Local-global I: Apollonian packings

Edna Jones
Rutgers University
Arbeitsgemeinschaft mit aktuellem Thema:
Thin Groups and Super-approximation
October 12, 2021

Apollonian circle packings: The construction

Given three mutually tangent circles with disjoint points of tangency, there are exactly two circles tangent to the given ones. (Proved by Apollonius of Perga.)

Apollonian circle packings: The construction

Figure: An Apollonian circle packing.

Apollonian circle packings

Label on circle:

Figure: An Apollonian circle packing.

$$
\begin{aligned}
\text { bend } & =\text { curvature } \\
& =1 / \text { radius }
\end{aligned}
$$

Apollonian circle packings

Figure: An Apollonian circle packing.

Label on circle:

$$
\begin{aligned}
\text { bend } & =\text { curvature } \\
& =1 / \text { radius }
\end{aligned}
$$

All of the bends of the circles this Apollonian circle packing are integers.

Apollonian circle packings

Figure: An Apollonian circle packing.

Label on circle:

$$
\begin{aligned}
\text { bend } & =\text { curvature } \\
& =1 / \text { radius }
\end{aligned}
$$

All of the bends of the circles this Apollonian circle packing are integers.

Why?

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line
And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\begin{aligned}
& b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2} \\
& \quad=\frac{1}{2}\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=0, b_{2}=b_{3}=1, b_{4}=4
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{aligned}
& b_{1}=0, b_{2}=b_{3}=1, b_{4}=4 \\
& (0+1+1+4)^{2}=6^{2}=36
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{aligned}
& b_{1}=0, b_{2}=b_{3}=1, b_{4}=4 \\
& (0+1+1+4)^{2}=6^{2}=36 \\
& 2\left(0^{2}+1^{2}+1^{2}+4^{2}\right)=2(18)=36
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=-11, b_{2}=21, b_{3}=24, b_{4}=28
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=-11, b_{2}=21, b_{3}=24, b_{4}=28
$$

$$
(-11+21+24+28)^{2}=62^{2}=3844
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{gathered}
-1124 \\
21 \\
(-11+21+24+28)^{2}=62^{2}=3844 \\
2\left((-11)^{2}+21^{2}+24^{2}+28^{2}\right)=2(1922)=3844
\end{gathered}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Fix b_{1}, b_{2}, b_{3}. What do I know about the solutions to b_{4} ?

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Fix b_{1}, b_{2}, b_{3}. What do I know about the solutions to b_{4} ?
If b_{4} and b_{4}^{\prime} are solutions, b_{1}, b_{2}, b_{3} fixed, then, by the quadratic formula,

$$
b_{4}+b_{4}^{\prime}=2\left(b_{1}+b_{2}+b_{3}\right)
$$

Matrices and geometry

$$
b_{4}^{\prime}=2 b_{1}+2 b_{2}+2 b_{3}-b_{4}
$$

Matrix form:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}^{\prime}
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right)}_{M_{4}}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

Matrices and geometry

$$
b_{4}^{\prime}=2 b_{1}+2 b_{2}+2 b_{3}-b_{4}
$$

Matrix form:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}^{\prime}
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right)}_{M_{4}}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

Figure: Four tangent circles and a reflection to a fifth circle.

Matrices and the Apollonian group

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), & M_{2}=\left(\begin{array}{cccc}
1 & & & \\
2 & -1 & 2 & 2 \\
& & 1 & \\
& & & 1
\end{array}\right), \\
M_{3}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & 2 & -1 & 2 \\
& & & 1
\end{array}\right), & M_{4}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right) .
\end{array}
$$

Matrices and the Apollonian group

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), & M_{2}=\left(\begin{array}{cccc}
1 & & & \\
2 & -1 & 2 & 2 \\
& & 1 & \\
& & & 1
\end{array}\right), \\
M_{3}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & 2 & -1 & 2 \\
& & & 1
\end{array}\right), & M_{4}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right) .
\end{array}
$$

The Apollonian group $\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Integrality of bends

The Apollonian group
$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Figure: An Apollonian circle packing.

Since we start with an integer
vector of bends
(namely, $(-11,21,24,28)^{\top}$),
all of our bends are integers!

Integrality of bends

The Apollonian group
$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Since we start with an integer vector of bends (namely, $(-11,21,24,28)^{\top}$), all of our bends are integers!

Figure: An Apollonian circle packing.

Which integers appear as bends?

Integrality of bends

The Apollonian group

$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Since we start with an integer vector of bends (namely, $(-11,21,24,28)^{\top}$), all of our bends are integers!

Figure: An Apollonian circle packing.

Which integers appear as bends?

Are there any congruence or local obstructions?

Admissible integers

Definition (Admissible integers for Apollonian circle packings)
Let \mathcal{P} be an integral Apollonian circle packing.
An integer m is admissible (or locally represented) if for every
$q \geq 1$

$$
m \equiv \text { bend of some circle in } \mathcal{P}(\bmod q)
$$

Equivalently, m is admissible if m has no local obstructions.

Admissible integers

Theorem (Fuchs, 2011)

Let \mathcal{P} be a primitive integral Apollonian circle packing. Then m is admissible if and only if m is in certain congruence classes modulo 24.
(The congruence classes depend on the packing.)

Example

m is admissible \Longleftrightarrow

$$
m \equiv 0,4,12,13,16, \text { or } 21(\bmod 24)
$$

Local-global conjecture

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan, 2003)

The bends of a fixed primitive integral Apollonian circle packing \mathcal{P} satisfy a strong asymptotic local-global principle. That is, there is an $N_{0}=N_{0}(\mathcal{P})$ so that, if $m>N_{0}$ and m is admissible, then m is the bend of a circle in the packing.

Example

> We think that if
> $m \equiv 0,4,12,13,16$, or $21(\bmod 24)$
> and m is sufficiently large,
> then m is the bend of a circle in the packing.
> We do not have a proof of this!

Why do we have a local-global conjecture?

Theorem (Kontorovich-Oh, 2011)

The number of circles in an Apollonian circle packing \mathcal{P} with bend at most N (counted with multiplicity) is asymptotically equal to a constant times N^{δ}, where $\delta=$ the Hausdorff dimension of the closure of \mathcal{P}.

For Apollonian circle packings, we have

$$
\delta \approx 1.30568 \ldots
$$

Thus, we would would expect that the multiplicity of a given admissible bend up to N is roughly $N^{\delta-1} \approx N^{0.30568} \geq 1$, so we should expect that every sufficiently large admissible number to be represented.

First observation

Observation (Graham-Lagarias-Mallows-Wilks-Yan, 2003)

At least $c_{1} N^{1 / 2}$ of all integers less than N appear as bends in a fixed primitive integral Apollonian circle packing.

Observation (Graham-Lagarias-Mallows-Wilks-Yan, 2003)

At least $c_{1} N^{1 / 2}$ of all integers less than N appear as bends in a fixed primitive integral Apollonian circle packing.

Proof comes from looking at the largest entries of $\left(M_{1} M_{2}\right)^{k} \mathbf{v}_{0}$, where \mathbf{v}_{0} is the root quadruple of bends (e.g., $\left.(-11,21,24,28)^{\top}\right)$ and $k>0$.

These largest entries grow like k^{2}.

$$
\left(M_{4} M_{3}\right)^{k}=\left(\begin{array}{cccc}
1 & & & \\
4 k^{2}-2 k & 4 k^{2}-2 k & 1-2 k & 2 k \\
4 k^{2}+2 k & 4 k^{2}+2 k & -2 k & 2 k+1
\end{array}\right)
$$

so that

$$
\mathbf{e}_{4}^{\top}\left(M_{4} M_{3}\right)^{k}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)=4\left(b_{1}+b_{2}\right) k^{2}+2\left(b_{1}+b_{2}-b_{3}+b_{4}\right) k+b_{4}
$$

is a bend in our packing, where $\mathbf{e}_{4}=(0,0,0,1)^{\top}$.

Sarnak's letter

Theorem (Sarnak, 2007)

At least $c_{2} N / \sqrt{\log (N)}$ of all integers less than N appear as bends in a fixed primitive integral Apollonian circle packing.

Descartes quadratic form (with signature $(3,1)$):

$$
Q(\mathbf{v})=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)-\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}
$$

There is spin homomorphism $\rho: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{SO}_{Q}(\mathbb{R})$ such that

$$
\begin{aligned}
& \pm\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \mapsto M_{4} M_{3} \quad \text { and } \\
& \pm\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) \mapsto M_{2} M_{3}
\end{aligned}
$$

(Uses spin homomorphisms from $\mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{SO}(3,1)$ and from $\left.\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathrm{SO}(2,1).\right)$

A congruence subgroup

$$
\begin{aligned}
& \pm\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { and } \pm\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) \text { generate } \\
& \qquad \wedge(2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 2)\right\} .
\end{aligned}
$$

A congruence subgroup

$$
\begin{aligned}
& \pm\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \text { and } \pm\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) \text { generate } \\
& \quad \Lambda(2)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod 2)\right\} \\
& \Longrightarrow \rho(\Lambda(2))<\Gamma \text { and } \rho(\Lambda(2)) \text { fixes } C_{1} .
\end{aligned}
$$

A congruence subgroup

For any $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(2 x, y)=1$, there is a matrix of the form $\left(\begin{array}{cc}* & 2 x \\ * & y\end{array}\right) \in \Lambda(2)$.

A congruence subgroup

For any $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(2 x, y)=1$, there is a matrix of the form $\left(\begin{array}{cc}* & 2 x \\ * & y\end{array}\right) \in \Lambda(2)$.

$$
\begin{align*}
& \mathbf{e}_{4}^{\top} \rho\left(\left(\begin{array}{cc}
* & 2 x \\
* & y
\end{array}\right)\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \\
& =4\left(b_{1}+b_{2}\right) x^{2}+2\left(b_{1}+b_{2}-b_{3}+b_{4}\right) x y+\left(b_{1}+b_{4}\right) y^{2}-b_{1} \tag{*}
\end{align*}
$$

with $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(2 x, y)=1$ is a bend in our packing.

A congruence subgroup

For any $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(2 x, y)=1$, there is a matrix of the form

$$
\left(\begin{array}{cc}
* & 2 x \\
* & y
\end{array}\right) \in \Lambda(2) \text {. }
$$

$$
\begin{align*}
& \mathbf{e}_{4}^{\top} \rho\left(\left(\begin{array}{cc}
* & 2 x \\
* & y
\end{array}\right)\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \\
& =4\left(b_{1}+b_{2}\right) x^{2}+2\left(b_{1}+b_{2}-b_{3}+b_{4}\right) x y+\left(b_{1}+b_{4}\right) y^{2}-b_{1} \tag{*}
\end{align*}
$$

with $x, y \in \mathbb{Z}$ and $\operatorname{gcd}(2 x, y)=1$ is a bend in our packing.
Number of integers up to N represented by ($*$) with $\operatorname{gcd}(2 x, y)=1$ is of order $N / \sqrt{\log (N)}$.

Positive density result

Theorem (Bourgain-Fuchs, 2011)
At least $c_{3} N$ of all integers less than N appear as bends in a fixed primitive integral Apollonian circle packing.

Positive density result

Theorem (Bourgain-Fuchs, 2011)
At least $c_{3} N$ of all integers less than N appear as bends in a fixed primitive integral Apollonian circle packing.

Obtained by looking at multiple orbits of $\rho(\Lambda(2))$ in the packing.

Theorem (Bourgain-Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the Apollonian circle packing \mathcal{P}. Quantitatively, the number of exceptions up to N is bounded by $O\left(N^{1-\eta}\right)$, where $\eta>0$ is effectively computable.

Theorem (Bourgain-Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the Apollonian circle packing \mathcal{P}. Quantitatively, the number of exceptions up to N is bounded by $O\left(N^{1-\eta}\right)$, where $\eta>0$ is effectively computable.

Proof uses the circle method with other tools, including spectral theory and expander graphs.

Proof ideas

Representation number:

$$
R_{N}(m)=\sum_{\substack{\gamma \in \Gamma \\\|\gamma\|<T}} \sum_{\substack{g \in \rho(\Lambda(2)) \\\|g\|<X}} \mathbf{1}_{\left\{m=\mathbf{e}_{4}^{\top} \gamma g v_{0}\right\}}
$$

where m is of size N, T and X depend on N, \mathbf{v}_{0} is a root quadruple, and

$$
\begin{aligned}
\mathbf{1}_{\left\{m=\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right\}} & = \begin{cases}1 & \text { if } m=\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0} \\
0 & \text { otherwise }\end{cases} \\
& =\int_{0}^{1} e^{2 \pi i \theta\left(\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}-m\right)} d \theta
\end{aligned}
$$

Proof ideas

Representation number:

$$
R_{N}(m)=\sum_{\substack{\gamma \in \Gamma \\\|\gamma\|<T}} \sum_{\substack{g \in \rho(\wedge(2)) \\\|g\|<X}} \mathbf{1}_{\left\{m=\mathbf{e}_{4}^{\top} \gamma g v_{0}\right\}}
$$

where m is of size N, T and X depend on N, \mathbf{v}_{0} is a root quadruple, and

$$
\begin{aligned}
\mathbf{1}_{\left\{m=\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right\}} & = \begin{cases}1 & \text { if } m=\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0} \\
0 & \text { otherwise }\end{cases} \\
& =\int_{0}^{1} e^{2 \pi i \theta\left(\mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}-m\right)} d \theta
\end{aligned}
$$

Want to know when $R_{N}(m)>0$

Proof ideas

$$
S_{N}(\theta)=\sum_{m \in \mathbb{Z}} R_{N}(m) \mathrm{e}(m \theta)=\sum_{\substack{\gamma \in \Gamma \\\|\gamma\|<T}} \sum_{\substack{g \in \rho(\Lambda(2)) \\\|g\|<X}} \mathrm{e}\left(\theta \mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right)
$$

where $\mathrm{e}(z)=e^{2 \pi i z}$.

$$
S_{N}(\theta)=\sum_{m \in \mathbb{Z}} R_{N}(m) \mathrm{e}(m \theta)=\sum_{\substack{\gamma \in \Gamma \\\|\gamma\|<T}} \sum_{\substack{g \in \rho(\Lambda(2)) \\\|g\|<X}} \mathrm{e}\left(\theta \mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right)
$$

where $\mathrm{e}(z)=e^{2 \pi i z}$.
Representation number:

$$
\begin{aligned}
R_{N}(m) & =\int_{0}^{1} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta \\
& =\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
\end{aligned}
$$

where

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{E}_{N}(m)$: "error" term

Proof ideas

$$
R_{N}(m)=\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
$$

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{E}_{N}(m)$: "error" term

$$
R_{N}(m)=\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
$$

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{M}_{N}(m)=\int_{\mathfrak{M}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- $\mathfrak{M}:$ major arcs, intervals close to rationals with small denominators
- $\mathcal{E}_{N}(m)$: "error" term

$$
R_{N}(m)=\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
$$

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{M}_{N}(m)=\int_{\mathfrak{M}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- \mathfrak{M} : major arcs, intervals close to rationals with small denominators
- $\mathcal{M}_{N}(m) \gg \mathfrak{S}(m) N^{\delta-1}$
- $\mathfrak{S}(m)$: singular series, responsible for admissibility conditions
- $\mathcal{E}_{N}(m)$: "error" term

$$
R_{N}(m)=\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
$$

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{M}_{N}(m)=\int_{\mathfrak{M}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- \mathfrak{M} : major arcs, intervals close to rationals with small denominators
- $\mathcal{M}_{N}(m) \gg \mathfrak{S}(m) N^{\delta-1}$
- $\mathfrak{S}(m)$: singular series, responsible for admissibility conditions
- $\mathcal{E}_{N}(m)$: "error" term
- $\mathcal{E}_{N}(m)=\int_{\mathfrak{m}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- $\mathfrak{m}:$ minor arcs $=[0,1) \backslash \mathfrak{M}$

$$
R_{N}(m)=\mathcal{M}_{N}(m)+\mathcal{E}_{N}(m)
$$

- $\mathcal{M}_{N}(m)$: "main" term
- $\mathcal{M}_{N}(m)=\int_{\mathfrak{M}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- \mathfrak{M} : major arcs, intervals close to rationals with small denominators
- $\mathcal{M}_{N}(m) \gg \mathfrak{S}(m) N^{\delta-1}$
- $\mathfrak{S}(m)$: singular series, responsible for admissibility conditions
- $\mathcal{E}_{N}(m)$: "error" term
- $\mathcal{E}_{N}(m)=\int_{\mathfrak{m}} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta$
- $\mathfrak{m}:$ minor arcs $=[0,1) \backslash \mathfrak{M}$
- $\sum_{m \in \mathbb{Z}}\left|\mathcal{E}_{N}(m)\right|^{2}=\int_{\mathfrak{m}}\left|S_{N}(\theta)\right|^{2} d \theta=o\left(N^{2 \delta-1}\right)$
(not exactly what was done but the not exact $\mathcal{M}_{N}(m) \gg \mathcal{S}(m) N^{\delta-1} \quad$ main ideas)

$$
\sum_{m \in \mathbb{Z}}\left|\mathcal{E}_{N}(m)\right|^{2}=0\left(N^{2 \delta-1}\right)
$$

$E(N)=\{m \leq N: m$ is admissible but not represented $\}$

$$
W T S: \# E(N)=0(N)
$$

$$
m \in E(N) \Rightarrow \varepsilon_{N}(m) \gg N^{\delta-1}
$$

$$
\Rightarrow 1 \ll \frac{\left|\varepsilon_{N}(m)\right|^{2}}{N^{2} \Sigma^{2}-2}
$$

$$
\Rightarrow \# E(N)^{N^{\delta \delta-2}}<N^{2-2 \delta} \sum_{m \in Z}\left|\varepsilon_{N}(m)\right|^{2}=0(N)
$$

$$
\begin{aligned}
& S_{N}(\theta)=\sum_{m \in \mathbb{Z}} R_{N}(m) \mathrm{e}(m \theta)=\sum_{\substack{\gamma \in \Gamma \\
\|\gamma\|<T}} \sum_{\substack{g \in \rho(\Lambda(2)) \\
\|g\|<X}} \mathrm{e}\left(\theta \mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right) \\
& R_{N}(m)=\int_{0}^{1} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta
\end{aligned}
$$

- Sum over γ
- Sum over g

$$
\begin{aligned}
& S_{N}(\theta)=\sum_{m \in \mathbb{Z}} R_{N}(m) \mathrm{e}(m \theta)=\sum_{\substack{\gamma \in \Gamma \\
\|\gamma\|<T^{2}}} \sum_{\substack{g \in \rho(\Lambda(2)) \\
\|g\|<X}} \mathrm{e}\left(\theta \mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right) \\
& R_{N}(m)=\int_{0}^{1} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta
\end{aligned}
$$

- Sum over γ
- Captures admissibility conditions in major arcs
- Uses expander graphs and the spectral gap
- Sum over g

$$
\begin{aligned}
& S_{N}(\theta)=\sum_{m \in \mathbb{Z}} R_{N}(m) \mathrm{e}(m \theta)=\sum_{\substack{\gamma \in \Gamma \\
\|\gamma\|<T}} \sum_{\substack{g \in \rho(\Lambda(2)) \\
\|g\|<X}} \mathrm{e}\left(\theta \mathbf{e}_{4}^{\top} \gamma g \mathbf{v}_{0}\right) \\
& R_{N}(m)=\int_{0}^{1} S_{N}(\theta) \mathrm{e}(-m \theta) d \theta
\end{aligned}
$$

- Sum over γ
- Captures admissibility conditions in major arcs
- Uses expander graphs and the spectral gap
- Sum over g
- Provides sufficient cancellation in minor arcs
- Uses shifted binary quadratic forms

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{lsom}\left(\mathcal{H}^{n+1}\right)$.

Figure: Apollonian circle packing as the limit set of Γ. Figure created by Alex Kontorovich.

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{lsom}\left(\mathcal{H}^{n+1}\right)$.

- Action of $\operatorname{Isom}\left(\mathcal{H}^{n+1}\right)$ extends continuously to $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$, the boundary of \mathcal{H}^{n+1}.

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{lsom}\left(\mathcal{H}^{n+1}\right)$.

- Action of Isom $\left(\mathcal{H}^{n+1}\right)$ extends continuously to $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$, the boundary of \mathcal{H}^{n+1}.
- 「 stabilizes \mathcal{P} (i.e., Γ maps \mathcal{P} to itself).

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{lsom}\left(\mathcal{H}^{n+1}\right)$.

- Action of Isom $\left(\mathcal{H}^{n+1}\right)$ extends continuously to $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$, the boundary of \mathcal{H}^{n+1}.
- 「 stabilizes \mathcal{P} (i.e., Γ maps \mathcal{P} to itself).
- Γ is a thin group.

Result for Kleinian 1-Sphere (Circle) Packings

Theorem (Fuchs-Stange-Zhang, 2019)

If \mathcal{P} is a primitive integral Kleinian 1 -sphere packing in $\widehat{\mathbb{R}^{2}}$ satisfying certain conditions, almost every admissible number is the bend of a circle in \mathcal{P}.

Figure: An integral Kleinian (more specifically, cuboctahedral) 1-sphere packing that satisfies the conditions of the theorem. Figure taken from "Local-Global Principles in Circle Packings" by Fuchs, Stange, and Zhang.

What happens in higher dimensions?

Figure: A Soddy sphere packing made by Nicolas Hannachi.

Given four mutually tangent spheres with disjoint points of tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres.

Figure: Four tangent spheres with two additional tangent spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four
tangent spheres
with two
additional
tangent
spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four tangent spheres
with two
additional
tangent
spheres.

Figure: More tangent spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four tangent spheres with two additional tangent spheres.

Figure: More tangent spheres.

Figure: A Soddy sphere packing.

Soddy sphere packings: The construction

> Label on sphere: $$
\text { bend }=1 / \text { radius }
$$

Figure: An integral Soddy sphere packing made by Nicolas Hannachi.

Soddy sphere packings: The construction

> Label on sphere: $$
\text { bend }=1 / \text { radius }
$$

All of the bends of this Soddy sphere packing are integers.

Figure: An integral Soddy sphere packing made by Nicolas Hannachi.

Soddy sphere packings: The construction

Label on sphere:
bend $=1 /$ radius

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?

Figure: An integral Soddy sphere packing made by Nicolas Hannachi.

Figure: An integral Soddy sphere packing made by Nicolas Hannachi.

Label on sphere: bend $=1 /$ radius

All of the bends of this Soddy sphere packing are integers.

Which integers appear as bends?

Are there any congruence or local obstructions?

Admissible integers

Definition (Admissible integers for Soddy sphere packings)

Let \mathcal{P} be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every
$q \geq 1$

$$
m \equiv \text { bend of some sphere in } \mathcal{P}(\bmod q)
$$

Equivalently, m is admissible if m has no local obstructions.

Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing \mathcal{P} if and only if

$$
m \equiv 0 \text { or } \varepsilon(\mathcal{P})(\bmod 3)
$$

where $\varepsilon(\mathcal{P}) \in\{ \pm 1\}$ depends only on the packing.

Example

$$
\begin{aligned}
& m \text { is admissible } \Longleftrightarrow \\
& m \equiv 0 \text { or } 1(\bmod 3)
\end{aligned}
$$

A local-global theorem

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing \mathcal{P} satisfy a strong asymptotic local-global principle.
That is, there is an $N_{0}=N_{0}(\mathcal{P})$ so that, if $m>N_{0}$ and m is admissible, then m is the bend of a sphere in the packing.

Example

If $m \equiv 0$ or $1(\bmod 3)$ and m is sufficiently large, then m is the bend of a sphere in the packing.

My research

Goal: Extend Kontorovich's result and prove a a strong asymptotic local-global principle for bends of certain integral Kleinian sphere packings in dimension at least 3.

Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing made by Kei Nakamura.

Figure: A fundamental domain of an integral Kleinian sphere packing made by Arseniy (Senia) Sheydvasser.

Illustrations Credits

Besides the illustrations previously credited and a few Apollonian circle packing construction illustrations created by the presenter, the illustrations for this talk came from the following papers:

- Jean Bourgain and Alex Kontorovich, "On the local-global conjecture for integral Apollonian gaskets," Inventiones mathematicae, volume 196, pp. 589-650, 2014.
- Alex Kontorovich, "From Apollonius to Zaremba: Local-global phenomena in thin orbits," Bulletin of the American Mathematical Society, volume 50, number 2, pp. 187-228, 2013, https://www.ams.org/journals/bull/2013-50-02/ S0273-0979-2013-01402-2/.
- Alex Kontorovich, "The Local-Global Principle for Integral Soddy Sphere Packings," Journal of Modern Dynamics, volume 15, pp. 209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd. 2019019.

Thank you for listening!

