Apollonian circle packings, integers, and higher-dimensional sphere packings

Edna Jones
Rutgers University - New Brunswick

Math/Stat Colloquium Swarthmore College March 22, 2022

Apollonian circle packings: The construction

Given three mutually tangent circles with disjoint points of tangency, there are exactly two circles tangent to the given ones. (Proved by Apollonius of Perga.)

Apollonian circle packings: The construction

Figure: An Apollonian circle packing.

Apollonian circle packings

Label on circle:
bend $=1 /$ radius

Figure: An Apollonian circle packing.

Apollonian circle packings

Label on circle: bend $=1 /$ radius

What do you notice about the bends that you can see in this Apollonian circle packing?

Figure: An Apollonian circle packing.

Apollonian circle packings

Figure: An Apollonian circle packing.

Label on circle: bend $=1 /$ radius

What do you notice about the bends that you can see in this Apollonian circle packing?

They are all integers.

Apollonian circle packings

Figure: An Apollonian circle packing.

Label on circle: bend $=1 /$ radius

What do you notice about the bends that you can see in this Apollonian circle packing?

They are all integers.
Why?

"The Kiss Precise" by F. Soddy

Four circles to the kissing come. The smaller are the benter.
The bend is just the inverse of The distance from the centre.
Though their intrigue left Euclid dumb There's now no need for rule of thumb.

Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature,
 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come. The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb There's now no need for rule of thumb.

Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

$$
\text { bend }=1 / \text { radius }
$$

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of The distance from the centre.
Though their intrigue left Euclid dumb There's now no need for rule of thumb.

Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" by F. Soddy

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of The distance from the centre.
Though their intrigue left Euclid dumb
There's now no need for rule of thumb.
Since zero bend's a dead straight line And concave bends have minus sign, The sum of the squares of all four bends Is half the square of their sum.

Figure: An excerpt of "The Kiss Precise" by F. Soddy in Nature, 1936.

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\begin{aligned}
& b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2} \\
& \quad=\frac{1}{2}\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=0, b_{2}=b_{3}=1, b_{4}=4
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{aligned}
& b_{1}=0, b_{2}=b_{3}=1, b_{4}=4 \\
& (0+1+1+4)^{2}=6^{2}=36
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{aligned}
& b_{1}=0, b_{2}=b_{3}=1, b_{4}=4 \\
& (0+1+1+4)^{2}=6^{2}=36 \\
& 2\left(0^{2}+1^{2}+1^{2}+4^{2}\right)=2(18)=36
\end{aligned}
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=-11, b_{2}=21, b_{3}=24, b_{4}=28
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
b_{1}=-11, b_{2}=21, b_{3}=24, b_{4}=28
$$

$$
(-11+21+24+28)^{2}=62^{2}=3844
$$

Descartes circle theorem

Theorem (Descartes circle theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Example

$$
\begin{gathered}
-1124 \\
21 \\
(-11+21+24+28)^{2}=62^{2}=3844 \\
2\left((-11)^{2}+21^{2}+24^{2}+28^{2}\right)=2(1922)=3844
\end{gathered}
$$

Descartes circle theorem

Theorem (Descartes Circle Theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Fix b_{1}, b_{2}, b_{3}. What do I know about the solutions to b_{4} ?

Descartes circle theorem

Theorem (Descartes Circle Theorem, 1643)

If $b_{1}, b_{2}, b_{3}, b_{4}$ are bends of four mutually tangent circles, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}\right)^{2}=2\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right)
$$

Fix b_{1}, b_{2}, b_{3}. What do I know about the solutions to b_{4} ?
If b_{4} and b_{4}^{\prime} are solutions for fixed b_{1}, b_{2}, b_{3}, then, by the quadratic formula,

$$
b_{4}+b_{4}^{\prime}=2\left(b_{1}+b_{2}+b_{3}\right)
$$

Matrices and geometry

$$
b_{4}^{\prime}=2 b_{1}+2 b_{2}+2 b_{3}-b_{4}
$$

Matrix form:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}^{\prime}
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right)}_{M_{4}}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

Matrices and geometry

$$
b_{4}^{\prime}=2 b_{1}+2 b_{2}+2 b_{3}-b_{4}
$$

Matrix form:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}^{\prime}
\end{array}\right)=\underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right)}_{M_{4}}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

Figure: Four tangent circles and a reflection to a fifth circle.

Matrices and the Apollonian group

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), & M_{2}=\left(\begin{array}{cccc}
1 & & & \\
2 & -1 & 2 & 2 \\
& & 1 & \\
& & & 1
\end{array}\right), \\
M_{3}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & 2 & -1 & 2 \\
& & &
\end{array}\right), & M_{4}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
2 & 2 & 2 & -1
\end{array}\right) .
\end{array}
$$

Matrices and the Apollonian group

$$
\begin{array}{ll}
M_{1}=\left(\begin{array}{cccc}
-1 & 2 & 2 & 2 \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), & M_{2}=\left(\begin{array}{cccc}
1 & & & \\
2 & -1 & 2 & 2 \\
& & 1 & \\
& & & 1
\end{array}\right), \\
M_{3}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
2 & 2 & -1 & 2 \\
& & &
\end{array}\right), & M_{4}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
2 & & 1 & \\
2 & 2 & 2 & -1
\end{array}\right) .
\end{array}
$$

The Apollonian group $\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$ (set of products of $\left.M_{1}, M_{2}, M_{3}, M_{4}\right)$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Integrality of bends

The Apollonian group
$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Figure: An Apollonian circle packing.

Since we started with an integer vector of bends (namely, $(-11,21,24,28)^{\top}$), all of our bends are integers!

Integrality of bends

The Apollonian group
$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Since we started with an integer vector of bends (namely, $(-11,21,24,28)^{\top}$), all of our bends are integers!

Figure: An Apollonian circle packing.

Which integers appear as bends?

Integrality of bends

The Apollonian group
$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}\right\rangle$

- maps bends of an Apollonian circle packing to more bends of the packing,
- "generates" all bends of the packing from four bends, and
- sends integer vectors to integer vectors.

Since we started with an integer vector of bends (namely, $(-11,21,24,28)^{\top}$), all of our bends are integers!

Figure: An Apollonian circle packing.

Which integers appear as bends?

Are there any congruence or local obstructions?

Local obstructions modulo 24

Theorem (Fuchs, 2011)

For an integral, primitive Apollonian circle packing, there are local obstructions modulo 24 for the bends of the packing.
That is, the remainder of a bend divided by 24 is in a certain subset of remainders.
(The local obstructions depend on the packing.)

Example

each bend

$$
\equiv 0,4,12,13,16, \text { or } 21(\bmod 24)
$$

Admissible integers

Definition (Admissible integers for Apollonian circle packings)

Let \mathcal{P} be an integral Apollonian circle packing.
An integer m is admissible (or locally represented) if for every $q \geq 1$

$$
m \equiv \text { bend of some circle in } \mathcal{P}(\bmod q)
$$

(That is, for every $q \geq 1$, there exists a bend n of a circle in the packing such that m and n have the same remainders when dividing by q.)

Equivalently, m is admissible if m has no local obstructions.

Admissible integers

Theorem (Fuchs, 2011)

m is admissible if and only if m is in certain congruence classes modulo 24 (i.e., the remainder of n divided by 24 is in a certain subset of remainders).
(The congruence classes depend on the packing.)

Example

m is admissible \Longleftrightarrow

$$
m \equiv 0,4,12,13,16, \text { or } 21(\bmod 24)
$$

Strong asymptotic local-global conjecture

Conjecture (Graham-Lagarias-Mallows-Wilks-Yan, 2003)

The bends of a fixed primitive, integral Apollonian circle packing \mathcal{P} satisfy a strong asymptotic local-global principle. That is, there is an $N_{0}=N_{0}(\mathcal{P})$ so that, if $m>N_{0}$ and m is admissible, then m is the bend of a circle in the packing.

Example

> We think that if
> $m \equiv 0,4,12,13,16$, or $21(\bmod 24)$
> and m is sufficiently large,
> then m is the bend of a circle in the packing.
> We do not have a proof of this!

Why do we have a strong asymptotic local-global conjecture?

Theorem (Kontorovich-Oh, 2011)

The number of circles in an Apollonian circle packing \mathcal{P} with bend at most N (counted with multiplicity) is asymptotically equal to a constant times N^{δ}, where $\delta=$ the Hausdorff dimension of the closure of \mathcal{P}.

For Apollonian circle packings, we have

$$
\delta \approx 1.30568 \ldots
$$

Thus, we would would expect that the multiplicity of a given admissible bend up to N is roughly $N^{\delta-1} \approx N^{0.30568} \geq 1$, so we should expect that every sufficiently large admissible number to be represented.

The best we can do right now

Theorem (Bourgain-Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the Apollonian circle packing \mathcal{P}. Quantitatively, the number of exceptions up to N is bounded by $O\left(N^{1-\eta}\right)$, where $\eta>0$ is effectively computable.

The best we can do right now

Theorem (Bourgain-Kontorovich, 2014)

Almost every admissible number is the bend of a circle in the Apollonian circle packing \mathcal{P}. Quantitatively, the number of exceptions up to N is bounded by $O\left(N^{1-\eta}\right)$, where $\eta>0$ is effectively computable.

Extended by Fuchs, Stange, and Zhang to certain other circle packings.

Given four mutually tangent spheres with disjoint points of tangency, there are exactly two spheres tangent to the given ones.

Figure: Four tangent spheres.

Figure: Four tangent spheres with two additional tangent spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four tangent spheres with two more spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four tangent spheres with two more spheres.

Figure: More spheres.

Soddy sphere packings: The construction

Figure: Four tangent spheres.

Figure: Four tangent spheres with two more spheres.

Figure: More spheres.

Figure: A Soddy sphere packing.

Soddy sphere packings

Label on sphere: bend $=1 /$ radius

What do you notice about the bends that you can see in this Soddy sphere packing?

Figure: A Soddy sphere packing.

Soddy sphere packings

Figure: A Soddy sphere packing.

Label on sphere: bend $=1 /$ radius

What do you notice about the bends that you can see in this Soddy sphere packing?

They are all integers.
Why?

"The Kiss Precise" (Part 2)

To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

> F. Soddy.

Figure: The last stanza of "The Kiss Precise" by F. Soddy in Nature, 1936.

"The Kiss Precise" (Part 2)

To spy out spherical affairs
An oscular surveyor
Might find the task laborious, The sphere is much the gayer, And now besides the pair of pairs A fifth sphere in the kissing shares. Yet, signs and zero as before, For each to kiss the other four The square of the sum of all five bends Is thrice the sum of their squares.
F. SODDY.

If $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are bends of five mutually tangent spheres, then

$$
\begin{aligned}
& \left(b_{1}+b_{2}+b_{3}+b_{4}+b_{5}\right)^{2} \\
& \quad=3\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}+b_{5}^{2}\right)
\end{aligned}
$$

Figure: The last stanza of "The Kiss Precise" by F. Soddy in Nature, 1936.

Soddy quadratic form

If $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are bends of five mutually tangent spheres, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}+b_{5}\right)^{2}=3\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}+b_{5}^{2}\right)
$$

Fix $b_{1}, b_{2}, b_{3}, b_{4}$. What do I know about the solutions to b_{5} ?

Soddy quadratic form

If $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are bends of five mutually tangent spheres, then

$$
\left(b_{1}+b_{2}+b_{3}+b_{4}+b_{5}\right)^{2}=3\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}+b_{5}^{2}\right)
$$

Fix $b_{1}, b_{2}, b_{3}, b_{4}$. What do I know about the solutions to b_{5} ?
If b_{5} and b_{5}^{\prime} are solutions for fixed $b_{1}, b_{2}, b_{3}, b_{4}$, then, by the quadratic formula,

$$
b_{5}+b_{5}^{\prime}=b_{1}+b_{2}+b_{3}+b_{4}
$$

Matrices and geometry

$$
b_{5}^{\prime}=b_{1}+b_{2}+b_{3}+b_{4}-b_{5}
$$

Matrix form:

$$
\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}^{\prime}
\end{array}\right)=\underbrace{\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 1 & \\
1 & 1 & 1 & 1 & -1
\end{array}\right)}_{M_{5}}\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right)
$$

Matrices and geometry

$$
b_{5}^{\prime}=b_{1}+b_{2}+b_{3}+b_{4}-b_{5}
$$

Matrix form:

Figure: Five tangent spheres and a reflection to a sixth sphere.

Matrices and the Soddy group

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 1 & 1 \\
& 1 & & & \\
& & 1 & 1 & \\
& & & & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{lllll}
1 & & & & \\
1 & -1 & 1 & 1 & 1 \\
& & 1 & & \\
& & & 1 & \\
& & &
\end{array}\right), \quad M_{3}=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
1 & 1 & -1 & 1 & 1 \\
& & & 1 & 1
\end{array}\right), \\
& M_{4}=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
1 & 1 & 1 & -1 & 1 \\
& & & & 1
\end{array}\right), \quad M_{5}=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Matrices and the Soddy group

$$
\begin{aligned}
& M_{1}=\left(\begin{array}{ccccc}
-1 & 1 & 1 & 1 & 1 \\
& 1 & & & \\
& & 1 & 1 & \\
& & & & 1
\end{array}\right), \quad M_{2}=\left(\begin{array}{lllll}
1 & & & & \\
1 & -1 & 1 & 1 & 1 \\
& & 1 & & \\
& & & 1 & \\
& & &
\end{array}\right), \quad M_{3}=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
1 & 1 & -1 & 1 & 1 \\
& & & 1 & 1
\end{array}\right), \\
& M_{4}=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
1 & 1 & 1 & -1 & 1 \\
& & & & 1
\end{array}\right), \quad M_{5}=\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
1 & 1 & 1 & 1 & -1
\end{array}\right)
\end{aligned}
$$

The Soddy group $\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\rangle$ (set of products of $\left.M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right)$

- maps bends of a Soddy sphere packing to more bends of the packing,
- "generates" all bends of the packing from five bends, and
- sends integer vectors to integer vectors.

Integrality of bends

The Soddy group

$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\rangle$

- maps bends of a Soddy sphere packing to more bends of the packing,
- "generates" all bends of the packing from five bends, and
- sends integer vectors to integer vectors.

Since we started with an integer vector of five bends (namely, $\left.(-11,21,25,27,28)^{\top}\right)$, all of our bends are integers!

Integrality of bends

The Soddy group

$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\rangle$

- maps bends of a Soddy sphere packing to more bends of the packing,
- "generates" all bends of the packing from five bends, and
- sends integer vectors to integer vectors.

Since we started with an integer vector of five bends (namely,
$\left.(-11,21,25,27,28)^{\top}\right)$,
all of our bends are integers!

Integrality of bends

The Soddy group

$\Gamma:=\left\langle M_{1}, M_{2}, M_{3}, M_{4}, M_{5}\right\rangle$

- maps bends of a Soddy sphere packing to more bends of the packing,
- "generates" all bends of the packing from five bends, and
- sends integer vectors to integer vectors.

Since we started with an integer vector of five bends (namely,
$\left.(-11,21,25,27,28)^{\top}\right)$, all of our bends are integers!

Figure: A Soddy sphere packing.

Which integers appear as bends?

Are there any congruence or local obstructions?

Local obstructions modulo 3

Lemma (Kontorovich, 2019)

For an integral, primitive Soddy sphere packing \mathcal{P}, there is an $\varepsilon(\mathcal{P}) \in\{1,2\}$ such that each bend of the packing is

$$
\equiv 0 \text { or } \varepsilon(\mathcal{P})(\bmod 3)
$$

Example

$$
\text { each bend } \equiv 0 \text { or } 1(\bmod 3)
$$

Admissible integers

Definition (Admissible integers for Soddy sphere packings)

Let \mathcal{P} be an integral Soddy sphere packing.
An integer m is admissible (or locally represented) if for every $q \geq 1$

$$
m \equiv \text { bend of some sphere in } \mathcal{P}(\bmod q)
$$

(That is, for every $q \geq 1$, there exists a bend n of a sphere in the packing such that m and n have the same remainders when dividing by q.)

Equivalently, m is admissible if m has no local obstructions.

Admissible integers

Theorem (Kontorovich, 2019)

m is admissible in a primitive integral Soddy sphere packing \mathcal{P} if and only if

$$
m \equiv 0 \text { or } \varepsilon(\mathcal{P})(\bmod 3)
$$

where $\varepsilon(\mathcal{P}) \in\{1,2\}$ depends only on the packing.

Example

m is admissible \Longleftrightarrow
$m \equiv 0$ or $1(\bmod 3)$

A strong asymptotic local-global principle

Theorem (Kontorovich, 2019)

The bends of a fixed primitive integral Soddy sphere packing \mathcal{P} satisfy a strong asymptotic local-global principle.
That is, there is an $N_{0}=N_{0}(\mathcal{P})$ so that, if $m>N_{0}$ and m is admissible, then m is the bend of a sphere in the packing.

Example

If $m \equiv 0$ or $1(\bmod 3)$ and m is sufficiently large, then m is the bend of a sphere in the packing.

Why should we have a strong asymptotic local-global principle?

Theorem (Kim, 2015)

Let \mathcal{P} be a certain type of $(n-1)$-sphere packing (called a Kleinian sphere packing) in dimension $n \geq 2$.
The number of spheres in \mathcal{P} with bend at most N (counted with multiplicity) is asymptotically equal to a constant times N^{δ}, where $\delta=$ the Hausdorff dimension of the closure of \mathcal{P}.

For Soddy sphere packings, we have

$$
\delta \approx 2.4739 \ldots
$$

Thus, we would would expect that the multiplicity of a given admissible bend up to N is roughly $N^{\delta-1} \approx N^{1.4739} \geq 1$, so we should expect that every sufficiently large admissible number to be represented.

Strong asymptotic local-global principles

Goal: Prove strong asymptotic local-global principles for certain integral Kleinian sphere packings, that is, prove:
If m is admissible and sufficiently large, then m is the bend of an $(n-1)$-sphere in the packing.

Definition (Admissible integers)

Let \mathcal{P} be an integral Kleinian sphere packing.
An integer m is admissible (or locally represented) if for every $q \geq 1$

$$
m \equiv \text { bend of some }(n-1) \text {-sphere in } \mathcal{P}(\bmod q)
$$

My research

Goal: Prove strong asymptotic local-global principles for bends of certain integral Kleinian sphere packings in dimension at least 3.

Figure: An integral Soddy sphere packing. Image by Nicolas Hannachi.

Figure: An integral Kleinian (more specifically, an orthoplicial) sphere packing. Image by Kei Nakamura.

Figure: A fundamental domain of an integral Kleinian sphere packing. Image by Arseniy (Senia) Sheydvasser.

Illustrations credits

Besides the illustrations previously credited and a few Apollonian circle packing construction illustrations created by the presenter, the illustrations for this talk came from the following papers:

- Jean Bourgain and Alex Kontorovich, "On the local-global conjecture for integral Apollonian gaskets," Inventiones mathematicae, volume 196, pp. 589-650, 2014.
- Alex Kontorovich, "From Apollonius to Zaremba: Local-global phenomena in thin orbits," Bulletin of the American Mathematical Society, volume 50, number 2, pp. 187-228, 2013, https://www.ams.org/journals/bull/2013-50-02/ S0273-0979-2013-01402-2/.
- Alex Kontorovich, "The Local-Global Principle for Integral Soddy Sphere Packings," Journal of Modern Dynamics, volume 15, pp. 209-236, 2019, https:
//www.aimsciences.org/article/doi/10.3934/jmd. 2019019.

Thank you for listening!

Proof outline for Bourgain's and Kontorovich's Apollonian circle packing result

(1) Show that the automorphism group of the Apollonian circle packing contains the congruence subgroup $\Gamma(2)$ of $\mathrm{PSL}_{2}(\mathbb{Z})$, and $\Gamma(2)$ is the stabilizer of a particular circle. This implies that the set of bends contains primitive values of a shifted binary (2-variable) quadratic form. (Sarnak, 2007)

Proof outline for Bourgain's and Kontorovich's Apollonian circle packing result

(1) Show that the automorphism group of the Apollonian circle packing contains the congruence subgroup $\Gamma(2)$ of $\mathrm{PSL}_{2}(\mathbb{Z})$, and $\Gamma(2)$ is the stabilizer of a particular circle. This implies that the set of bends contains primitive values of a shifted binary (2-variable) quadratic form. (Sarnak, 2007)
(2) The shifted binary quadratic form gives you enough to work with so that you can apply the circle method (with some other tools, including spectral theory, used in the major arc and minor arc analyses) to obtain an "almost all" statement.

Proof outline for Kontorovich's Soddy sphere packing

 result(1) Show that the Soddy group contains a congruence subgroup of $\mathrm{PSL}_{2}\left(\mathbb{Z}\left[e^{\pi i / 3}\right]\right)$, and this congruence subgroup maps a particular sphere to itself. This implies that the set of bends contains "primitive" values of a shifted quaternary (4-variable) quadratic form.

Proof outline for Kontorovich's Soddy sphere packing

 result(1) Show that the Soddy group contains a congruence subgroup of $\mathrm{PSL}_{2}\left(\mathbb{Z}\left[e^{\pi i / 3}\right]\right)$, and this congruence subgroup maps a particular sphere to itself. This implies that the set of bends contains "primitive" values of a shifted quaternary (4-variable) quadratic form.
(2) The shifted quaternary quadratic form gives you enough to work with so that you can quote the circle method to show that every sufficiently large admissible number is represented by the quadratic form without the primitivity restriction.

Proof outline for Kontorovich's Soddy sphere packing

 result(1) Show that the Soddy group contains a congruence subgroup of $\mathrm{PSL}_{2}\left(\mathbb{Z}\left[e^{\pi i / 3}\right]\right)$, and this congruence subgroup maps a particular sphere to itself. This implies that the set of bends contains "primitive" values of a shifted quaternary (4-variable) quadratic form.
(2) The shifted quaternary quadratic form gives you enough to work with so that you can quote the circle method to show that every sufficiently large admissible number is represented by the quadratic form without the primitivity restriction.
(3) Show that the singular series (with the primitivity restriction) is bounded away from zero when m is admissible.

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{Isom}\left(\mathcal{H}^{n+1}\right)$.

Figure: Apollonian circle packing as the limit set of Γ.

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{Isom}\left(\mathcal{H}^{n+1}\right)$.

- Action of Isom $\left(\mathcal{H}^{n+1}\right)$ extends continuously to $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$, the boundary of \mathcal{H}^{n+1}.

Kleinian sphere packings

Definition (Kleinian sphere packing)

An $(n-1)$-sphere packing \mathcal{P} is Kleinian if its limit set is that of a geometrically finite group $\Gamma<\operatorname{Isom}\left(\mathcal{H}^{n+1}\right)$.

- Action of Isom $\left(\mathcal{H}^{n+1}\right)$ extends continuously to $\widehat{\mathbb{R}^{n}}=\mathbb{R}^{n} \cup\{\infty\}$, the boundary of \mathcal{H}^{n+1}.
- 「 stabilizes \mathcal{P} (i.e., Γ maps \mathcal{P} to itself).

Theorem in progress

Theorem (J., 2022+, in progress)

Let \mathcal{P} be a primitive integral Kleinian $(n-1)$-sphere packing in $\widehat{\mathbb{R}^{n}}$ with an orientation-preserving automorphism group Г of Möbius transformations.
(1) Suppose that there exists an $(n-1)$-sphere $S_{0} \in \mathcal{P}$ such that the stabilizer of S_{0} in Γ contains a congruence subgroup of $\mathrm{PSL}_{2}\left(\mathcal{O}_{K}\right)$, where K is an imaginary quadratic field and \mathcal{O}_{K} is the ring of integers of K. This condition implies that $n \geq 3$.
(2) Suppose that there is an $(n-1)$-sphere $S_{1} \in \mathcal{P}$ that is tangent to S_{0}.
(3) Suppose that \mathcal{O}_{K} is a principal ideal domain.

Then every sufficiently large admissible integer is the bend of an ($n-1$)-sphere in \mathcal{P}.

