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Apollonian circle packings: The construction

Given three mutually tangent circles with disjoint points of
tangency, there are exactly two circles tangent to the given ones.
(Proved by Apollonius of Perga.)
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Apollonian circle packings

Figure: An Apollonian circle
packing.

Label on circle:

bend = curvature

= 1/radius

All of the bends of the circles
this Apollonian circle packing
are integers.

Why?
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Apollonian circle packings

Figure: An Apollonian circle
packing.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.
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“The Kiss Precise” by F. Soddy

Figure: An excerpt of “The Kiss
Precise” by F. Soddy in Nature,
1936.

If b1, b2, b3, b4 are bends of
four mutually tangent
circles, then

b2
1 + b2

2 + b2
3 + b2

4

=
1

2
(b1 + b2 + b3 + b4)2.

Edna Jones Local-global I: Apollonian packings



Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b2
1 + b2

2 + b2
3 + b2

4).

Example

0

0

1 1

4

4 b1 = 0, b2 = b3 = 1, b4 = 4

(0 + 1 + 1 + 4)2 = 62 = 36

2(02 + 12 + 12 + 42) = 2(18) = 36
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Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b2
1 + b2

2 + b2
3 + b2

4).

Example

b1 = −11, b2 = 21, b3 = 24, b4 = 28

(−11 + 21 + 24 + 28)2 = 622 = 3844

2((−11)2 + 212 + 242 + 282) = 2(1922) = 3844
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Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If b1, b2, b3, b4 are bends of four mutually tangent circles, then

(b1 + b2 + b3 + b4)2 = 2(b2
1 + b2

2 + b2
3 + b2

4).

Fix b1, b2, b3. What do I know about the solutions to b4?

If b4 and b′4 are solutions, b1, b2, b3 fixed, then, by the quadratic
formula,

b4 + b′4 = 2(b1 + b2 + b3).
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Matrices and geometry

b′4 = 2b1 + 2b2 + 2b3 − b4

Matrix form:
b1

b2

b3

b′4

 =


1

1
1

2 2 2 −1


︸ ︷︷ ︸

M4


b1

b2

b3

b4



Figure: Four tangent circles
and a reflection to a fifth
circle.
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Matrices and the Apollonian group

M1 =


−1 2 2 2

1
1

1

 , M2 =


1
2 −1 2 2

1
1

 ,

M3 =


1

1
2 2 −1 2

1

 , M4 =


1

1
1

2 2 2 −1

 .

The Apollonian group Γ := 〈M1,M2,M3,M4〉
maps bends of an Apollonian circle packing to more bends of
the packing,

“generates” all bends of the packing from four bends, and

sends integer vectors to integer vectors.
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Integrality of bends

The Apollonian group
Γ := 〈M1,M2,M3,M4〉

maps bends of an
Apollonian circle packing
to more bends of the
packing,

“generates” all bends of
the packing from four
bends, and

sends integer vectors to
integer vectors.

Since we start with an integer
vector of bends
(namely, (−11, 21, 24, 28)>),
all of our bends are integers!

Figure: An Apollonian circle
packing.

Which integers appear as
bends?

Are there any congruence
or local obstructions?
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Admissible integers

Definition (Admissible integers for Apollonian circle packings)

Let P be an integral Apollonian circle packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some circle in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.

Edna Jones Local-global I: Apollonian packings



Admissible integers

Theorem (Fuchs, 2011)

Let P be a primitive integral Apollonian circle packing. Then m is
admissible if and only if m is in certain congruence classes modulo
24.
(The congruence classes depend on the packing.)

Example

m is admissible ⇐⇒
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24).
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Local-global conjecture

Conjecture (Graham–Lagarias–Mallows–Wilks–Yan, 2003)

The bends of a fixed primitive integral Apollonian circle packing P
satisfy a strong asymptotic local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a circle in the packing.

Example

We think that if
m ≡ 0, 4, 12, 13, 16, or 21 (mod 24)
and m is sufficiently large,
then m is the bend of a circle in the
packing.
We do not have a proof of this!
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Why do we have a local-global conjecture?

Theorem (Kontorovich–Oh, 2011)

The number of circles in an Apollonian circle packing P with bend
at most N (counted with multiplicity) is asymptotically equal to a
constant times Nδ, where δ = the Hausdorff dimension of the
closure of P.

For Apollonian circle packings, we have

δ ≈ 1.30568 . . .

Thus, we would would expect that the multiplicity of a given
admissible bend up to N is roughly Nδ−1 ≈ N0.30568 ≥ 1, so we
should expect that every sufficiently large admissible number to be
represented.
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First observation

Observation (Graham–Lagarias–Mallows–Wilks–Yan, 2003)

At least c1N
1/2 of all integers less than N appear as bends in a

fixed primitive integral Apollonian circle packing.

Proof comes from looking at the largest entries of (M1M2)kv0,
where v0 is the root quadruple of bends (e.g., (−11, 21, 24, 28)>)
and k > 0.

These largest entries grow like k2.
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Powers of M4M3

(M4M3)k =


1

1
4k2 − 2k 4k2 − 2k 1− 2k 2k
4k2 + 2k 4k2 + 2k −2k 2k + 1


so that

e>4 (M4M3)k


b1

b2

b3

b4

 = 4(b1 + b2)k2 + 2(b1 + b2 − b3 + b4)k + b4

is a bend in our packing, where e4 = (0, 0, 0, 1)>.
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Sarnak’s letter

Theorem (Sarnak, 2007)

At least c2N/
√

log(N) of all integers less than N appear as bends
in a fixed primitive integral Apollonian circle packing.
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Spin homomorphisms

Descartes quadratic form (with signature (3,1)):

Q(v) = 2(b2
1 + b2

2 + b2
3 + b2

4)− (b1 + b2 + b3 + b4)2

There is spin homomorphism ρ : SL2(C)→ SOQ(R) such that

±
(

1 2
0 1

)
7→ M4M3 and

±
(

1 0
2 1

)
7→ M2M3.

(Uses spin homomorphisms from SL2(C)→ SO(3, 1) and from
SL2(R)→ SO(2, 1).)
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A congruence subgroup

±
(

1 2
0 1

)
and ±

(
1 0
2 1

)
generate

Λ(2) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2)

}
.

=⇒ ρ(Λ(2)) < Γ and ρ(Λ(2)) fixes C1.

Edna Jones Local-global I: Apollonian packings



A congruence subgroup

±
(

1 2
0 1

)
and ±

(
1 0
2 1

)
generate

Λ(2) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod 2)

}
.

=⇒ ρ(Λ(2)) < Γ and ρ(Λ(2)) fixes C1.

Edna Jones Local-global I: Apollonian packings



A congruence subgroup

For any x , y ∈ Z and gcd(2x , y) = 1, there is a matrix of the form(
∗ 2x
∗ y

)
∈ Λ(2).

=⇒

e>4 ρ

((
∗ 2x
∗ y

))
b1

b2

b3

b4


= 4(b1 + b2)x2 + 2(b1 + b2 − b3 + b4)xy + (b1 + b4)y2 − b1

(∗)

with x , y ∈ Z and gcd(2x , y) = 1 is a bend in our packing.

Number of integers up to N represented by (∗) with
gcd(2x , y) = 1 is of order N/

√
log(N).
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Positive density result

Theorem (Bourgain–Fuchs, 2011)

At least c3N of all integers less than N appear as bends in a fixed
primitive integral Apollonian circle packing.

Obtained by looking at multiple orbits of ρ(Λ(2)) in the packing.
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The best we can do right now

Theorem (Bourgain–Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the
Apollonian circle packing P. Quantitatively, the number of
exceptions up to N is bounded by O(N1−η), where η > 0 is
effectively computable.

Proof uses the circle method with other tools, including spectral
theory and expander graphs.
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Proof ideas

Representation number:

RN(m) =
∑
γ∈Γ
‖γ‖<T

∑
g∈ρ(Λ(2))
‖g‖<X

1{m=e>4 γgv0}

where m is of size N, T and X depend on N, v0 is a root
quadruple, and

1{m=e>4 γgv0} =

{
1 if m = e>4 γgv0,

0 otherwise.

=

∫ 1

0
e2πiθ(e>4 γgv0−m) dθ.

Want to know when RN(m) > 0
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Proof ideas

SN(θ) =
∑
m∈Z

RN(m)e(mθ) =
∑
γ∈Γ
‖γ‖<T

∑
g∈ρ(Λ(2))
‖g‖<X

e
(
θe>4 γgv0

)

where e(z) = e2πiz .

Representation number:

RN(m) =

∫ 1

0
SN(θ)e(−mθ) dθ

=MN(m) + EN(m)

where

MN(m): “main” term

EN(m): “error” term
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Proof ideas

RN(m) =MN(m) + EN(m)

MN(m): “main” term

MN(m) =
∫
M

SN(θ)e(−mθ) dθ
M: major arcs, intervals close to rationals with small
denominators
MN(m)� S(m)Nδ−1

S(m): singular series, responsible for admissibility conditions

EN(m): “error” term

EN(m) =
∫
m
SN(θ)e(−mθ) dθ

m: minor arcs = [0, 1) \M∑
m∈Z
|EN(m)|2 =

∫
m

|SN(θ)|2 dθ = o
(
N2δ−1

)
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Proof ideas

MN(m)� S(m)Nδ−1∑
m∈Z
|EN(m)|2 = o

(
N2δ−1

)

Edna Jones Local-global I: Apollonian packings

Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones


Edna Jones




Proof ideas

SN(θ) =
∑
m∈Z

RN(m)e(mθ) =
∑
γ∈Γ
‖γ‖<T

∑
g∈ρ(Λ(2))
‖g‖<X

e
(
θe>4 γgv0

)

RN(m) =

∫ 1

0
SN(θ)e(−mθ) dθ

Sum over γ

Captures admissibility conditions in major arcs
Uses expander graphs and the spectral gap

Sum over g

Provides sufficient cancellation in minor arcs
Uses shifted binary quadratic forms
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Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Figure: Apollonian circle packing as the limit set of Γ. Figure created by
Alex Kontorovich.

Edna Jones Local-global I: Apollonian packings



Kleinian sphere packings

Definition (Kleinian sphere packing)

An (n − 1)-sphere packing P is Kleinian if its limit set is that of a
geometrically finite group Γ < Isom(Hn+1).

Action of Isom(Hn+1) extends continuously to

R̂n = Rn ∪ {∞}, the boundary of Hn+1.

Γ stabilizes P (i.e., Γ maps P to itself).

Γ is a thin group.
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Result for Kleinian 1-Sphere (Circle) Packings

Theorem (Fuchs–Stange–Zhang, 2019)

If P is a primitive integral Kleinian 1-sphere packing in R̂2

satisfying certain conditions, almost every admissible number is the
bend of a circle in P.

Figure: An integral Kleinian (more specifically, cuboctahedral) 1-sphere
packing that satisfies the conditions of the theorem. Figure taken from
“Local-Global Principles in Circle Packings” by Fuchs, Stange, and
Zhang.
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What happens in higher dimensions?

Figure: A Soddy sphere packing made by Nicolas Hannachi.
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Soddy sphere packings: The construction

Given four mutually tangent spheres with disjoint points of
tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres. Figure: Four tangent spheres
with two additional tangent
spheres.
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Soddy sphere packings: The construction

Figure: Four
tangent
spheres.

Figure: Four
tangent spheres
with two
additional
tangent
spheres.

Figure: More
tangent
spheres.

Figure: A Soddy
sphere packing.
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Soddy sphere packings: The construction

Figure: An integral Soddy
sphere packing made by Nicolas
Hannachi.

Label on sphere:
bend = 1/radius

All of the bends of this Soddy
sphere packing are integers.

Which integers appear as
bends?

Are there any congruence or
local obstructions?
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Admissible integers

Definition (Admissible integers for Soddy sphere packings)

Let P be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every
q ≥ 1

m ≡ bend of some sphere in P (mod q) .

Equivalently, m is admissible if m has no local obstructions.
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Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing P if
and only if

m ≡ 0 or ε(P) (mod 3) ,

where ε(P) ∈ {±1} depends only on the packing.

Example

m is admissible ⇐⇒
m ≡ 0 or 1 (mod 3).
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A local-global theorem

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing P
satisfy a strong asymptotic local-global principle.
That is, there is an N0 = N0(P) so that, if m > N0 and m is
admissible, then m is the bend of a sphere in the packing.

Example

If m ≡ 0 or 1 (mod 3) and m is
sufficiently large, then m is the bend
of a sphere in the packing.
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My research

Goal: Extend Kontorovich’s result and prove a a strong
asymptotic local-global principle for bends of certain integral
Kleinian sphere packings in dimension at least 3.

Figure: An integral Kleinian
(more specifically, an
orthoplicial) sphere packing
made by Kei Nakamura.

Figure: A fundamental domain
of an integral Kleinian sphere
packing made by Arseniy
(Senia) Sheydvasser.
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Illustrations Credits

Besides the illustrations previously credited and a few Apollonian circle
packing construction illustrations created by the presenter, the
illustrations for this talk came from the following papers:

Jean Bourgain and Alex Kontorovich, “On the local-global
conjecture for integral Apollonian gaskets,”Inventiones
mathematicae, volume 196, pp. 589–650, 2014.

Alex Kontorovich, “From Apollonius to Zaremba: Local-global
phenomena in thin orbits,”Bulletin of the American Mathematical
Society, volume 50, number 2, pp. 187-228, 2013,
https://www.ams.org/journals/bull/2013-50-02/

S0273-0979-2013-01402-2/.

Alex Kontorovich, “The Local-Global Principle for Integral Soddy
Sphere Packings,”Journal of Modern Dynamics, volume 15, pp.
209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd.2019019.
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Thank you for listening!
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