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Apollonian Circle Packings: The Construction

Given three mutually tangent circles with disjoint points of
tangency, there are exactly two circles tangent to the given ones.
(Proved by Apollonius of Perga.)
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Apollonian Circle Packings: The Construction

Figure: An Apollonian circle packing.
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Apollonian Circle Packings

Figure: An Apollonian circle
packing.

Label on circle:
bend = 1/radius

All of the bends of this
Apollonian circle packing are
integers.

Which integers appear as
bends?

Are there any congruence or
local obstructions?
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Admissible Integers

Definition (Admissible integers for Apollonian circle packings)

Let P be an integral Apollonian circle packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some circle in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.
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Admissible Integers

Theorem (Fuchs, 2011)

m is admissible if and only if m is in certain congruence classes
modulo 24.
(The congruence classes depend on the packing.)

Example

m is admissible ⇐⇒
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24).
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Local-Global Conjecture

Conjecture (Graham–Lagarias–Mallows–Wilks–Yan, 2003)

The bends of a fixed primitive integral Apollonian circle packing P
satisfy an asymptotic local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a circle in the packing.

Example

We think that if
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24)
and m is sufficiently large,
then m is the bend of a circle in the
packing.
We do not have a proof of this!
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Why Do We Have a Local-Global Conjecture?

Theorem (Kontorovich–Oh, 2011)

The number of circles in an Apollonian circle packing P with bend
at most N (counted with multiplicity) is asymptotically equal to a
constant times Nδ, where δ = the Hausdorff dimension of the
closure of P.

For Apollonian circle packings, we have

δ ≈ 1.30568 . . .

Thus, we would would expect that the multiplicity of a given
admissible bend up to N is roughly Nδ−1 ≈ N0.30568 ≥ 1, so we
should expect that every sufficiently large admissible number to be
represented.
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The Best We Can Do Right Now

Theorem (Bourgain–Kontorovich, 2014)

Almost every admissible number is the bend of a circle in a fixed
primitive integral Apollonian circle packing P. Quantitatively, the
number of exceptions up to N is bounded by O(N1−η), where
η > 0 is effectively computable.

Proof outline:

1 Show that the automorphism group of the Apollonian circle
packing contains the congruence subgroup Γ(2) of PSL2(Z),
and Γ(2) is the stabilizer of a particular circle. This implies
that the set of bends contains primitive values of a shifted
binary quadratic form. (Sarnak, 2007)

2 The shifted binary quadratic form gives you enough to work
with so that you can apply the circle method (with some
other tools, including spectral theory, used in the major arc
and minor arc analyses) to obtain an “almost all” statement.
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Soddy Sphere Packings: The Construction

Given four mutually tangent spheres with disjoint points of
tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres. Figure: Four tangent spheres
with two additional tangent
spheres.
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Soddy Sphere Packings: The Construction

Figure: Four
tangent
spheres.

Figure: Four
tangent spheres
with two
additional
tangent
spheres.

Figure: More
tangent
spheres.

Figure: A Soddy
sphere packing.
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Soddy Sphere Packings

Figure: A Soddy sphere packing
made by Nicolas Hannachi.

Label on sphere:
bend = 1/radius

All of the bends of this Soddy
sphere packing are integers.

Which integers appear as
bends?

Are there any congruence or
local obstructions?
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Admissible Integers

Definition (Admissible integers for Soddy sphere packings)

Let P be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some sphere in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.
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Admissible Integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing P if
and only if

m ≡ 0 or ε(P) (mod 3) ,

where ε(P) ∈ {±1} depends only on the packing.

Example

m is admissible ⇐⇒
m ≡ 0 or 1 (mod 3).
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An Asymptotic Local-Global Theorem

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing P
satisfy an asymptotic local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a sphere in the packing.

Example

If m ≡ 0 or 1 (mod 3) and m is
sufficiently large, then m is the bend
of a sphere in the packing.
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Proof Outline for Soddy Sphere Packing Result

1 Show that the automorphism group of the Soddy sphere
packing contains a congruence subgroup of PSL2(Z[eπi/3]),
and this congruence subgroup maps a particular sphere to
itself. This implies that the set of bends contains “primitive”
values of a shifted quaternary quadratic form.

2 The shifted quaternary quadratic form gives you enough to
work with so that you can quote the circle method to show
that every sufficiently large admissible number is represented
by the quadratic form without the primitivity restriction.

3 Show that the singular series (with the primitivity restriction)
is bounded away from zero.
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Congruence Subgroup of PSL2(OK )

Definition (Principal congruence subgroup of PSL2(OK ))

For an imaginary quadratic field K , a principal congruence
subgroup of PSL2(OK ) is a subgroup of PSL2(OK ) of the form{(

a b
c d

)
∈ PSL2(OK ) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod %)

}
for a fixed ideal % of OK .

Example (Soddy sphere packing, Kontorovich, 2019)

There exists a sphere S0 ∈ P such that the stabilizer of S0 in Γ
contains (up to conjugacy) the congruence subgroup{(

a b
c d

)
∈ PSL2(O) : b, c ≡ 0 (mod %)

}
,

where O = Z[eπi/3] and % = (1 + eπi/3).
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Kleinian Sphere Packings

Definition (Kleinian sphere packing)

A (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Figure: Apollonian circle packing as the limit set of Γ.
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Kleinian Sphere Packings

Definition (Kleinian sphere packing)

A (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Action of Isom(Hn+1) extends continuously to

R̂n = Rn ∪ {∞}, the boundary of Hn+1.

Γ stabilizes P (i.e., Γ maps P to itself).
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Examples of Kleinian Sphere Packings
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Asymptotic Local-Global Principles

We want to prove asymptotic local-global principles for certain
integral Kleinian sphere packings, that is, we want to prove the
following:
If m is admissible and sufficiently large, then m is a bend of
the packing.

Definition (Admissible integers)

Let P be an integral Kleinian sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some (n − 1)-sphere in P (mod q) .
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Group of Möbius Transformations

Group of orientation-preserving Möbius transformations
Möb(Hn+1) < Isom(Hn+1)

Möb(Hn+1) : Hn+1 → Hn+1

z 7→ g(z) = (a · z + b)(c · z + d)−1,

g =

(
a b
c d

)
∈ Möb(Hn+1)

a, b, c , d in a Clifford algebra Cn−1 with some restrictions.
Action extends to R̂n.

Clifford algebras for small n:

C1 = C
C2 = H, the set of quaternions
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Group of Möbius Transformations

Group of orientation-preserving Möbius transformations
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∈ Möb(Hn+1)

a, b, c , d in a Clifford algebra Cn−1 with some restrictions.
Action extends to R̂n.

Clifford algebras for small n:

C1 = C
C2 = H, the set of quaternions

Edna Jones Local-Global Principle for Sphere Packings



Group of Möbius Transformations

Example (n = 2)

Möb(H3) ∼= PSL2(C) acts on R̂2 ∼= Ĉ via

z 7→ g(z) = (az + b)(cz + d)−1,

g =

(
a b
c d

)
∈ PSL2(C)

Restrictions make defining what Möb(Hn+1) is isomorphic to
trickier for n > 2.
(For example, Möb(H4) 6∼= PSL2(H), even though C2 = H.)
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trickier for n > 2.
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Result for Kleinian 1-Sphere (Circle) Packings

Theorem (Fuchs–Stange–Zhang, 2019)

Suppose that

P is a primitive integral Kleinian 1-sphere packing in R̂2 with
an automorphism group Γ < PSL2(a), where a is a fractional
ideal of an imaginary quadratic field K,

there exist circles S0 and S1 such that S1 is in P and is
tangent to S0, and

the stabilizer of S0 in Γ (up to conjugacy) contains a
congruence subgroup of PSL2(Z).

Almost every admissible number is the bend of a circle in

Γ · S1 ⊆

P. Quantitatively, the number of exceptions up to N is
bounded by O(N1−η).

Generalizes Bourgain–Kontorovich result for Apollonian circle
packings to other Kleinian 1-sphere packings.
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Result for Kleinian 1-Sphere (Circle) Packings

Theorem (Fuchs–Stange–Zhang, 2019)

If P is a primitive integral Kleinian 1-sphere packing in R̂2

satisfying certain conditions, almost every admissible number is the
bend of a circle in P.

Figure: An integral Kleinian (more specifically, cuboctahedral) 1-sphere
packing that satisfies the conditions of the theorem. Figure taken from
“Local-Global Principles in Circle Packings” by Fuchs, Stange, and
Zhang.
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Proof Outline

1 The assumption that the stabilizer of S0 in Γ contains (up to
conjugacy) a congruence subgroup of PSL2(Z) implies that
the set of bends of P contains primitive values of a shifted
binary quadratic form.

2 The shifted binary quadratic form gives you enough to work
with so that you can apply the circle method (with some
other tools, including spectral theory, used in the major arc
and minor arc analyses) to obtain an “almost all” statement.
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My Research

Goal: Prove an asymptotic local-global principle for bends of
certain integral Kleinian sphere packings.

Figure: An integral Kleinian
(more specifically, an
orthoplicial) sphere packing
made by Kei Nakamura.

Figure: A fundamental domain
of an integral Kleinian sphere
packing made by Arseniy
(Senia) Sheydvasser.
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Theorem in Progress

Suppose that

n ≥ 3,

P is a primitive integral Kleinian (n− 1)-sphere packing in R̂n

with an automorphism group Γ of Möbius transformations,

there exist (n− 1)-spheres S0 and S1 such that S1 is in P and
is tangent to S0, and

the stabilizer of S0 in Γ contains (up to conjugacy) a
congruence subgroup of PSL2(OK ), where K is an imaginary
quadratic field.

Then every sufficiently large admissible integer is a bend of a
(n − 1)-sphere in Γ · S1 ⊆ P.
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Proof Methods Outline

1 The assumption that the stabilizer of S0 in Γ contains (up to
conjugacy) a congruence subgroup of PSL2(OK ) implies that
the set of bends of P contains “primitive” values of a shifted
quaternary quadratic form.

2 This shifted quaternary quadratic form should give you
enough to work with so that you can apply the circle method
to show that every sufficiently large admissible number is
represented as a bend.

Major arcs (for main term that contains local information):
use spectral theory and expander graphs
Minor arcs (for error term): use Kloosterman circle method
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quaternary quadratic form.

2 This shifted quaternary quadratic form should give you
enough to work with so that you can apply the circle method
to show that every sufficiently large admissible number is
represented as a bend.

Major arcs (for main term that contains local information):
use spectral theory and expander graphs
Minor arcs (for error term): use Kloosterman circle method
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Quadratic Form for Soddy Sphere Packings

Example (Quadratic form for Soddy sphere packings)

Shifted quaternary quadratic form in a0, a1, c0, c1 ∈ Z:

β̂|C (a0 + a1ω) + D%(c0 + c1ω)|2 − DjC̄ + CjD̄,

ω = eπi/3

% = 1 + ω
gcd(a0 + a1ω, %(c0 + c1ω)) = 1

β̂ ∈ R and C ,D ∈ H only depend on the packing.

(Scale appropriately to obtain a primitive integral quadratic form.)

Obtained by examining how Möbius transformations affect bends
of (n − 1)-spheres
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Illustrations Credits

Besides the illustrations previously credited and a few Apollonian circle
packing construction illustrations created by the presenter, the
illustrations for this talk came from the following papers:

Jean Bourgain and Alex Kontorovich, “On the local-global
conjecture for integral Apollonian gaskets,”Inventiones
mathematicae, volume 196, pp. 589–650, 2014.

Alex Kontorovich, “From Apollonius to Zaremba: Local-global
phenomena in thin orbits,”Bulletin of the American Mathematical
Society, volume 50, number 2, pp. 187-228, 2013,
https://www.ams.org/journals/bull/2013-50-02/

S0273-0979-2013-01402-2/.

Alex Kontorovich, “The Local-Global Principle for Integral Soddy
Sphere Packings,”Journal of Modern Dynamics, volume 15, pp.
209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd.2019019.
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Thank you for listening!
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