Local Densities of Diagonal Integral Ternary Quadratic Forms at Odd Primes

Edna Jones

Rutgers, The State University of New Jersey

Study Group in Number Theory Seminar The Graduate Center, CUNY

February 28, 2020

Quadratic Forms $Q(v)=a x^{2}+b y^{2}+c z^{2}$

$Q(\mathbf{v})=a x^{2}+b y^{2}+c z^{2}$
$a, b, c \in \mathbb{Z}$
$\operatorname{gcd}(a, b, c)=1$
$\mathbf{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$

Examples

- $Q(\mathbf{v})=x^{2}+3 y^{2}+5 z^{2}$
- $Q(\mathbf{v})=x^{2}+4 y^{2}+4 z^{2}$
- $Q(\mathbf{v})=3 x^{2}+4 y^{2}+5 z^{2}$
- $Q(\mathbf{v})=x^{2}+5 y^{2}+7 z^{2}$

Quadratic Forms $Q(v)=a x^{2}+b y^{2}+c z^{2}$

$$
\begin{aligned}
& Q(\mathbf{v})=a x^{2}+b y^{2}+c z^{2} \\
& a, b, c \in \mathbb{Z} \\
& \operatorname{gcd}(a, b, c)=1 \\
& \mathbf{v}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

Examples

- $Q(\mathbf{v})=x^{2}+3 y^{2}+5 z^{2}$
- $Q(\mathbf{v})=x^{2}+4 y^{2}+4 z^{2}$
- $Q(\mathbf{v})=3 x^{2}+4 y^{2}+5 z^{2}$
- $Q(\mathbf{v})=x^{2}+5 y^{2}+7 z^{2}$

Let m be an integer. We would like to know when

$$
Q(\mathbf{v})=m
$$

has an integer solution.

Easier Problem: Look $(\bmod n)$

Definition (Local representation number)

$$
r_{n}(m, Q)=\#\left\{\mathbf{v} \in(\mathbb{Z} / n \mathbb{Z})^{3}: Q(\mathbf{v}) \equiv m(\bmod n)\right\} .
$$

Easier Problem: Look $(\bmod n)$

Definition (Local representation number)

$$
r_{n}(m, Q)=\#\left\{\mathbf{v} \in(\mathbb{Z} / n \mathbb{Z})^{3}: Q(\mathbf{v}) \equiv m(\bmod n)\right\}
$$

Because of Chinese Remainder Theorem, only need to look at $r_{p^{k}}(m, Q), p$ prime.

Local (representation) density or p-adic density

Let p be a prime. Let \mathbb{Z}_{p} denote the set of p-adic integers with the usual Haar measure.

Definition (Local (representation) density or p-adic density)

$$
\alpha_{p}(m, Q)=\lim _{U \rightarrow\{m\}} \frac{\operatorname{Vol}_{\mathbb{Z}_{p}^{3}}\left(Q^{-1}(U)\right)}{\operatorname{Vol}_{\mathbb{Z}_{p}}(U)}
$$

where U is an open set in \mathbb{Z}_{p} containing $m, \operatorname{Vol}_{\mathbb{Z}_{p}^{3}}\left(Q^{-1}(U)\right)$ is the volume of $Q^{-1}(U)$ in \mathbb{Z}_{p}^{3}, and $\mathrm{Vol}_{\mathbb{Z}_{p}}(U)$ is the volume of U in \mathbb{Z}_{p}.

Local (representation) density or p-adic density

Let p be a prime. Let \mathbb{Z}_{p} denote the set of p-adic integers with the usual Haar measure.

Definition (Local (representation) density or p-adic density)

$$
\alpha_{p}(m, Q)=\lim _{U \rightarrow\{m\}} \frac{\operatorname{Vol}_{\mathbb{Z}_{p}^{3}}\left(Q^{-1}(U)\right)}{\operatorname{Vol}_{\mathbb{Z}_{p}}(U)}
$$

where U is an open set in \mathbb{Z}_{p} containing $m, \operatorname{Vol}_{\mathbb{Z}_{p}^{3}}\left(Q^{-1}(U)\right)$ is the volume of $Q^{-1}(U)$ in \mathbb{Z}_{p}^{3}, and $\operatorname{Vol}_{\mathbb{Z}_{p}}(U)$ is the volume of U in \mathbb{Z}_{p}.

It can be shown that

$$
\alpha_{p}(m, Q)=\lim _{k \rightarrow \infty} \frac{r_{p^{k}}(m, Q)}{p^{2 k}}
$$

Why do we care about local densities?

Definition (Representation number)

$$
r(m, Q)=\#\left\{\mathbf{v} \in \mathbb{Z}^{3}: Q(\mathbf{v})=m\right\}
$$

Why do we care about local densities?

Definition (Representation number)

$$
r(m, Q)=\#\left\{\mathbf{v} \in \mathbb{Z}^{3}: Q(\mathbf{v})=m\right\}
$$

The $\alpha_{p}(m, Q)$'s give us local information.
If $m \neq 0$, Hensel's lemma shows that

$$
\alpha_{p}(m, Q)=0 \Longleftrightarrow r_{p^{k}}(m, Q)=0 \text { for some } k
$$

This implies that $r(m, Q)=0$ if $\alpha_{p}(m, Q)=0$ for some prime p. (Converse does not hold.)

Siegel's Mass Formula for Rank 3 Quadratic Forms

Theorem (Siegel, 1935)

Let m be an integer and Q be a positive definite quadratic form of rank 3. Let $\left\{Q_{j}\right\}$ be a complete set representatives for classes in the same genus as Q. Then

$$
\frac{\sum_{j} \frac{r\left(m, Q_{j}\right)}{\# O\left(Q_{j}\right)}}{\sum_{j} \frac{1}{\# O\left(Q_{j}\right)}}=\alpha_{\mathbb{R}}(m, Q) \prod_{p \text { prime }} \alpha_{p}(m, Q),
$$

where $O\left(Q_{j}\right)$ is the orthogonal group of Q_{j} over \mathbb{Z}, $\alpha_{\mathbb{R}}(m, Q)=\lim _{U \rightarrow\{m\}} \frac{\mathrm{Vol}_{\mathbb{R}^{3}}\left(Q^{-1}(U)\right)}{\operatorname{Vol}_{\mathbb{R}}(U)}, U$ is an open set in \mathbb{R} containing $m, V_{\mathbb{R}^{3}}\left(Q^{-1}(U)\right)$ is the volume of $Q^{-1}(U)$ in \mathbb{R}^{3}, and $\mathrm{Vol}_{\mathbb{R}}(U)$ is the volume of U in \mathbb{R}.

Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of rank 3. If Q is in a genus containing only one class, then

$$
r(m, Q)=\alpha_{\mathbb{R}}(m, Q) \prod_{p \text { prime }} \alpha_{p}(m, Q) .
$$

Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of rank 3. If Q is in a genus containing only one class, then

$$
r(m, Q)=\alpha_{\mathbb{R}}(m, Q) \prod_{p \text { prime }} \alpha_{p}(m, Q) .
$$

- Jones and Pall (1939) proved that there are 82 primitive quadratic forms of the form $a x^{2}+b y^{2}+c z^{2}$ with $0<a \leq b \leq c$ such that each is in a genus containing only one class.

Specialized Version of Siegel's Mass Formula

Corollary (Specialized Version of Siegel's Mass Formula)

Let m be an integer and Q be a positive definite quadratic form of rank 3. If Q is in a genus containing only one class, then

$$
r(m, Q)=\alpha_{\mathbb{R}}(m, Q) \prod_{p \text { prime }} \alpha_{p}(m, Q)
$$

- Jones and Pall (1939) proved that there are 82 primitive quadratic forms of the form $a x^{2}+b y^{2}+c z^{2}$ with $0<a \leq b \leq c$ such that each is in a genus containing only one class.
- Lomadze (1971) computed the representation numbers for these 82 quadratic forms.

Past Results on Local Densities

Complicated formulas (hard to tell when $\alpha_{p}(m, Q)$ is equal to zero):

- Yang (1998)
- Hanke (2004)

Past Results on Local Densities

Complicated formulas (hard to tell when $\alpha_{p}(m, Q)$ is equal to zero):

- Yang (1998)
- Hanke (2004)

Not in full generality:

- Siegel (1935): If $p \nmid 2 a b c m$, then

$$
\alpha_{p}(m, Q)=1+\frac{1}{p}\left(\frac{-a b c m}{p}\right)
$$

where $\left(\frac{\cdot}{p}\right)$ is the Legendre symbol.

- Berkovich and Jagy (2012)

Past Results on Local Densities

Theorem (Berkovich and Jagy, 2012)

Let p be an odd prime and u be any integer with $\left(\frac{-u}{p}\right)=-1$. Let $Q(\mathbf{v})=u x^{2}+p y^{2}+u p z^{2}$. Suppose m is a nonzero integer and $m=m_{0} p^{m_{1}}$, where $\operatorname{gcd}\left(m_{0}, p\right)=1$. Then

$$
\alpha_{p}(m, Q)= \begin{cases}p^{-m_{1} / 2}\left(1-\left(\frac{-m_{0}}{p}\right)\right), & \text { if } m_{1} \text { is even, } \\ p^{\left(-m_{1}+1\right) / 2}\left(1+\frac{1}{p}\right), & \text { if } m_{1} \text { is odd }\end{cases}
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose $p \nmid a, b=b_{0} p^{b_{1}}$, and $c=c_{0} p^{c_{1}}$, where $b_{1} \leq c_{1}, \operatorname{gcd}\left(b_{0}, p\right)=1$, and $\operatorname{gcd}\left(c_{0}, p\right)=1$.
Suppose m is a nonzero integer and $m=m_{0} p^{m_{1}}$, where $\operatorname{gcd}\left(m_{0}, p\right)=1$.
$\alpha_{p}(m, Q)$ is easily computable using rational functions and Legendre symbols. Depends on $a, b_{0}, b_{1}, c_{0}, c_{1}, m_{0}, m_{1}$, and p.

Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose $p \nmid a, b=b_{0} p^{b_{1}}$, and $c=c_{0} p^{c_{1}}$, where $b_{1} \leq c_{1}, \operatorname{gcd}\left(b_{0}, p\right)=1$, and $\operatorname{gcd}\left(c_{0}, p\right)=1$.
Suppose m is a nonzero integer and $m=m_{0} p^{m_{1}}$, where $\operatorname{gcd}\left(m_{0}, p\right)=1$.
$\alpha_{p}(m, Q)$ is easily computable using rational functions and Legendre symbols. Depends on $a, b_{0}, b_{1}, c_{0}, c_{1}, m_{0}, m_{1}$, and p.

Multiple cases:

- $m_{1}<b_{1}$ and depends on parity of m_{1}
- $b_{1} \leq m_{1}<c_{1}$ and depends on parity of b_{1}
- $m_{1} \geq c_{1}$ and depends on parities of b_{1}, c_{1}, and m_{1}

Formulas for Local Densities at Odd Primes

Theorem (J., 2020)

Let p be an odd prime. Suppose $p \nmid a, b=b_{0} p^{b_{1}}$, and $c=c_{0} p^{c_{1}}$, where $b_{1} \leq c_{1}, \operatorname{gcd}\left(b_{0}, p\right)=1$, and $\operatorname{gcd}\left(c_{0}, p\right)=1$.
Suppose m is a nonzero integer and $m=m_{0} p^{m_{1}}$, where $\operatorname{gcd}\left(m_{0}, p\right)=1$.
$\alpha_{p}(m, Q)$ is easily computable using rational functions and Legendre symbols. Depends on $a, b_{0}, b_{1}, c_{0}, c_{1}, m_{0}, m_{1}$, and p.

Multiple cases:

- $m_{1}<b_{1}$ and depends on parity of m_{1}
- $b_{1} \leq m_{1}<c_{1}$ and depends on parity of b_{1}
- $m_{1} \geq c_{1}$ and depends on parities of b_{1}, c_{1}, and m_{1}

Also $\alpha_{p}(0, Q)$ is computable. Multiple cases dependent on parities b_{1} and c_{1}.

Main Theorem when $m_{1}<c_{1}$

Theorem (J., 2020)

If $m_{1}<b_{1}$, then

$$
\alpha_{p}(m, Q)= \begin{cases}p^{m_{1} / 2}\left(1+\left(\frac{a m_{0}}{p}\right)\right), & \text { if } m_{1} \text { is even } \\ 0, & \text { if } m_{1} \text { is odd }\end{cases}
$$

If $b_{1} \leq m_{1}<c_{1}$, then $\alpha_{p}(m, Q)=$

$$
\left\{\begin{array}{l}
p^{b_{1} / 2}\left(1-\frac{1}{p}\left(\frac{-a b_{0}}{p}\right)^{m_{1}+1}+\left(1-\frac{1}{p}\right)\left(\frac{m_{1}-b_{1}}{2}\right.\right. \\
\left.\left.\quad+\frac{(-1)^{m_{1}}-1}{4}+\left(\frac{-a b_{0}}{p}\right)\left(\frac{m_{1}-b_{1}}{2}+\frac{1-(-1)^{m_{1}}}{4}\right)\right)\right), \\
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{a}{p}\right)^{m_{1}+1}\left(\frac{b_{0}}{p}\right)^{m_{1}}\left(\frac{m_{0}}{p}\right)\right), \text { is } b_{1} \text { is oden. }
\end{array}\right.
$$

Proof Sketch

(1) Use exponential sums and quadratic Gauss sums to compute $r_{p^{k}}(m, Q)$.
(2) Divide by $p^{2 k}$ and take a limit.

Quadratic Gauss Sums

Abbreviate $\mathrm{e}(w)=e^{2 \pi i w}$.

Definition

The quadratic Gauss sum $g(n ; q)$ over $\mathbb{Z} / q \mathbb{Z}$ is defined by

$$
g(n ; q)=\sum_{j=0}^{q-1} \mathrm{e}\left(\frac{n j^{2}}{q}\right)
$$

A Sum Containing e(w)

$$
\sum_{t=0}^{q-1} \mathrm{e}\left(\frac{n t}{q}\right)= \begin{cases}q, & \text { if } n \equiv 0(\bmod q) \\ 0, & \text { otherwise }\end{cases}
$$

A Sum Containing e(w)

$$
\begin{gathered}
\sum_{t=0}^{q-1} \mathrm{e}\left(\frac{n t}{q}\right)= \begin{cases}q, & \text { if } n \equiv 0(\bmod q) \\
0, & \text { otherwise }\end{cases} \\
\sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right)
\end{gathered}= \begin{cases}p^{k}, & \text { if } Q(\mathbf{v}) \equiv m\left(\bmod p^{k}\right) \\
0, & \text { otherwise }\end{cases}
$$

A Sum Containing e(w)

$$
\begin{gathered}
\sum_{t=0}^{q-1} \mathrm{e}\left(\frac{n t}{q}\right)= \begin{cases}q, & \text { if } n \equiv 0(\bmod q) \\
0, & \text { otherwise. }\end{cases} \\
\sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right)= \begin{cases}p^{k}, & \text { if } Q(\mathbf{v}) \equiv m\left(\bmod p^{k}\right), \\
0, & \text { otherwise. }\end{cases} \\
\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right)= \begin{cases}1, & \text { if } Q(\mathbf{v}) \equiv m\left(\bmod p^{k}\right), \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right)= \begin{cases}1, & \text { if } Q(\mathbf{v}) \equiv m\left(\bmod p^{k}\right) \\ 0, & \text { otherwise }\end{cases}
$$

$$
r_{p^{k}}(m, Q)=\#\left\{\mathbf{v} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}: Q(\mathbf{v}) \equiv m\left(\bmod p^{k}\right)\right\}
$$

$$
r_{p^{k}}(m, Q)=\sum_{\mathbf{v} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right)
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{k}}(m, Q) \\
& =\sum_{\mathbf{v} \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right) \\
& =\sum_{x=0}^{p^{k}-1} \sum_{y=0}^{p^{k}-1} \sum_{z=0}^{p^{k}-1} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{\left(a x^{2}+b y^{2}+c z^{2}-m\right) t}{p^{k}}\right) \\
& =\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) \sum_{x=0}^{p^{k}-1} \mathrm{e}\left(\frac{a t x^{2}}{p^{k}}\right) \sum_{y=0}^{p^{k}-1} \mathrm{e}\left(\frac{b t y^{2}}{p^{k}}\right) \sum_{z=0}^{p^{k}-1} \mathrm{e}\left(\frac{c t z^{2}}{p^{k}}\right)
\end{aligned}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{*}}(m, Q) \\
& =\sum_{v \in\left(\mathbb{Z} / \rho^{k} Z\right)^{p}} \frac{1}{p^{k}} \sum_{t=0}^{\rho^{k}-1} \mathrm{e}\left(\frac{(Q(\mathbf{v})-m) t}{p^{k}}\right) \\
& =\sum_{x=0}^{p^{k}-1} \sum_{y=0}^{p^{k}-1} \sum_{z=0}^{\rho^{k}-1} \frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{\left(a x^{2}+b y^{2}+c z^{2}-m\right) t}{p^{k}}\right)
\end{aligned}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{k}}(m, Q) \\
& =\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) \\
& =\frac{1}{p^{k}}\left(g\left(0 ; p^{k}\right)\right)^{3}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) .
\end{aligned}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{k}}(m, Q) \\
& =\frac{1}{p^{k}} \sum_{t=0}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) \\
& =\frac{1}{p^{k}}\left(g\left(0 ; p^{k}\right)\right)^{3}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) .
\end{aligned}
$$

Since $g\left(0 ; p^{k}\right)=p^{k}$,
$r_{p^{k}}(m, Q)=p^{2 k}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right)$.

Formulas for Quadratic Gauss Sums

Lemma

Suppose k is a positive integer, p is an odd prime, and $n \neq 0$. Let $n=n_{0} p^{\ell}$ so that $\operatorname{gcd}\left(n_{0}, p\right)=1$. Then

$$
g\left(n ; p^{k}\right)= \begin{cases}p^{k}, & \text { if } \ell \geq k \\ p^{(k+\ell) / 2}\left(\frac{n_{0}}{p^{k-\ell}}\right) \varepsilon_{p^{k-\ell}}, & \text { if } \ell<k\end{cases}
$$

where

$$
\varepsilon_{p^{k-\ell}}= \begin{cases}1, & \text { if } p^{k-\ell} \equiv 1(\bmod 4) \\ i, & \text { if } p^{k-\ell} \equiv 3(\bmod 4)\end{cases}
$$

and $\left(\frac{\cdot}{p^{k-\ell}}\right)$ is the Jacobi symbol.

Formulas for Quadratic Gauss Sums

Lemma

Suppose p is an odd prime and $a \in \mathbb{Z}$. Then

$$
g(a ; p)=\sum_{t=0}^{p-1}\left(1+\left(\frac{t}{p}\right)\right) \mathrm{e}\left(\frac{a t}{p}\right) .
$$

If $a \not \equiv 0(\bmod p)$, then

$$
g(a ; p)=\sum_{t=0}^{p-1}\left(\frac{t}{p}\right) \mathrm{e}\left(\frac{a t}{p}\right) .
$$

Proof for the previous lemma.

Let t be an integer. The number of solutions modulo p of the congruence

$$
j^{2} \equiv t(\bmod p)
$$

is $1+\left(\frac{t}{p}\right)$. Therefore,

$$
g(a ; p)=\sum_{j=0}^{p-1} \mathrm{e}\left(\frac{a j^{2}}{p}\right)=\sum_{t=0}^{p-1}\left(1+\left(\frac{t}{p}\right)\right) \mathrm{e}\left(\frac{a t}{p}\right) .
$$

Proof for the previous lemma.

Let t be an integer. The number of solutions modulo p of the congruence

$$
j^{2} \equiv t(\bmod p)
$$

is $1+\left(\frac{t}{p}\right)$. Therefore,

$$
g(a ; p)=\sum_{j=0}^{p-1} \mathrm{e}\left(\frac{a j^{2}}{p}\right)=\sum_{t=0}^{p-1}\left(1+\left(\frac{t}{p}\right)\right) \mathrm{e}\left(\frac{a t}{p}\right) .
$$

When $a \not \equiv 0(\bmod p)$,

$$
g(a ; p)=\sum_{t=0}^{p-1}\left(\frac{t}{p}\right) \mathrm{e}\left(\frac{a t}{p}\right)
$$

since $\sum_{t=0}^{p-1} \mathrm{e}\left(\frac{a t}{p}\right)=0$.

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{k}}(m, Q) \\
& =p^{2 k}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) \\
& =p^{2 k}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m_{0} p^{m_{1}} t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b_{0} p^{b_{1}} t ; p^{k}\right) g\left(c_{0} p^{c_{1}} t ; p^{k}\right)
\end{aligned}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

$$
\begin{aligned}
& r_{p^{k}}(m, Q) \\
& =p^{2 k}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b t ; p^{k}\right) g\left(c t ; p^{k}\right) \\
& =p^{2 k}+\frac{1}{p^{k}} \sum_{t=1}^{p^{k}-1} \mathrm{e}\left(\frac{-m_{0} p^{m_{1}} t}{p^{k}}\right) g\left(a t ; p^{k}\right) g\left(b_{0} p^{b_{1}} t ; p^{k}\right) g\left(c_{0} p^{c_{1}} t ; p^{k}\right) .
\end{aligned}
$$

Let $t=t_{0} p^{\tau}$, where $0 \leq \tau \leq k-1$ and $t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}$. Then

$$
\begin{array}{r}
r_{p^{k}}(m, Q)=p^{2 k}+\frac{1}{p^{k}} \sum_{\tau=0}^{k-1} \sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}} \mathrm{e}\left(\frac{-m_{0} t_{0} p^{m_{1}+\tau}}{p^{k}}\right) g\left(a t_{0} p^{\tau} ; p^{k}\right) \\
\cdot g\left(b_{1} t_{0} p^{b_{1}+\tau} ; p^{k}\right) g\left(c_{0} t_{0} p^{c_{1}+\tau} ; p^{k}\right)
\end{array}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

Let

$$
\begin{aligned}
& s_{k, \tau}=\sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}} \mathrm{e}\left(\frac{-m_{0} t_{0} p^{m_{1}+\tau}}{p^{k}}\right) g\left(a t_{0} p^{\tau} ; p^{k}\right) \\
& \cdot g\left(b_{1} t_{0} p^{b_{1}+\tau} ; p^{k}\right) g\left(c_{0} t_{0} p^{c_{1}+\tau} ; p^{k}\right)
\end{aligned}
$$

so that

$$
r_{p^{k}}(m, Q)=p^{2 k}+\frac{1}{p^{k}} \sum_{\tau=0}^{k-1} s_{k, \tau}
$$

Counting Solutions $\left(\bmod p^{k}\right)$

Let

$$
\begin{aligned}
& s_{k, \tau}=\sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}} \mathrm{e}\left(\frac{-m_{0} t_{0} p^{m_{1}+\tau}}{p^{k}}\right) g\left(a t_{0} p^{\tau} ; p^{k}\right) \\
& \cdot g\left(b_{1} t_{0} p^{b_{1}+\tau} ; p^{k}\right) g\left(c_{0} t_{0} p^{c_{1}+\tau} ; p^{k}\right)
\end{aligned}
$$

so that

$$
r_{p^{k}}(m, Q)=p^{2 k}+\frac{1}{p^{k}} \sum_{\tau=0}^{k-1} s_{k, \tau}
$$

Compute $s_{k, \tau}$ under different conditions depending on b_{1}, c_{1}, m_{1}, k, and τ. Then compute $r_{p^{k}}(m, Q)$ and $\alpha_{p}(m, Q)$.

Computing $s_{k, \tau}$ when $0 \leq \tau \leq k-m_{1}-2$

```
Lemma
For 0}\leq\tau\leqk-\mp@subsup{m}{1}{}-2,\mp@subsup{s}{k,\tau}{}=0
```


Computing $s_{k, \tau}$ when $0 \leq \tau \leq k-m_{1}-2$

Lemma

For $0 \leq \tau \leq k-m_{1}-2, s_{k, \tau}=0$.

Proof.

Suppose that $0 \leq \tau \leq k-m_{1}-2$. Then let $t_{0}=t_{1}+t_{2} p$, where $1 \leq t_{1} \leq p-1$ and $0 \leq t_{2} \leq p^{k-\tau-1}-1$, so

$$
\begin{gathered}
s_{k, \tau}=\sum_{t_{1}=1}^{p-1} \sum_{t_{2}=0}^{p^{k-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0}\left(t_{1}+t_{2} p\right) p^{m_{1}+\tau}}{p^{k}}\right) g\left(a\left(t_{1}+t_{2} p\right) p^{\tau} ; p^{k}\right) \\
\cdot g\left(b_{1}\left(t_{1}+t_{2} p\right) p^{b_{1}+\tau} ; p^{k}\right) g\left(c_{0}\left(t_{1}+t_{2} p\right) p^{c_{1}+\tau} ; p^{k}\right) \\
=\sum_{t_{1}=1}^{p-1} \sum_{t_{2}=0}^{p^{k-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0} t_{1}}{p^{k-m_{1}-\tau}}\right) \mathrm{e}\left(\frac{-m_{0} t_{2}}{p^{k-m_{1}-1-\tau}}\right) g\left(a t_{1} p^{\tau} ; p^{k}\right) \\
\cdot g\left(b_{1} t_{1} p^{b_{1}+\tau} ; p^{k}\right) g\left(c_{0} t_{1} p^{c_{1}+\tau} ; p^{k}\right)
\end{gathered}
$$

Computing $s_{k, \tau}$ when $0 \leq \tau \leq k-m_{1}-2$

Lemma

$$
\text { For } 0 \leq \tau \leq k-m_{1}-2, s_{k, \tau}=0
$$

Proof (continued).

$$
\begin{array}{r}
s_{k, \tau}=\sum_{t_{1}=1}^{p-1} \mathrm{e}\left(\frac{-m_{0} t_{1}}{p^{k-m_{1}-\tau}}\right) g\left(a t_{1} p^{\tau} ; p^{k}\right) g\left(b_{1} t_{1} p^{b_{1}+\tau} ; p^{k}\right) \\
\cdot g\left(c_{0} t_{1} p^{c_{1}+\tau} ; p^{k}\right) \sum_{t_{2}=0}^{p^{k-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0} t_{2}}{p^{k-m_{1}-1-\tau}}\right)
\end{array}
$$

Computing $s_{k, \tau}$ when $0 \leq \tau \leq k-m_{1}-2$

Lemma

$$
\text { For } 0 \leq \tau \leq k-m_{1}-2, s_{k, \tau}=0 \text {. }
$$

Proof (continued).

$$
\begin{array}{r}
s_{k, \tau}=\sum_{t_{1}=1}^{p-1} \mathrm{e}\left(\frac{-m_{0} t_{1}}{p^{k-m_{1}-\tau}}\right) g\left(a t_{1} p^{\tau} ; p^{k}\right) g\left(b_{1} t_{1} p^{b_{1}+\tau} ; p^{k}\right) \\
\cdot g\left(c_{0} t_{1} p^{c_{1}+\tau} ; p^{k}\right) \sum_{t_{2}=0}^{p^{k-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0} t_{2}}{p^{k-m_{1}-1-\tau}}\right)
\end{array}
$$

Now

$$
\begin{aligned}
\sum_{t_{2}=0}^{p^{k-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0} t_{2}}{p^{k-m_{1}-1-\tau}}\right) & =p^{m_{1}} \sum_{t_{2}=0}^{p^{k-m_{1}-\tau-1}-1} \mathrm{e}\left(\frac{-m_{0} t_{2}}{p^{k-m_{1}-1-\tau}}\right) \\
& =p^{m_{1}} \cdot 0=0
\end{aligned}
$$

Computing $s_{k, \tau}$ when $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$

Lemma
For $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$,

$$
s_{k, \tau}= \begin{cases}p^{3 k+(k-\tau) / 2}\left(1-\frac{1}{p}\right), & \text { if } k-\tau \text { is even, } \\ 0, & \text { if } k-\tau \text { is odd. }\end{cases}
$$

Computing $s_{k, \tau}$ when $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$

Lemma

For $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$,

$$
s_{k, \tau}= \begin{cases}p^{3 k+(k-\tau) / 2}\left(1-\frac{1}{p}\right), & \text { if } k-\tau \text { is even, } \\ 0, & \text { if } k-\tau \text { is odd. }\end{cases}
$$

Proof.

Suppose that $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$. Then

$$
\begin{aligned}
s_{k, \tau} & =\sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}} p^{(k+\tau) / 2}\left(\frac{a t_{0}}{p^{k-\tau}}\right) \varepsilon_{p^{k-\tau}} p^{2 k} \\
& =\varepsilon_{p^{k-\tau}} p^{5 k / 2+\tau / 2}\left(\frac{a}{p}\right)^{k-\tau} \sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}}\left(\frac{t_{0}}{p}\right)^{k-\tau} .
\end{aligned}
$$

Computing $s_{k, \tau}$ when $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$

Lemma

For $k-\min \left(m_{1}, b_{1}\right) \leq \tau \leq k-1$,

$$
s_{k, \tau}= \begin{cases}p^{3 k+(k-\tau) / 2}\left(1-\frac{1}{p}\right), & \text { if } k-\tau \text { is even, } \\ 0, & \text { if } k-\tau \text { is odd. }\end{cases}
$$

Proof (continued).

$$
\begin{aligned}
s_{k, \tau} & =\varepsilon_{p^{k-\tau}} p^{5 k / 2+\tau / 2}\left(\frac{a}{p}\right)^{k-\tau} \sum_{t_{0} \in\left(\mathbb{Z} / p^{k-\tau} \mathbb{Z}\right)^{*}}\left(\frac{t_{0}}{p}\right)^{k-\tau} \\
& = \begin{cases}p^{5 k / 2+\tau / 2} p^{k-\tau}\left(1-\frac{1}{p}\right), & \text { if } k-\tau \text { is even } \\
0, & \text { if } k-\tau \text { is odd }\end{cases}
\end{aligned}
$$

Computing $\sum_{\tau=k-\min \left(m_{1}, b_{1}\right)}^{k-1} s_{k, \tau}$

Lemma

Let $n_{1}=\min \left(m_{1}, b_{1}\right)$. Then

$$
\sum_{\tau=k-n_{1}}^{k-1} s_{k, \tau}=\sum_{\substack{\tau=k-n_{1} \\ k-\tau \text { is even }}}^{k-1} p^{3 k+(k-\tau) / 2}\left(1-\frac{1}{p}\right)=p^{3 k}\left(p^{\left\lfloor n_{1} / 2\right\rfloor}-1\right)
$$

where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.

Computing $\sum_{\tau=k-\min \left(m_{1}, b_{1}\right)}^{k-1} s_{k, \tau}$

Lemma

Let $n_{1}=\min \left(m_{1}, b_{1}\right)$. Then

$$
\sum_{\tau=k-n_{1}}^{k-1} s_{k, \tau}=\sum_{\substack{\tau=k-n_{1} \\ k-\tau \text { is even }}}^{k-1} p^{3 k+(k-\tau) / 2}\left(1-\frac{1}{p}\right)=p^{3 k}\left(p^{\left\lfloor n_{1} / 2\right\rfloor}-1\right)
$$

where $\lfloor x\rfloor$ is the greatest integer less than or equal to x.

Proof sketch:
(1) Let $\tau_{1}=\frac{k-\tau}{2}$.
(2) Apply formulas for geometric sums.

Thank you for listening!

Theorem (J., 2020)

Let Q be the integral quadratic form $a x^{2}+b y^{2}+c z^{2}$, where a, b, and c are integers. Let p be an odd prime. Suppose $p \nmid a$, $b=b_{0} p^{b_{1}}$, and $c=c_{0} p^{c_{1}}$, where $b_{1} \leq c_{1}, \operatorname{gcd}\left(b_{0}, p\right)=1$, and $\operatorname{gcd}\left(c_{0}, p\right)=1$.
Suppose m is a nonzero integer and $m=m_{0} p^{m_{1}}$, where $\operatorname{gcd}\left(m_{0}, p\right)=1$.
If $m_{1}<b_{1}$, then

$$
\alpha_{p}(m, Q)= \begin{cases}p^{m_{1} / 2}\left(1+\left(\frac{a m_{0}}{p}\right)\right), & \text { if } m_{1} \text { is even } \\ 0, & \text { if } m_{1} \text { is odd }\end{cases}
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)
If $b_{1} \leq m_{1}<c_{1}$, then

$$
\alpha_{p}(m, Q)=\left\{\begin{array}{c}
p^{b_{1} / 2}\left(1-\frac{1}{p}\left(\frac{-a b_{0}}{p}\right)^{m_{1}+1}\right. \\
+\left(1-\frac{1}{p}\right)\left(\frac{m_{1}-b_{1}}{2}+\frac{(-1)^{m_{1}}-1}{4}\right. \\
\left.\left.+\left(\frac{-a b_{0}}{p}\right)\left(\frac{m_{1}-b_{1}}{2}+\frac{1-(-1)^{m_{1}}}{4}\right)\right)\right), \\
\quad \text { if } b_{1} \text { is even, } \\
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{a}{p}\right)^{m_{1}+1}\left(\frac{b_{0}}{p}\right)^{m_{1}}\left(\frac{m_{0}}{p}\right)\right) \\
\text { if } b_{1} \text { is odd. }
\end{array}\right.
$$

Theorem (J., 2020, continued)

If $m_{1} \geq c_{1}$ and b_{1} and c_{1} are even, then

$$
\alpha_{\rho}(m, Q)=\left\{\begin{array}{c}
p^{b_{1} / 2}\left(1+\frac{1}{p}+p^{-m_{1} / 2+c_{1} / 2-1}\left(\left(\frac{-a b_{0} c_{0} m_{0}}{p}\right)-1\right)\right. \\
\left.+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}}{2}\right)\right), \\
\text { if } m_{1} \text { is even, } \\
p^{b_{1} / 2}\left(\left(1+\frac{1}{p}\right)\left(1-p^{-\left(m_{1}+1\right) / 2+c_{1} / 2}\right)\right. \\
\left.+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}}{2}\right)\right), \\
\text { if } m_{1} \text { is odd. }
\end{array}\right.
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

If $m_{1} \geq c_{1}, b_{1}$ is even, and c_{1} is odd, then

$$
\begin{aligned}
& \alpha_{p}(m, Q)= \\
& \left\{\begin{array}{l}
p^{b_{1} / 2}\left(1-p^{-m_{1} / 2+\left(c_{1}-1\right) / 2}\left(\frac{-a b_{0}}{p}\right)\left(1+\frac{1}{p}\right)+\frac{1}{p}\left(\frac{-a b_{0}}{p}\right)\right. \\
\left.+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}-1}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}+1}{2}\right)\right), \\
\text { if } m_{1} \text { is even, } \\
p^{b_{1} / 2}\left(1+p^{-\left(m_{1}+1\right) / 2+\left(c_{1}-1\right) / 2}\left(\left(\frac{c_{0} m_{0}}{p}\right)-\left(\frac{-a b_{0}}{p}\right)\right)\right. \\
\quad+\frac{1}{p}\left(\frac{-a b_{0}}{p}\right) \\
\left.\quad+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}-1}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}+1}{2}\right)\right), \\
\text { if } m_{1} \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

If $m_{1} \geq c_{1}, b_{1}$ is odd, and c_{1} is even, then

$$
\alpha_{p}(m, Q)=\left\{\begin{array}{c}
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-a c_{0}}{p}\right)\right. \\
\left.-p^{-m_{1} / 2+c_{1} / 2}\left(1+\frac{1}{p}\right)\left(\frac{-a c_{0}}{p}\right)\right), \\
\text { if } m_{1} \text { is even, } \\
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-a c_{0}}{p}\right)\right. \\
\left.+p^{-\left(m_{1}+1\right) / 2+c_{1} / 2}\left(\left(\frac{b_{0} m_{0}}{p}\right)-\left(\frac{-a c_{0}}{p}\right)\right)\right), \\
\text { if } m_{1} \text { is odd. }
\end{array}\right.
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

If $m_{1} \geq c_{1}$ and b_{1} and c_{1} are odd, then

$$
\alpha_{p}(m, Q)=\left\{\begin{array}{c}
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-b_{0} c_{0}}{p}\right)\right. \\
\left.+p^{-m_{1} / 2+\left(c_{1}-1\right) / 2}\left(\left(\frac{a m_{0}}{p}\right)-\left(\frac{-b_{0} c_{0}}{p}\right)\right)\right), \\
\text { if } m_{1} \text { is even, } \\
p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-b_{0} c_{0}}{p}\right)\right. \\
\left.-p^{\left(-m_{1}+c_{1}\right) / 2}\left(1+\frac{1}{p}\right)\left(\frac{-b_{0} c_{0}}{p}\right)\right) \\
\text { if } m_{1} \text { is odd. }
\end{array}\right.
$$

Formulas for Local Densities at Odd Primes

Theorem (J., 2020, continued)

Furthermore,

$$
\begin{aligned}
& \alpha_{p}(0, Q)= \\
& \left(p^{b_{1} / 2}\left(1+\frac{1}{p}+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}}{2}\right)\right),\right. \\
& \text { if } b_{1} \text { and } c_{1} \text { are even, } \\
& p^{b_{1} / 2}\left(1+\frac{1}{p}\left(\frac{-a b_{0}}{p}\right)\right. \\
& \left.+\left(1-\frac{1}{p}\right)\left(\frac{c_{1}-b_{1}-1}{2}+\left(\frac{-a b_{0}}{p}\right) \frac{c_{1}-b_{1}+1}{2}\right)\right), \\
& \text { if } b_{1} \text { is even and } c_{1} \text { is odd, } \\
& p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-a c_{0}}{p}\right)\right), \quad \text { if } b_{1} \text { is odd and } c_{1} \text { is even, } \\
& p^{\left(b_{1}-1\right) / 2}\left(1+\left(\frac{-b_{0} c_{0}}{p}\right)\right), \quad \text { if } b_{1} \text { and } c_{1} \text { are odd. }
\end{aligned}
$$

