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ABSTRACT. If I o~ V43 @ V3 is a direct sum of vector spaces, we may associate to any linear

fll f12
f21 fZZ

generalize this to the case where L is an arbitrary group extension, determine the functional
equations satisfied by the f;; and how such matrices multiply. We also carry this out for f a
derivation.

endomorphism f of L a 2 X 2 matrix ( ), where f;;: V; — Vj are linear maps. We

I. ENDOMORPHISMS

Suppose we have a short exact sequence
0N 5L L ES 0

of lie algebras, together with a cross-section s: E — G for j, i.e., jos = 1g, and a projection
t: G — N along s, i.e., toi =1y, tos =0, 10t + soj = 1;. We write this in diagrammatic
form as follows:

i J
0O0—-—NZ2LzZFEF-—-0.
1 s

Neither s nor ¢ are necessarily homomorphisms of lie algebras, and their failure to be such
is measured by a 2—cocycle o defined by means of s as

o(y1,92) = t(s([y1,92]) — [s(v1), s(y2)]) or s([y1,92]) = [s(y1), 8(y2)] + i(o(y1,32)) -

We also have a function D: E x N — N defined as

D(y,z) = Dy(z) =z = #([s(y),4(2)]) -

If we look at the map y — D, we do not quite get an lie algebra homomorphism from E to
the lie algebra Der(N), the lie algebra of derivations of N but miss by the 2—cocycle o.
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Lemma 1.1. For y;,y» € E,z € N, we have
D([y1>y2]’w) = [Dwayz] (SB) + [U(ylay2)7m] .

Proof.

D(fyr, 2 2) = 1([s([y1,321),i(2)])

= t([[s(y1), s(v2)] + i(o(y1,92)),3(2)])

= t([[s(v1), s(v2)],i(2)]) + [o(31,92), ]

= t([s(y1), [s(y2),i(2)]]) =t ([s(2); [s(wn),i(2)]]) + [o(y2,92), 2]

= t([s(31), (01)[s(y2),i(2)]]) — t ([s(x2), Got)[s(vn),i(2)]]) + [o(y1,2), 2]
=t ([s(y1),2(¢([s (yz i(@)))]) — ¢ ([s(y2), i(#([s(v1), i (@))]) + [o(y1,2), ]

- Dy1 (Dyz (w)) ( yl(w)) + [U(y17y2)7w]
= [DyuDyz] (CB) + [J(ylayZ)aw]
since t is a homomorphism when restricted to N.

Lemma 1.2. For yi,ys € E,
o(y1,s[yz,ys)) + o(yz, [ys, v1]) + o(ys, [y1,y2]) + o(y2,¥3)" + o(ys, 91)"* + o(y1,42)"° =

Proof.

This is well known. See, e.g., [H2] or [Jal]
Lemma 1.3. For ¢1,92 € L,

t(lg1,92]) = [t(g1), t(g2)] + t(g2)" 9" — £(g1 )19 — o (5(g1),5(g2)) -

Proof.

#(lg1,92]) = t([(iot + s05)(g1), (ot + s05)(g2)])
= t([(10t)(g1), (F0t)(g2)]) + £ ([(Fot)(g1): (s05)(92)])
+1([(s07)(91), (i0t)(g2)]) + £ ([(s05)(g1); (s05)(92)])
= (tod)([t(g1), #(g2)]) — t([(s04)(g2), (i0t)(g1)]) + #([(s05)(g1), (¢0t)(92)})
+t(s([5(91),3(92)]) — i(o(i(92), 5(92))))
= [t(g1), t(g2)] + t(92)" ") — 1(91)") — o(5(91),3(g2))
Now for f: L — L an endomorphism, define the coordinates fi; for 1 <i,5 <2 of f as
follows:
fi1 =tofot: N - N
fo1 =jofoi: N - E
fio =tofos: E— N
fop =jofos: E— E.
Then
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Theorem 1.1. The f;; satisfy the following functional equations:

(1.1)
fi1([z1, z2]) = [f11(21), f11(z2)] + fi1(zz)P21 (20 — f11(21)722%2) — o(fo1(21), f21(22))

(1.2)
fa1([z1, 22]) = [fo1(21), for(z2)]

(1.3)

Fr2([y1,v2]) = [fr2 (1), fr2(y2)] + Fiz (g2 )22 00 — F12(¥1)722092) — o (fa3(y1), fo2(y2)) + fr1(o(y1, v2))
(1.4)

faa([y1, y2]) = [fe2(v1), f22(y2)] + f21(o(y1,92))

Proof.

Fi1([z1, 22]) = t((F 01)([z1, =2])) = t([(f 0i)(=1), (f0i)(=2)])
= [(tofoi)(zn), (to foi)(wa)] + (tofoi)(wg) T DD
— (tofod)(w1)UoFoD(2) — o((jo foi)(m1), (o foi)(x2))
= [f11(z1), fr1(e2)] + fi1 (2) 22070 — f11(21)72122) — o (fr1 (1), fo1(22))
fai([e1, 22]) = (jofoi)([z1, z2])
= [(jofoi)(z1), (jofoi)(z2)] = [far(21), far(z2)]
Fr2([y1, y2]) = (tofos)(lyr,v2]) = (tof) ([s(y1), s(y2)] + (io0)(y1,v2))
=t ([(fos)(y1), (Fos)(y2)] + (foioo)(y1,¥2))
= [(tofos)(y1), (tofos)(y2)] + (tof os)(y2) o oDWL) — (tofos)(ys)IF)v2)
s((jofos)(y1), (Fofos)(yz)) + (tofoioo)(y1,y2)
= [f12(v1), frz (y2)] + fra (y2)T22¥0) — F12(y1)722092) — o(faz(y1), a2 (v2)) + f11(o(y1,92))
Faa([y1, w2]) = (Gofos)([y1,v2]) = (Fof) ([s(y1), s(y2)] = i(o(v1,92)))
[(Gofos) (1), (Fofos)(y2)] + (jofoi)(a(yr,y2))
[faz(y1), f22(y2)] + f21 (o (y1,¥2))

Theorem 1.2.
f=iofi10t +sofagot+i0fi20j + s0fa0]

Proof.

f = (tot +soj)ofo(iot + soj)
= joto fosot + sojofoiotioto fosoj+ sojofosog
= f =10f110t 4 s0fa10t +40f1305 + 50 f2207

Theorem 1.3. If we define f as in theorem 1.2, where the f;; satisfy the functional equa-
tions in theorem 1.1, then f is an endomorphism of L.

Before we prove this, we would do well to separate our task into two stages. First suppose
that we have an endomorphism f: I — L. Then define the two maps f; = foi: N — L
and f, = fos: E — L. f; is a homomorphism and f, satisfies
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Lemma 1.4.

(1.5) F2([y1,92]) = [f2(v1), f2(y2)] + fr(o(y1,v2))

Proof.

Fo(ly1,92]) = (Fos)([yr,y2]) = f([s(v1),8(y2)] + i(o(y1,92)))
= [(fos)(w1), (fos)(y2)] + (foi)(o(y1,y2))
= [f2(y1), f2(y2)] + fu(o(y1,92))

Lemma 1.5. f = fiot+ fs07.
Proof.

f= fo(iot—|—soj) = foiot + fosoj = fiot + fa0j
Conversely,

Lemma 1.6. If we define f = fiot + fa0j, where fi is a homomorphism and fo satisfies
(1.5), then f is an endomorphism of L.

Proof.

f(lg1,92]) = (frot)(lg1,92]) + (f205)([91,92])

= 1 (91), )] + g2V ) — H51)7 4 = o(i(31),3(92)))
+[(f205)(91), (F205)(g2)] + f1(o(5(91),3(g2)))

= [(frot)(91), (frot)(g2)] + F([(s07)(g1), (iot)(g2)]) — f ([(s07)(g2)s (208)(92)])
— f1(o(3(91),3(92))) + [(£205)(g1), (f205)(g2)] + f1(o(3(91):5(92)))

= [(f1o)(91), (frot)(g2)] + [(£205)(g1), (f10t)(g2)]
[(f10t)(91), (f205)(g2)] + [(f205)(g1), (f205)(g2)]

= [f(gl)a f(gz)]

Next, suppose we have a homomorphism f;: N — L. Then fi; =tofi: N - N and
fo1 = jofi: N — E must satisfy equations (1.1),(1.2) respectively and

Lemma 1.7. f; =10f11 + s0fa
Proof.

fi = (tot +soj)ofi =totofi +sojofy =i0fi1 +s0fa .

Conversely,
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Lemma 1.8. If we define f; = (10 f11)(sof21), where fi1, fa1 satisfy (1.1),(1.2), then fy is

a homomorphism.

Proof.

fi(ler, z2]) = (o fu)([z1, 22]) + (80 for )([21, 22])
=1 ([f11(€81),f11($2)] + fll(mz)f“(ml) - f11(«"61)f21($2) - U(le(wl)afm(wz)))

+ s([for (1), fa1(z2)])
= [(d0 fi1)(z1), (0 f11)(2)] + [s0 f21(@1), (40 f11)(22)]
— [(s0far)(®2), (10 fir)(z1)] — (i00)(far(z1), for(z2))
+[(s0fa1)(@1),(s0 fa1)(22)] + (200)(fo1(21), for(z2))
= [(20f11 + s0 fa1)(z1), (20 f11 + s0 far)(z2)]
== [f1($1),f1(582)]

Now suppose we have a map f3: F — L satisfying (1.5). Then fi2 =tofs: E — N and
fo2 = jof2: E — F satisfy equations (1.3),(1.4) and

Lemma 1.9. fg = ’I:Oflz -+ SOfZZ
Proof.
Similar to the proof of lemma 1.7.

Lemma 1.10. If we define fo =10 f12 + 80 fas, where fiz, fos satisfy equations (1.3),(1.4),
then fo satisfies (1.5)

Proof.

fa([y1, y2]) = (zof1z + sofa2)([y1, ¥2])

(f12([y1, y2])) + s (Fa2 ([y1, v2]))
=1 ([flz(y1),f12(yz)] + frz(y2)f22(¥0) - flz(yl)f“(“))

— o(fa2(y1), fa2(v2) + fr1(o(y1,92)))
= (4o f12)(y1), (io fr2)(y2)] + [(s0 f22)(w1), (40 f12)(y2)] — [(s0f22)(¥2), (G0 f12)(v1)]
— (t00)(f22 (y1), faz(v2)) + (G0 f11)(o(y1, ¥2)) + [(s0f22)(y1), (50 f22)(v2)]
+ (Foo)(fa2 (y1), fa2(v2)) + (sofar)(o(y1, y2))
= [(d0 f12)(w1), (1o fr2)(w2)] + [(i0 f12)(y1), (s f22) (v2)]
+ [(s0 fa2)(y1), (d0 f12)(y2)] + [(s0f22)(w1), (s0 f22)(y2)]
= [fa(y1), f2(v2)] + f1(o(y1,y2)) -

We may combine lemmas 1.4 — 1.10 to prove theorem 1.3, since theorem 1.2 says that
f=fiot+ fr05.

Now let us associate the 2 X 2 matrix (

fin fi2

far foz
f of L. We may let the above matrix operate on the set N x E as

(B ) G) = (D)

If we have two endomorphisms f, g of L, how do we compute the matrix of fog?

) of functions f;; to an endomorphism




6 A. M. DUPRE

Theorem 1.4. If fu iz and [ 9 912 are the matrices of endomorphisms f,g
far fa2 921 922

of L respectively, then the matriz of fog is
fi10g11 + f120921  f110912 + f120922
fo10g12 + f220922  f210g12 + fa2 0922 '
Proof.

All the maps f;; are linear maps of vector spaces.

2. DERIVATIONS

If we assume now that f is a derivation of L and define the functions f;; as before, we
get
Theorem 2.1. The fi; satisfy the following functional equations:
(2.1)

_ faa(wa) _  fa1(z2)

fii([z1, 22]) = [fra(zr), 22] + [21, fra(@2)] + 21 eH
(2.2)

far([z1,22]) = 0

(2.3)
Fro([y1,92]) = frz2(y2)?* — fr2(1)? + fra(o(y1,92)) — (0(fe2(y1),92) + a(y1, f22(y2)))

(2.4)
Fa2([y1,92]) = [foz (y1)s v2] + [v1, 2 (y2)] + for(o(y1,92))
(2.5)
fui(2?) = [fra(y), 2] + 272 + fir(e)
(2.6)

fa1(2?) = [y, far(z)]
Theorem 2.2.
f=iofi10t +sofagot+10fi305 + s0fam0j
Proof.
The same as theorem 1.2.

Theorem 2.3. If we define f as in the previous theorem, where the f;; satisfy (2.1)—(2.6),
then f is a derivation.

As in the proof of theorem 1.3, we split our task in two and start with
Lemma 2.1. If f: L — L is a derivation, define
fi=foi: N> L
fo=fos: E— L
then f1, f2 satisfy the following functional equations:
(2.7) f([z1,22]) = [fi(e1),i(z2)] + [i(21), f1(=2)]
(2.8) Fally1,92]) = [f2(y1), s(y2)] + [s(v1), fa(y2)] + fr(o(y1,92))
(2.9) f(e?) = [fa(y),i(2)] + [s(y), f1(2)]
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Lemma 2.2. f= fiot+ fy05
Proof.

The same as Lemma 1.5.

Lemma 2.3. If we define f = fiot + faoj, where fi, fa satisfy (2.7) — (2.9), then f is a

derivation.

Proof.

f(lg1,92)) = (frot)(lg1,92]) + (f205)([g1,92])
= fi ([t(gl),t(gz)] +t(g2)79) —#(g1)79?) — U(J(gl),J(gz)))

+ f2([5(91),7(92)])
= [(f101)(g1), (i0t)(g2)] + [(Zot)(g1), (f10t)(g2)]
[(f205)(91), (i0t)(g2)] + [(s05)(91): (fr07)(g2)]

— [(f205)(g2), (i0t)(g1)] = [(s05)(g2), (f107)(g1)]
— (froo)(5(91),5(g2))
+[(f205)(g1), (s05)(g2)] + [(s05)(g1), (f205)(g2)]
+ (froo)(5(¥1),3(y2))
= [f(91), 92 + 91, f92)]

We now state a sequence of lemmas necessary to prove theorem 2.3 and omit the fairly
straightfoward proofs, which, as is to be expected, involve similar algebraic manipulations
as have been presented above.

Lemma 2.4. Suppose we have two maps fi: N — L and fo: E — L satisfying (2.7)—(2.9).
Then if we define

fll :jOfll N - E
fo1=jofi: N - E
fia=tofs: E— N
foa=jofs: E—E
the fi;; satisfy equations (2.1) — (2.6).
Lemma 2.5. If we define

fi=10f11 +s0fa
f2 =t0fi2+s0fa,

where the fi; satisfy (2.1) — (2.6), then f1, f2 satisfy (2.7) — (2.9).

It is now a simple matter to combine lemmas 2.1 — 2.5 to prove theorem 2.3.
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3. APPLICATIONS

Let h,, be the real Heisenberg lie algebra of dimension 2n + 1 over IR, given by a nonde-
generate IR—valued skew 2—form on IR2™. Such a form is automatically a 2—cocycle and
gives a central extension

0T -5 h, LIR™ 0.

Suppose that f is an endomorphism of h,. Since IR is the center of hy, f21 = 0, fi1, fa2
are endomorphisms of IR, IR?™ respectively, and f1» satisfies

(3~1) f12([?/17y2]) - [flz(yl)afw(yz)] = f11(0'(y1,y2)) - U(fZZ(y1)7f22(y2)) .

The left side of this is zero, since IR, IR?™ are each abelian, and thus fi, is an arbitrary
linear map IR?" — IR.. Since the right side is zero, this says that if fi1 =0 then fon =0,
because of the nondegeneracy of . If fi; > 0 then f;; must be a scalar multiple +/f11 of
a symplectic map fi, with respect to . If f11 < 0, then fz3 must be v/ —Af3s, Where f,
is as above, and o(7(z),7(y)) = a(z,y). If we consider how the matrices multiply, we can
gather all these results into

Theorem 3.1. The monoid of endomorphisms of h,, has a closed ideal consisting of ele-

ments whose matrices are of the form f(l]z and is thus homeomorphic to IR?™ with

0
the zero multiplication. The group of units of this monoid is the group of automorphisms of
h,, and is a semidirect product of the closed normal subgroup of elements whose matrices are

of the form (1

0
A 0 on ;o : .
AT \/Wf’z , where @15 € R, X #£ 0, f3, s o symplectic map with respect to o
2

f__ll2> by the closed subgroup of elements whose matrices are of the form

and o(7(z),7(y)) = —o(z,y).
The automorphism group is homeomorphic to Zy x IR** ™1 x Sp(n,IR) and thus has two

connected components. The endomorphism monoid thus is connected and is homeomorphic
to IR?>"+1 x Sp(n,IR)

Theorem 3.2. The lie algebra of derivations of hy, is a semidirect product of an ideal whose

elements have matrices of the form (g f(l)Z) , where fi» € IR?™ by an subalgebra which

is a semidirect product of an ideal whose elements have matrices of the form (0 0 ),

0 fo

where fag satisfies

(3:2) o(f22(y1),y2) + o(y1, faa(y2)) =0

0

0 Aféz)’ where A # 0 and

and a subalgebra whose elements have matrices of the form (

f4 satisfies

(3.3) o(Fr2(y1),92) + o(y1, f22(y2)) = o(y1,92) -

Proof.
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Of the equations (2.1) — (2.6) only (2.3),(2.4) impose any conditions on the fi;. (2.3)
becomes

(3.4) o(f22(1),42) + o (y1, fo2(y2)) = frao(y1,92)

and (2.4) forces f2; = 0 because of the nondegeneracy of o.Thus the matrices are all upper
triangular, and the rules of matrix multiplication together with (3.4), yield the assertion of
the theorem.

The difficulty, in general, in explicitly solving the obvious equations distinguishing the
automorphisms from the endomorphisms, lies in the fact that, even in the case of a direct
product of abelian groups, their automorphism groups are not abelian. Consider the prob-
lem, for example, in trying obtain a closed form for the inverse of an n x n matrix of real
numbers which has been divided into four blocks, reflecting the decomposition of IR™ into
the direct product of two subspaces, in terms of the four matrices constituting the blocks.

We are now working on extending these calculations to three-step nilpotent lie algebras as
a first step toward calculating in a straightfoward way the automorphisms and derivations
of lie algebras by means of the technique introduced here of introducing coordinates by
assigning them 2 x 2 matrices of linear maps satisfying equations which ensure that the
combined map is an automorphism, endomorphism or derivation.

We are also working out the situation in case there is a tower of ideals, and we want to
associate larger sized matrices with endomorphisms of lie algebras with such towers.

After this paper had been written, I became aware of the paper of Hsu [H1], in which
similar techniques are introduced for the case of a semidirect product of groups. In that
paper, the automorphism group of a holomorph of a perfect group is computed.
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