i) (@i — 2i20)° /12 = f" () (i — 221)° /48
~ (zi — xi1)[f (1) + f(@i)]/2 — (2 — 1) [f (ic1) + 2f (2im1/2) + f(2)]/4.
Hence,
J' i) (s — 20)% /16 & (25 — @) [f(wim1) — 2f (wim1y2) + f(2)] /4.

Thus an estimate for the error (using the trapezoidal rule on one subinterval) is given by:

L(f) = (2 — i) [f(wima) + f(2)]/2] = | " () (2 — 2i-1)°/12]
~ |(1/3)(w; — zi1)[f (wic1) = 2f (Tim1/2) + f(@)]]-

An estimate for the error (using the trapezoidal rule on two subintervals) is given by:

L(f) = (i — i) [f (wim1) + 2 (@imay2) + f(@:)]/4] = |7 (&) (2 — xi21) /48]
~ |(1/12) (i — wi) [f (wiz1) — 2f (wic1y2) + f(20)]].

A second approach is to approximate the integral on a subinterval by two different formu-
las, say Al(f) and A?(f), with different orders of accuracy, e.g.,

IL(f) = Aj(NHl =0, |L(f) = AZf)] = O(h),
where we assume s > r. Then
1L(f) = AL (D] < L) = AZ(D] + 1AZ(f) = AF (D] < [AZ(Sf) = A; ()] + O(h®).

Since |L;(f) — AN(f)| = O(h"™), |A2(f) — A}(f)| gives an estimate for the dominant part
of the error. For example, we could approximate I;(f) by the trapezoidal rule using two
subintervals, or using the same function evaluations, by Simpson’s rule

Li(f) = (2 = wim) [f (wio1) + 2f (wi-1/2) + f(2:)]/6.

Then, an estimate for the error using the trapezoidal rule on two subintervals is given by:

(5 — 2 1)[f(wic1) +4f (@ic1y2) + f(2)]/6 — (v — 2 [f(wic1) + 2f (wicay2) + f(2:)]/4]
= (2 — 1) f(wio1) = 2f(wi1y2) + f2)]/12].

Of course, we expect that the use of Simpson’s rule gives better accuracy, so if we accept
the approximation, we should use the approximation given by Simpson’s rule.

11.2. An adaptive algorithm. In an adaptive algorithm for numerical integration, we use
our estimates for the local error on each subinterval to decide whether we have a sufficiently
accurate approximation or whether we need to decrease the size of some subintervals to
increase the accuracy of the approximation. We now discuss how this can be done. First, we
need to supply an error tolerance. This might be an absolute error tolerance, i.e., |F| < ¢,
or a relative error tolerance, |F| < €.1(f). Many codes ask for both, and quit when |E| <
€a + € A(f), where A(f) denotes the current approximation to I(f). Note that A(f) is used
instead of I(f), since I(f) is unknown.

Suppose we are trying to make the total error < e. One way to proceed (simpler to
program) is to allow an error of eh;/(b— a) on a subinterval of length h;, where b — a denotes

48 MATH 373 LECTURE NOTES

the total length of the interval of integration. Then, if we had say N subintervals, i.e.,
SN hi = b —a, the total error would be

N

D ehif(b—a) =

i=1
If on any subinterval, our estimate of the local error exceeds this threshold, then we cut the
subinterval size in half and apply our method on each piece with the aim of satisfying the
above criterion. Note that if we cut the interval size in half, then we are allowing an error of
only €h;/(2[b — a]) on each piece. However, even using the trapezoidal rule, our local error
estimate is of order A, so cutting h; in half, should reduce the error by a factor of 8. This
is why we expect that halving the subinterval size will reduce the total error. This way of
proceeding assumes we want to equidistribute the error in the sense that we are trying to
make the error proportional to the subinterval size. However, the goal is to make the total
error less than €, so we may be doing unnecessary work. Another possibility is the following.
Suppose we have on each interval I; = [z;_1, x;] an estimate of the error given by ¢;. Then the
total error is given by > . ;. We now simply pick the largest €; and divide the corresponding
interval I; in half.

An adaptive code based on Simpson’s rule in used in Matlab. As in the trapezoidal rule
discussion above, rather than compare Simpson’s rule based on one and two subintervals,
the code compares Simpson’s rule based on two subintervals with a higher order formula
obtained by extrapolation of Simpson’s rule (i.e., as done in Romberg integration). Note
that the extrapolated formula does not require any new function evaluations.

