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ABSTRACT. The problem of determining when two central extension groups E1,E; of Hp in
0 R —>E —H, +1and 0 = IR — E; — H, — 1 are isomorphic as Lie groups is
reduced to the classical problem of the equivalence of pencils of antisymmetric matrices. A
technique of cohomologically trivializing trilinear functions from IR? to JR is used to explicitly
calculate 2-cocycles on Hy which are not cohomologous to bilinear ones, thus providing a
counterexample to a recent paper of Moskowitz, although for the higher groups Hy,, n > 2,
all IR-valued 2-cocycles are cohomologous to bilinear ones. Finally, a generalization, from
semidirect products to arbitrary extensions, of a set of cocycle equations of Mackey and Tahara
is derived and solved in the particular case of the Heisenberg group H,. Consequences for the
projective representation theory of H, are given.

I. INTRODUCTION

In this paper the following question is completely answered for » = 1 in theorem 8.3:
When are two one-dimensional central extensions

1-IR—-E—H,—1

of the (2n+1)-dimensional Heisenberg group H, by IR isomorphic as groups, and not neces-
sarily as extensions? It should be remarked here that this terminology slightly conflicts with
another, which calls E an extension of IR by H,,. For n > 1, this is reduced to a classical
problem in pencils of antisymmetric matrices in theorem 9.12. Here H,, is defined to be the
unique central extension

0—>R —H, -IR?™ -0

which does not contain any line IR as a direct factor. This condition of not containing IR
as a factor is equivalent to the 2-cocycle of the extension, which can always be taken to be
alternating bilinear ([Kl], theorem 7.1), being nondegenerate. The uniqueness follows from
the fact that every pair of nondegenerate such forms are congruent in Gl(n,IR), the outer
automorphism group of IR?™.

This type of question is the mathematical core of a cohomological treatment of two-
and three dimensional crystallography. In [Sch], one is first interested in classifying, up to
congruence as defined in [McL], p.64, the extensions
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12" >E-—-0-=>1

of a finite orthogonal group O, also known by crystallographers as a point group, by a free
abelian group Z™ of rank two or three respectively, also known as a translation group, where
O acts on Z™. The equivalence classes of such extensions under congruence are classified
by H2(0,Z™), the second Eilenberg-MacLane cohomology group as defined in [Mac}, p.115.
Secondly, it is also of interest to answer the question of when two extensions E,E' are i
somorphic by an isomorphism 8: E — E' which is not required to respect the structures of
E.,E' as extensions. The answer to this more interesting and significantly harder question is
that there are 17 such groups in the plane, 230 in three dimensions, and 4783 in four (see
[Sch], preface).

A careful study of the extensions of the Heisenberg group have interesting applications in
the theory of optical wave guides, which includes the technologies of lasers and fiber optics.
This is explained in [S].

The Heisenberg group is the simplest nonabelian Lie group and as such, its ordinary
representation theory has been studied extensively. For further bibliography see the survey
articles [H] and [R]. In a forthcoming paper, I will show how the results of the present paper
can be applied to the projective representation theory of the Heisenberg group, which is
what [R] and [S] are really studying.

In order to address this question for the Heisenberg groups, it is convenient to have
explicit cocycle representatives for the cohomology classes in H?(HIR), the second Moore
cohomology group ([Mol], p.42), based on Borel measurable cochains, which classify all
locally compact central extensions of H,, by IR. We find these representatives in theorems
3.10,9.4. It is shown in [Dul], p.257 and [Wg], theorem 3, that we may replace the Moore
groups by H2(H,,IR), cohomology based on continuous cochains. In [Mst], theorem 3.4.1, it
is shown that each of these groups is isomorphic to H2 (H,,JR), cohomology based on C'*
cochains.

We show in theorems 3.10,9.4 that we may reduce still further the class of functions which
may serve as representatives of a cohomology class, to either alternating bilinear functions
o: H, x H, — IR in case n > 2, or in the case of H;, polynomials in six variables, the
parameters of Hy, at least one term of which is of degree two in one variable and linear in
the others, the remaining terms being linear in all variables. This theorem, which may be
thought of as a cohomological multilinearizability stability result, answers a question raised
by a mistake in [Mos], theorem 4.3, where it is claimed to have been proved for a class of
groups containing H,, that H2(H,,JR) may always be calculated with bilinear functions.
We give a counterexample to this assertion by exhibiting in theorem 3.1 a 2-cocycle o on
H; which is not cohomologous to a bilinear one. Also, this same cocycle has the property
that its transpose o*(g,g') = a(g',g) is not a 2-cocycle, contrary to lemma 1.2 of [Mos].

The method of calculating explicit cocycle representatives is an elaboration to general
group extensions of one developed by Mackey in [Mal], theorem 9.4, for semidirect products
of locally compact separable groups, hereafter known as polonais locally compact groups,
polonais meaning complete separable metrizable. This involves showing how a 2-cocycle on
a group extension can be built up from three types of functions, each of which arises as the
restriction of o to one of three appropriately defined subsets (theorem 4.1). These three
types of functions jointly satisfy certain functional equations ((4.4) — (4.7)), which are then
solved in the case of H,, in theorems 3.10,9.4 . It is also further of interest to determine
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when such a cocycle is cohomologous to zero, and this is done in theorems 4.54.8.

The determination of H2(H,,IR) in terms of an explicit description of the type of poly-
nomial cocycles which are necessary and sufficient to compute this group is new, and part
of a continuing program ,begun by Kleppner in [Kl], who showed in theorem 4.1, for a large
class of locally compact abelian polonais groups A, which includes discrete, compact and
connected such, that every Borel measurable 2-cocycle o on A with values in the circle
group T, A acting trivially on T, is cohomologous to a continuous bilinear function, and
that HZ(A,T) is isomorphic to the group of these bilinear functions divided by the group of
symmetric such.

Continuing this program, we showed in [Dul], p.255, for any polonais locally compact
abelian group A acting trivially on IR, that Hy(A,IR)= A™(A,IR), the group of contin-
uous alternating multilinear functions on A. H7*(H,,JR)=H}*(H,,T) since Hy is simply
connected. This latter group arises in physics in the study of the projective representations
p: H, — PU(c0), the projective unitary unitary group of a separable Hilbert space. This
is described in [Mal], theorem 2.1. The techniques introduced in this paper are further
elaborated in [Du3].

I would like to express my sincere appreciation to Jim Stasheff, without whose encour-
agement at a crucial time this paper may never have been written, and to the referee, whose
suggestions have made this paper read more easily.

1I. H?(H,,IR)
Definition 2.1. If o is a nondegenerate alternating IR-bilinear form R2" x R>" 5 1R,
then the (2n + 1)-dimensional Heisenberg group Hy fits into an ezact sequence
(2.1) 0—IR—H®—IR>" -0,
and is the set of pairs (t,v) € IR x IR*", with the group operation being given as
(t1,v1)(t2, v2) = (t1 + ta + a(v1,V2), V1 + V2) .

H¢ is a connected, simply-connected, 2-step nilpotent Lie group with center and commu-

tator subgroup {(t,0)|t IR} IR and quotient group H,/IR= 2™,

Lemma 2.2. If a,0 are two nondegenerate alternating bilinear forms on IR2™ then there

is an L € GI(IR*>",IR) such that a0 (L x L) = &' and HY = HY
Proof.

The existence of such an L can be found in many books on algebra, e.g., [Ja], theorem
6.3. For the isomorphism 6: H — Hffbl, define 6(¢,v) = (¢, Lv).
We may now drop the « from HY and assume that the defining matrix for a is either

[(I) :)I] or [g _OJ , where I is the n X n identity matrix and J is the n X n matrix with

1’s in the secondary diagonal and zeros elsewhere.

From [Ma2], théoréme 2, we see that H}(H,,IR), the second Moore cohomology group
with Borel measurable cochains and trivial action of H,, on the coeflicient group IR, classifies
the one-dimensional central extensions

(2.2) 0-R5ELH, —>1
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up to equivalence of extensions, the group operation on extensions being the Baer sum as

defined in [Mac], theorem 2.1. H,, being continuously solvable of finite length as defined in

[Dul], p.257, or equivalently, since H,, is simply connected, it follows from [Dul], p.257 or

[Wg], theorem 3, that H (H,,,IR)= H2(H,,JR), cohomology with continuous cochains.
Since this means that there is a continuous cross-section s for j, we have

Theorem 2.3(Sah). There is a seven-term exact sequence

(2.3) 0 — EI* — H!(HIR) — E}* — E3’ — H*(H,,IR); — B! - EY’,
where H2(H,,,JR); is defined by the ezact sequence

(2.4) 0 — H*(H,,R); — H*(H,,R) > H*(IR,IR) ,

res being the restriction map.

Proof.

The arguments referred to in [Sa] p.257 are also valid in case the cocycles are continuous,
the existence of the spectral sequence E2? following from [Mst], theorem 4.1, [Dul], p.246, or
[Mo2], theorem 9. We now drop the subscript ¢, with the understanding that it is understood
to be there throughout the remainder of this paper.

Remark 2.4.

From [Dul], p.250, [Mo2], theorem 9, we may identify the second term E?? of the spectral
sequence with HP(IR*" H¢(IR,JR)). Remembering that HY(IR,IR) = IR H'(IR,IR), the
sequence (2.3) first becomes
(2.3%) 0—H'(IR*",H'(IR,R)) "5 H!(H,,IR) — H' (IR*"H' (IR, IR))

01 . 11
4 g2(R2H(IR.R)) - H(H,,R), -5 H(R?",H'(IR,IR)) - H*(IR?n,R) ,

where inf and tg are inflation and transgression, respectively, and then becomes

01 . 11
(2.3*") 0— R H2 (R R) 2, B2 (1, R) % H (IR?",IR) = B (IR*",R)

since the restriction map is zero (any homomorphism of H, into IR must vanish on the
commutator subgroup).

III. H*(H;,IR)
Now let us examine H; in more detail.
Theorem 3.1. H; has a faithful matriz representation 6: H; — SI(3,IR).
Proof.

As we said earlier, we will take for o the form with the matrix [_01 H, which means

that a((y1,y2), (¥1,v5)) = v1ys — Y, yz, so if we define

1 V2y: t+yiye
0(t7 (yl 3 y2)) =10 1 \/2—:’/2 ’
0 0 1

8 gives our desired representation. The range of this representation is the set of all strictly
1 Y1 t
upper triangular matrices | 0 1 2

0 0 1
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Remark 3.2.
Notice here that the form

B((y1,92), (¥1,¥2)) = Y192 5

which is the one defining the matrix multiplication, is neither antisymmetric nor nondegen-
erate. This is explained by

Theorem 3.3. The form 8 above is cohomologous to the form

V1Y — Y1Y2

a((y1,92), (¥1,92)) = .

Proof.

Let c(y1,y2) = —yiw. Then 8 = a + bec.

Remark 3.4.

This shows that it is not necessary to define H® by using a nondegenerate alternating
form «a, but it suffices to use any form § which is cohomologous to a. In the case above,
B was a degenerate form, viz., had rank one. But we may find another more appropriate
faithful matrix representation of Hj.

Theorem 3.5. There is a faithful representation 6: Hy — SI(4,R) such that the 2-cocycle
defining the image group as an ewtension and arising via matriz multiplication, is tdentical
to the cocycle o defining H;.

Proof.
1 y1 y2 1
_ 0 1 0 Y2
Let 9(ta(y17y2)) “lo o 1 -y

0 0 0 1
1 Y1 1
Until further notice, we will assume that H; is given as the set of matrices ) 1 oy
0 0 1

Now suppose, as follows from [Mos], theorem 4.3, that H?(H;,]JR) may be calculated by using
continuous bilinear functions. Then such a function must vanish on sets of the form IR
IR? and IR? x IR, since IR, the center of Hy, is also its commutator subgroup. Since we
already know from [Dul], p.256, that H?(IR*,JR) = A*(IR?,IR), and is thus one-dimensional,
we may suppose that this vector space is generated cohomologically by the nondegenerate
alternating form o above, which becomes a cocycle on H; by pullback. But then we have

Theorem 3.6. o is a trivial 2-cocycle on H;.
Proof.

Let ¢(t,(y1,y2)) = t. Then éc = «.

Now that we know where not to look for nontrivial 2-cocycles, where do we look? Suppose
we look at the space P of polynomials in t,y1,y2,%',y1,y5 which are sums of monomials of
degree two or less in each of the variables, of total degree two or three, and which involve
variables both primed and unprimed. This gives us forty five monomials as a basis of this
space. The coboundary map § acts on P, and we have
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Theorem 3.7. Dim Ker §: P — P = 6, and a basis for this kernel is

a1 yiys + 2u1t
as 1 y1(ys)” + 2ty
oz ye Y1 + 2y2y1ys — 2yat’

(3.1) /o , )
g L Y2 (y1) + 2y192y; — 2tyy
a5 Y1y2ys — tyy + yat’
ag i 1YL Ys — it 1y

Proof.

Use linear algebra.

Theorem 3.8. The siz cocycles in (2.1) are cohomologous respectively to

®1, &3, —02, -y, —O01, —Qy.

Proof.

Introduce /

of  Yivh + 20191y + 2ty
o+ yi(ye)® + 201925 + 22t
which are cohomologous to —a1, —as via

ci(t, (y1,32)) = 2wt and ea(t, (y1,%2)) = 2ty ,

! !
) al —ag ah — o .
respectively. Thus ag = ——17—— , 05 = ——2—?—, showing ag, a5 cohomologous to —ay, as.

Notice too, that as + o, ag — @} are defined on Hy /IR and are symmetric there, and hence
trivial, which proves the theorem.

Theorem 3.9. If § = Aay + pay is cohomologous to zero, then A = p = 0.
Proof.

Suppose that we can find a triple commutator [[g1, g2], gs] which is not the identity in the
extension group furnished by a cocycle 3, which group we can assume is given by 4-tuples
(s,t,y1,y2) with the composition

(51,51, y2)(s' s ' 50, 98) = (55" +B((£y1,92), (1391, 92)), -+t + 9105 —¥iw2, 91 +91, 92 +12)
In order to compute the commutator, we take the inverse
(8,t,y1,92) " = (—s+2y1t — y7y2, ~t + Y1y2, —Y1, —V2) -
The two triple commutators
[1(0,0,1,0),(0,0,0,1)],(0,1,1,1)] [[(0,0,1,0),(0,0,0,1)],(0,0,1,0)] ,

when computed with respect to Aoy + pos, since we are assuming that the extension splits,
must both be equal to the identity, which forces A = p = 0, showing that a; and ay are
cohomologically linearly independent, and in particular, each one is nontrivial.
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Theorem 3.10. Every 2-cocycle in Z2(H;,JR) is cohomologous to a linear combination of
a1,09.

Proof.

It follows from theorem 3.6 that the inflation map inf in (1.3**) is zero. Since this makes
tg one-to-one, H?(H;,IR) injects into H*>(IR*",IR), which is two-dimensional. But we have
found a basis a1, ay of this space.

Corollary 3.11. o!((¢,y1,92),(t,¥1,95)) = a1((t',91,91),(t,91,92)) is not a cocycle.
Proof.

Calculational.

IV. FUNCTIONAL EQUATIONS

We now want to show how a 2-cocycle on a group extension is determined by means of
its restrictions to certain very special subsets, and then to derive equations (4.4) — (4.7)
subsisting between these restrictions which are necessary and sufficient to ensure that we
can reconstruct the original cocycle on the extension group. We also answer, in theorem
4.5, when a cocycle, torn apart in this manner, is cohomologous to zero, this answer being
given as conditions holding for the pieces.

The equations we are about to derive for an arbitrary group extension of locally compact
polonais groups were obtained in the special case of semidirect products by Mackey in [Mal],
theorem 9.4, and Tahara in [Ta], prop.4. Tahara worked in the category of discrete groups,
Mackey in the same category as we. It is possible to utilize the work of Brown in [Br]
to extend the category to polonais groups, and this work is in progress. Therefore, for
the present, we work in the category of locally compact polonais groups and continuous
homomorphisms, and the definition of exactness is as in [Mol], definition 1.3.

o

Theorem 4.1. Suppose 1 =N-5GZ=H— 1 is ezact, s is a Borel section of j, and o is a
8

factor set defined as

o(y1,y2) = s(3n)s(y2)s(y1y2) ™" and B(y)(z) = s(y)es(y) ™ .
Also suppose v: A — Aut(A), where y(a1)(az2) = ayasa]’. Then if we have data

p: G — Aut(d), o: GxG— A,

satisfying
(4.12) o(91)p(g2) = 7(o(g1, 92)) 9(9192)
(4.1b) ¢(91)(0(92,93)) (91, 9295) = o(g1,92)0(9192,93) for g1,92,95 € G .

Then (p,0) may be described in terms of data on N and H as follows: Let p1 = )Ny = po1
) P2 = P|eE) = P 08, and also let

011 =00(ix1), or2=00(iX8), 031 =00(sX1i), gag =00(5x3).
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Then we have the following equations:

(4.2) p1(21)p1(22) (pa(m122)) 71 = 7(ona(e1, 22))
(4.3) 02 (y1)p2(y2) (p2(y192)) 7" = 7(022(y1,92)) 01 (@(¥1,92))
(4.4) 801($1)(011(932,ws))011(€81,$2fﬂ3) = o11(z1, 2)o11 (2122, T3)

(4;5) 021(y,m1a32)
= (cpZ(y) (0'11(:131 , wg)))_l Uzl(y, :cl)(pl (ﬂ(y)(m)) (021(3/, wz)) 011 (ﬂ(y)(ml )aﬂ(y)(@))

(4.6) o1 (a(y1,y2)) (21 (Y132, ) 711 (Y1, 92), B(y192)(2))
= (022(y1,y2))—1<p2(y1)(021(1}2,33))021 (y17ﬂ(y2)(w))
01 (8(11)8(32)(2)) (722(y1, y2)) 11 (B(y1)B(y2) (@), (y1, 92))

(4.7) (902(?/1)(‘722@2,3%3 )))_1 o22(Y1,Y2)P1 (Oé(yl ’ yz)) (022 (Y192,93 ))
= Uzl(yl,a(yz,ys))% (5(3!1)(04@2,:‘/3))) (Uzz(yl,yzys))
a1 (B(v1)(e(y2,93))s a(y1,¥293)) (011 (e(y1, v2), 2(y192,93)))

Conversely, if we have data satisfying these equations, and we define

(4.8) a(wls(yl),mzs(yg)) =
p1(z1) (021 (y1,32)) 011 (21, B(31)(22))-
o1 (218(y1)(22)) (022(y1,y2)) 011 (218(31 )(2), (Y1, 92))
o (zs(y)) = pa(2)p2(y) 5

then (a,¢) s a 2-cocycle on G.
Proof.

For the proof, we first need a lemma. Notice that o152 did not appear in these equations.

This is the result of
Lemma 4.2. If o is as in the theorem, then o is cohomologous to a o' such that ol = e.
Proof.

Assume o normalized, i.e., o(g,¢e) = o(e,g) = e for all g € G. Then we let c(zs(y)) =
o(z,s(y)), and define

o' (g1,92) = clg1)p(91) (e(92)) o (g1, 92) (e(g192)) -
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Continuing the proof, (4.2) follows from (4.1a) by restricting to N. For (4.3), substituting
s(y;) for g; in (4.1a), we get

e(s(31))p(s(y2)) = v(o(s(y1), s(y2)))p(s(y1)s(v2)) ,

which may be rewritten as

e2(y1)p2(y2) = Y(o22(y1,y2))p(e(y1,y2)s(y192)) -
Using (4.1a) and lemma 4.2,

o(a(y1,y2)s(y192)) =

[y(o(e(ys, Y2 ), 3(3/13!2)))]*1 p1(e(y1, Y2))e2(y192)
= 901(Oé(y1ay2))902(y1y2) )

and putting this back in our equation, we arrive at (4.3). (4.4) follows by restricting g1, g2, g3
to lie in N. For (4.5) replace g1, g2,9s by s(y),z1, 22 respectively in (4.1b), and reduce the
right side of the resulting equation. (4.1b) becomes

@2(y)(a11(z1,22))021 (Y, 2132) = 021(y,21)0(s(y)z1,22) -

We rewrite o(s(y)z1,z2) as o(B(y)(z1)|s(y),z2). We always use a vertical bar between
B(y)(z1) and s(y) to indicate how we will use (4.1b), namely, we assume that the term
o(B(y)(z1)|s(y), z2) is the term o(g1|g2,93), with g1, 92,95 in this term now being identified
with B(y)(z1),s(y), z2 respectively. Using this procedure, we get

o(B(y)(z1)|s(), 22) = [012(B(y)(21), s(¥)] " @1(B(y)(21))721(y; 22) 721 (y, z122)

in which the oq2 term is e, according to lemma 4.2. This reduction yields (4.5). We will
not even write down any oy, terms should they occur from now on, as we know they are all
— e. Also, we will indicate how to apply (4.16) by putting a vertical bar in the appropriate
place, as we did in this derivation.

For (4.6), we substitute s(y1),s(y2),z for g1,92,9s in (4.1b), obtaining

soz(yl)dzl(yz,w)d(s(yl),S(yz)w) - 022(y1,y2)0(3(y1)5(y2),w)-

Rewriting the left side first, we have

a(s(y1),s(y2)z) = a(s(y1),B(y2)(z)[s(y2))

and using (4.1b), this is

p2(y1)721(y1, B(y2)(2))o (s(y1)18(y2)(2), s(y2)) -

The rightmost term must be reduced by using (4.15).

o(s(y1)1B(y2) (), s(y2)) = o(By1)B(y2)(®)ls(y1),5(32))
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to which we apply (4.1d) again, obtaining

1(B(y1)B(y2)(@))o22 (y1,y2) 0 (B(y1)B(y2) (), s(y1)s(y2))

in which we rewrite the right most term as o(3(y1)8(y2)(z), a(y1,¥2)|s(y1y2)) which reduces
to

a11(B(y1)B(y2)(z), e(y1,92)) -
Collecting all the reduced terms, the left side becomes

02(y1) (021 (y2,2)) 021 (y1, By2)(2)):
01(8(y1)8(y2)(2)) (22(y1,¥2)) 11 (B(y1)B(y2)(2)-ey1,92)) -

Rewriting the rightmost term on the right side, and reducing, we get
o(eyr, 12)|s(y192),2) = p1(a(y1,y2))on (y132, )0 (a(ys,y2), s(vr192)e) -
Rewriting the rightmost term and reducing,
a(o(y1,y2), Bly1y2)(2)|s(y1y2)) = a11(e(y1,92), B(y1y2)(2))
and collecting all the reduced terms on the right side, we get
a3 (y1,y2 )01 (aly1,42)) (021 (1192, 2)) o1 (@(y1, 92), B(yry2)(2))

showing that if we multiply the left and right sides by (o22(y1, y2))"1, we get equation (4.6).
In order to derive equation (4.7), we first replace g1,92,9s by s(y1),5(y2),3(ys) respec-
~ tively, and obtain

©2(y1) (022(y2,93)) o((31), 5(y2)5(ys)) = o22(y1, v2)o(s(y1)s(y2), 5(ys)) -

Rewriting the rightmost term on the left side and reducing, we get

a(s(y1),s(y2)s(ys)) = o(s)y1), ey, 92)|s(y192))
= 021(y1,a(yz,ys))d(s(yl)a(y27y3),8(y2y3)) .

Again rewriting the rightmost term and reducing, this is

U(S(yl)a(yz,%)’s(wys)) = d(ﬂ(y1)(a(yz,y3))\3(y1),S(yzyg))
= 01(By1)(@(y2,93))) (o22(y1,¥293)) 7 (B(y1)(e(y2,3)), 8(v1)8(y23)) -

rewriting and reducing the rightmost term,

(B3 )2, 99)), 5u1)s(5235)) = (B3 )@y, 95))s 0un,¥o38)ls(wsv21))
= 011 (ﬂ(yl)(a(yz ) y3)), a(yl ) y2y3)) .

Collecting all the reduced terms on the left side, it becomes

902(:!/1) (022(?;2,’!/3)) Uzl(yl , a(yz,yg))-
P1(B(y1)(@(y2,s))) (o22(y1, ¥293)) 011 (B(y1 )(ex(w2, Y3))s (v, y293)) -
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We now rewrite and reduce the rightmost term on the right side of our transformed (4.7).

o(s(y1)s(y2),5(ys)) = o(e(y1,y2)ls(v192))
= p1(a(y1,y2)) (o22(y1y2,3)) o(a(y1,y2), s(y1y2)s(ys)) ,

and applying this process again, this is

U(a(ylay2)7s(y1y2)5(y3)) = C"(a(yl7y2)7a(y1y27y3)|3(y1y2y3))
= a11(ey1,y2), (y192,43))

and the right side becomes

azz(yl,yz)gol(a(yl ) yz)) (022(y1y2,y3)) Ull(a(yl ; yz), a(ylyz,yg)) )

which yields (4.7). We may establish in the same manner the fact that if (a,¢) are defined
as in (4.8), then we obtain a cocycle.

Remark 4.3.

A set of equations similar to that given in the previous theorem can be derived for 3-
cocycles taking values in an abelian group A, but these will not be needed here.

Theorem 4.4. Suppose o as in theorem 4.1 takes values in an abelian group A on which
G operates trivially and N is central in G. Then the above equations become

(4.9) o11(z2, z3)o11(T1, 2223) = o11(z1,22)o11 (2122, 23)
(4.10) 721y, 213) = 021(y, 21)021 (Y, T2)

1
(4.11) o91(y1Y2, ) = 021(y1, )o21(Y2, )01 (w,a(ylayz)) (011 (a(y1,yz),w))

(4-12) (0'22(’!/2,3/3)) _1022 (ylyz,ys)(o'zz(yl,yzys))—ldzz (y1,y2)
= 021 (yl ya(yz, Y3 )) 011 (a(yz,ys), a(yl,ygyg)) (all(a(y17y2)7 a(ylyZayS)))Ml

and if we define

(4.13) a(mls(yl), z38(y2 )) = a11(z1,23)021 (Y1, B2)022(Y1, Y2 )11 (f81€027 a(y1, 92))7

we Tecover o.
Proof.

Notice that v and ¢ become maps having the identity map as range in the case stipulated.

These equations are only half the story. They will determine the group of 2-cocycles
72(G,A), but we must still derive conditions for such cocycles to be coboundaries. For this
we have
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Theorem 4.5. If ¢ € Z>(G,A) as in theorem 4.1, then o is a coboundary iff
(4.14) o11(w1.22) = pa(w1)(er(22)) [ex(@a22)] " ea(e1)
(4.15) 21(3,2) = p2(y)(e1(2)) (o1 (Bw)()) (2 ()] " [er(Bw)(@))) " ea(y)

(4.16) agz(yl,yz) = Cz(yz) [Cz(ylyz)]_l [Cl(a(y17y2))]_1 Cz(yl)
for some ¢; € CY(N,A), ez € C'(H,A).
Proof.

First we need a lemma.
Lemma 4.6. If ¢ € B%(G,A) and 0 = é¢, a13 = ¢, for c € CY(G,A), then ¢ may be taken
to have the property c(zs(y)) = c(z)B(z)(c(s(¥)))-
Proof.

(8(e))12(z, 5(v)) = B(z) (c(s(9))) [e(zs(y))] " elz) =€ .

To finish the proof, let ¢1(z) = ¢(z), c2(y) = ¢(s(y)), and in the equation
(4.17)

Se(z1s(yn), 225(32)) = @(215(31)) (e(z25(2))) [e(21220(y1,y2)s(3132))] " el15(v)) »
which is just
(4.18) §e(g1,92) = p(g1) (e(g2)) le(g292)] ™ elgn)
let g1,g> be, successively, 1,725 $(y),z;5(y1),5(y2), which will then be seen to yield the
equations (4.14),(4.15),(4.16), respectively.

Theorem 4.7. If A is abelian with G operating trivially, and N s central mn G, then
equations (4.14)-(4.16) become

(4.14%) o11(21,22) = c1(z1)er(z2) [e1(z1z2)]
(4.15%) o2(y,z) =e
(4.16%) o22(y1,2) = ca(y1)ea(y2) [ea(v12)] " [ea(e(yr,92))]
Proof.
Clear.

Putting this together with equation (4.8) in theorem 4.1, we get
Theorem 4.8. o € Z2(G,A) 1s a coboundary iff
(4.19) o(z1s(y1),z2s(y2) =

p1(z1) [902(7;1)(61(592)) [o1(Bya)(@2))(e2(y2))]) " [er(Blyn)(®2))) 02(3/2)] :
1(21) (e1(B(y)(22))) [ea(z1B(y1)(22))] " ea(a):
o1(23B(3)(22) [ex(a) lea(wawn)] " ea(alyn, )] " ex(on)] -

o1(218(y1)(22)) (ex (1, 92)) e (21 B(yr)(m2) ey, y2)] " ea(w1B(n)(w2))
for some ¢; € CY(N,A), ¢z € C'(H,A)
Proof.
Substitute expressions (4.14), (4.15),(4.16) in (4.8).
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Theorem 4.9. If A is abelian, G operates trivially on A and N 1is central in G then (4.19)
becomes
(4.19%)

o(z15(y1), z28(y2)) = 61(331)61(332)61(501582)—162(3/1)Cz(yz)cz(ylyz)mlcl(wlﬂlza(yl,yz))_l-

Proof.
Clear.
Remark 4.10.

Now we have the full picture in terms of functional equations. In general, these appear
quite impossible to solve at present, but by restricting our attention first to simple cases,
and then progressively building up solutions, we shall see that such an approach is eminently
feasible, with very explicit results. See theorem 6.7 for example.

V. TRIVIALIZING TRILINEAR F'UNCTIONS.

Theorem 5.1. Ifo: IR" x IR™ — IR is a continuous bilinear function, or, which amounts
to the same thing, an IR-bilinear function, then o is symmetric iff o is a coboundary,
considering IR™ operating trivially on the coefficient group IR.

Proof.

o(v,v)

If o is symmetric and bilinear, it is certainly a 2-cocycle. If we define ¢(v) = — 5

for v € IR™, then

o(w,w) o(v+w,v+w) o(v,v)
2 2 2 ’

o(v,w) =

showing that §c = o. For the converse, it is clear that a coboundary must always be
symmetric.

Remark 5.2.

The reader may recognize this relationship between ¢ and ¢ as that holding between an
inner product and its associated norm?/2, or between the polarization of a quadratic form
and itself/2 over a field of characteristic # 2.

From [Dul], p.253, we have

Theorem 5.3. If o € (IR™)®3, where
(R™)® = {o: R" x R" xR" — R o is R-trilinear}

is a continuous trilinear function, then it is a coboundary iff it is annihilated by the alter-
nating map

g\Vg Vs v,
Ao)(v1,vayva) = Y (—1yponi L VeanVew)
5€83

S3 being the symmetric group on three letters.
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Theorem 5.4. Every o € (IR™)®? can be written as a sum
0’(V1,V2,V3):0'3(V1,V2,V3) + 0'[12](V1,V2,V3) + O'a(vl,V2,V3) 3

where o5 15 a symmetric function called the symmetrization or symmetric part of o, 04 18
an antisymmetric function called the antisymmetrization or alternation or antisymmetric
part of o and o[15) satisfies the identity

0[12](v1,vz,v3) + op19)(V2, Vs, Vi) + op12)(vs,v1,v2) = 0,
and is called the Jacobization or simply the Jacobi part of o.
Proof.
Let

O(Vs(1),Vg(2)s Vs
os(vi,Va,V3) = Z (Va(1) ’6(2) (3))
sES3

20‘(V1,V2,V3) — O'(Vz,Vg,Vl) e 0'(V3,V1,V2)

3

o\Vs Vg(2)) Vs
o'a(V17V27V3) = Z(_l)sg'n(s) ( 1)> 6(2) (3)) .
8€ES3

0[12](V1,V2,V3) =

Remark 5.5.

This splitting of o is a special case of a splitting of (IR™)®™ into irreducible subspaces
under the action of the symmetric group S, acting by permuting the m coordinates. For
this, see [Wey], theorem 4.4D.

Remark 5.6.

Now the cocycles o, and o[y;] are each annihilated by the alternating map, thus they are
trivial, but theorem 5.4 does not provide us a way of constructing a trivialization, i.e., of
finding a 2-cochain ¢ so that o = dc.

Theorem 5.7. 0,012 are the coboundaries, respectively, of

(5.1)
cs(vi,va) = _03_(‘51’2&_’.1’2_)
ciia(v1,v2) = o(12)(V1, V2, V1) — 0[19)(Vi, Vi, V2) ;0'[12] (Va, V2, V1) — 20712)(V2, V1, V2)
Proof.

Remembering what we did in the case of 2-cocycles in theorem 5.1 above, we set pairs of
variables equal in the various functions which arise by permuting the variables. Hence we
look for a cochain of the form

es(vi, V) = Aos(vy,vi,va) + Ayos(va,va,vi) + )\303(V1,V2,V1)
+ Xgoo(Va, Vi, V2) + Asos(Ve, V1, V1) 4+ Aeos(Vi, V2, V2)
=M+ A+ As)os(vi,vi,ve) + (Az + As + AG)US(V27V27V1)

= pic1(vi,va) + paca(vi,va) .
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1
Noticing that 6¢(vy,Vva,vs) = —204(v1,V2,Vs), we may choose p; = —g0 2= 0.

For the second part, we use the Jacobi identity for oyy9) , and look for a c[yz] (vi,va) of
the form

(A1e1 + Agea + Azes + Asca)(Vi,V2)

= )\10'[12](V1,V1,V2) + )\20[12](V2,v2,v1) + )\30'[12](V1,V2,V1) + )\40'[12](V2,V1,V2)

Then
561(V1,V2,V3) = —0[12](V1,V2,V3) - 0[12](V2,V1,V3)
bea(vi,va,Vs) = 0712)(V2,V3, V1) + 07121 (V3, V2, V1)
563(V1,V2,V3) = —U[lz](Vl,Vs,Vz) - 0[12](V2,V3,V1)
§ca)(v1,V2,V3) = 0[12](V2,V1,V3) + 0[12](V3,V1,V2)-

Now we again apply the Jacobi identity to eliminate o715 (Vs,V1,Vv2) and o112)(Vs, V2, V1),
obtaining
6C(V1,V2,V3) = ()\1661 -+ >\2562 + )\3563 + )\4504(V1,V2,V3)
= A1 (0[12] (Vl,Vz,Vs) - 0[12](V2,V1,V3))
+ Ao (0[121(V2,V3,V1) - 0[12](V27V17V3) - 0[12](V1,V3,V2))
+ A3 (—0'[12]("1,"3,"2) = 0[12](V2,V3aV1))

+ Mg (0[12](V2,V1,V3) - 0[12]("1,"2,"3) - 0'[12](V2,V1aV3))

=—(A1 + >\4)U[12] (v1,v2,vs) — (A2 + A3)0[12] (vi,Vs,V2)
+ (A2 — A3 — )\4)0[12]("2,"39"1)
+ (=1 — A2 + Ad)opz)(Va, Vi, V3),
so if we set
MAd==1, Xa4+A=0, a—=A3—A=0, A +Xla—-X=0,
this has the unique solution
(A1, A2, A3, 04)=(-1/3,-1/3,1/3,-2/3) ,
which proves the theorem.

If we notice that all this works for trilinear functions with values in IR"™ as well as IR,
then we have a

Corollary 5.8. If L is a Lie algebra of dimension n over any field of characteristic # 3,
and if
0(V17V2av3) = [vla[v27v3” )
then o is a trivial 3-cocycle on IR™ with values in IR"™.
Proof.

Using the antisymmetry of [, |, the Jacobi identity, and arguments similar to the proof
of theorem 5.7, we see that we may take
2[vi, [z, vi]] — [v2, [v1, Va]]

3

C(Vl,Vz) =

and get
§e(vi,va,vs) = [V, [V2, Vs]] .
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Remark 5.9.

This shows that the Lie triple bracket evaluated at three distinct elements in L is rationally
linearly determined by the triple bracket evaluated at a three-tuple of vectors of which two
are equal. This is well-known in the theory of free Lie algebras ([Ba], p.49).

Corollary 5.10. If M is an n-dimensional Riemannian manifold, g a Riemannian struc-
ture, and R the corresponding curvature tensor, then

s(X,Y,Z,T) = g(R(X,Y)Z,T)

is a quadrilinear function which is trivial as a 4-cocycle on R".

Proof.

For definitions of these notions, see [He], p.68ff. The Bianchi identities show that o is
annihilated by the alternating map, and by techniques similar to those used in proving
theorem 5.4, we get that éc = o if

20(X,Y,Y,Z) — o(2,Y,Y,X)

c(X,Y,Z) = 3

Remark 5.11.

The o in corollary 5.10 is a member of the similarity class [2?] in (IR™)®%. Incidentally,
this result is somewhat interesting, inasmuch as it is already known that o is determined
by its restriction to sets of four vectors which are equal in pairs, and this corollary gives a
determination by restriction to sets of four vectors of which only one pair is equal. Thus
this gives a kind of intermediate reduction.

Remark 5.12.

As we mentioned, we have been using the irreducible representations of the symmetric
group acting on the tensor space (IR")®™, m = 3,4, in order to trivialize cocycles within
each irreducible symmetry class of tensors, i.e., multilinear functions. It is possible in the
case of three and four variables to handle the problem without splitting it up into symmetry
classes. For three variables, this is a matter of solving a linear system of six equations in six
unknowns; for four variables, a system of 24 equations in 36 unknowns. The general problem
for n variables lead to n! equations in (@;_1) n! unknowns. Although the matrices are quite
sparse and somewhat regular, I have not suceeded in solving them in general. I certainly
feel that it must always be possible to trivialize a multilinear cocycle which is annihilated
by the alternating map by setting pairs of its variables equal in various permutations of its
variables.

VI. H2(H;,IR) via EXTENSION EQUATIONS.

We are ready to apply the results of sections IV and V to the calculation of 2-cocycles
on H;. The exact sequence we are working with is

. J
1 - RSH,2IR? — 1,
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1 Y1 t
where we take H; in its realization as 3 x 3 upper triangular matrices |0 1 1y |, or,
0 0 1

which is equivalent, the triples (¢,v1,y2) €IR® with multiplication

(tyyr,y2)(E 9t 95) = (E -+ +y195, v1 + 91, 92 + 92) -

and

i(y) = (,0,0), 7(t,91,92) = (y1,92), s(y1,92) = (0,y1,92) -
Lemma 6.1. Let 0 € Z>(H;,JR). Then o is cohomologous to o' with 0'/11 = 0,12 = 0.
Proof.

First, since H2(IR,IR)= 0, 011 is cohomologous to zero. Let o1 = bc, ¢ cC!(IR,R). If
we define

c'(t,y1,y2) = ¢(y) then (6')11 = (0 — §c')y11 =0,
and if we take
C”(t,yl,yz) = Gl((t,0,0),(O,yl,yz)) then (U” + 66“)11 = (0-” + Uc”)lz =0.

Remark 6.2.

If we assume that ¢ € Z2(H;,JR) has the property of ¢' in the previous lemma, then
equations (4.10),(4.11) say that 031 is bilinear and (4.12) says that

"

6(022)((y17y2)7(y117y/2)7 (yl 7y§’)) = 021((y17y2)7a((yl17yl2)’ (ylllayg))) .

This last equation just says that its right side is a trivial 3-cocycle and 032 trivializes it.

Lemma 6.3. We may find constants A1, Ay such that
o21((y1,92),t) = (Myn + Aay2 )t .
Proof.

041 1s bilinear.

Lemma 6.4.

o1 (1,92 ), (¥, 95), (91, 93))) = Ay vty + Aayayi ¥y -

Proof.

a((y1,92), (41595)) = 197
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Lemma 6.5. If

y2yl
e((t,y1,92), (ty1,92)) = M_lfz_
y1(y3)® + 2929195
cs((t,y1,92): (5 91,2)) = () 6 =
2.0 I\2 /
y y _yl y ‘2y1y2y
ez (B y1,92), (1,0, 95)) = = (23) !
then
8(c) = yiviys  and 6(cs + cpn) = 2v1ys -
Proof.

8(c) = y1y, 5 follows by calculation. For the second part, use theorem 5.3 to write y23;ys
as the sum of a symmetric and a Jacobi trilinear function

RS T vy usthyl | 2y23i95 — YahYt — Y1YaYs
Y2Y1Y2 — 3 + 3

and trivialize the symmetric part by using theorem 5.7 to take

y1(y5)” + 2929195
(b, ) (1)) = LB T 2T

the Jacobi part by taking

24! 132 ,
Ya¥1 — ¥1(¥2)” — 25192y
ez (,y1,92), (2, 9,8)) = 22 ( 23) 3

and adding the two to get

2y2 — y1(vh)? — 2y19295
: .

(es + C[12])((t7y1,y2), (t',91,92)) =

This proves the lemma. But we have also proved

Lemma 6.6.
oan((u1,92)s (91, 9)) = Mydua + A (2030t — v1(32)° + 492yivs — 2019202) + Astays -
Theorem 6.7. Every 2-cocycle on Hy can be written in the form
M (iyh + 2u1t') + (w3 — v1 () + 49219 — 2u13ys — 6yat') -

Proof.
From (4.13) we have

0'((t7y17y2)7(t’7y117yl2)) = UZl(tl7(y17y2)) + ‘722((y17y2)a(yl17yé)) ’
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and combining the results of lemmas 6.4 and 6.6, we get that the right side of this equation
can be written in the form

Mt + dayat' + Aayylh + Aa(2039) — yi(vs)” + 4ya3ivh — 2519295) + Asyrys -

A little linear algebra shows that in order for this to be a cocycle, we must then have
A1 = 2Xs, Ay = —6)4 and A5 arbitrary, yielding

A (2 + 251t) 4+ Ao (v3yh — v (h)® + 4uuivh — 2019295 — 6y2t') + Aa(y1y3) -

But y1 4, is a trivial cocycle on Hy, since it is the pullback to Hy of the cocycle defining the
extension, and this is always trivial, as follows from the exactness of (2.3") at H*(IR*",JR).
This is because the image of dy' is the line determined by c. We also notice that A is the
coeficient of a cocycle which is just 2a3 — o, from (3.1),(3.2), and thus it is cohomologous
to —ag.

When is a cocycle of the form Aja; + Az cohomologous to zero?

Theorem 6.8. If G=H;, N=IR, ¢ € Z*>(H;,IR) with 011 = 013 = 0, then equations (4.14%)-
(4.16" ) become

(414**) 0'11(%1,:132) =0

(415**) azl(y,:c) =0

(4.16™) oa2(y1,y2) = c2(y1) + c2(y2) — ca(y1,y2) — a(y1,y2)
Proof.

Since, as we have remarked immediately above, a(y1,y2) is always a trivial 2-cocycle
when pulled back to Hy, (4.16**) says that o32 must be a trivial 2-cocycle on R?, ie., it
must be symmetric. But neither a; nor a, is symmetric, and the only linear combination
MA@+ Aaas which is, is the zero cocycle, which proves that a;, s form a basis of H?(H;,IR)

Remark 6.9.

In order to exhibit the versatility of the method we have just used by looking at H; as
a one-dimensional central extension of IR?, we now compute the same cohomology group
H2(H;,JR), this time conceiving H; as a semidirect product, and using as functional equa-

tions, those of Mackey in [Ma], theorem 9.4, which may be derived here as a special case of
equations (4.4)-(4.7).

Theorem 6.10. If G is a semidirect product of N and H, and G operates trivially on the
abelian group A, we have

(6.1) §(o11) (1,2, 23) =0
(6.2)
o21(y, 123) — 021(y, 1) — 021(y, 22) = 011 (B(y)(21), B(y)(22)) — 011 (@1, 22)
(6.3) o21(y1y2,) = o21(y1,B(y2)(2)) + o21(yz2, )
(6.4) §(o22)(y1,92,y3) =0
Proof.

By [Mal], theorem 9.4, [Tal, prop.1, or by assuming that a = 0, and that ¢,y are maps
into the identity map, and taking account of this restriction in equations (4.4)-(4.7).
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Remark 6.11.

These are the equations obtained by Mackey and Tahara. Mackey solved them in the
case of a semidirect product of IR and IR and coefficient group IR, Tahara for two finite
cyclic groups and arbitrary coefficient group A.

Lemma 6.12. H; is the semidirect product of its subgroups
N ={(t,0,32)| t,y2 € R} = R? and H=1{(0,1,0)] y cR} =R,
and H, fits into the ezact sequence
0-M2-5H, LR -0,

where i(t,y2) = (£,0,¥2), 1(t,91,92) = y1 and a section for 7 is s(y1) = (0,y1,0).
Proof.
Take H; in its 3 x 3 matrix form.
Theorem 6.13. a1,as of theorem 3.8 form a basis of H*(Hy,IR).
Proof.

This is another proof of theorem 3.8. Since H*(IR,IR) = 0, we may take g22 =0 by an
argument similar to that in the proof of lemma 6.1, which argument also shows that we still
have 15 = 0. Choose an alternating 2-form o711 on IR?, and we may as well assume that it
is ty,, which is cohomologous to «.

In order to determine 3, i.e., how IR acts on IR?, we compute

(07y170)(t707y2)(07_ylao) - (t + y1y2a07y2) )
so B(y1)(t,0,y2) = (t + y1%2,0,%2). The matrix for this action is [é ylljl for the basis
(1,0,0),(0,0,1).

Next, equation (6.2) says that we should “cross-homomorphically” trivialize
11 ((t+ y13m,92)s (1 + y13, %)) — ou1(t,92), (,92)) = (+ 9ay2)yn — typ = 113295
i.e., we want to determine o2; so that
021 (Y1, t + 92 + ¥3) — 021 (y1, 4, ¥2) — 021 (Y1, 1, ¥2) = Yavats

but in such a way that og; is, for each (,y2), a crossed homomorphism in the variable 1.
This is the content of (6.3), which says that

(65) 021(3/1 ‘|‘y£,t,y2)
= 021(y175(y/1)(t>y2))+Uzl(y;'l,t,yz)
- 0'21(y17t + y11y27y2) + UZl(y’17t7y2) 9
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where y; acts on functions f: IR> — IR as

(v )t y2) = F(B(y1)(ty2)) = f(E + Y1Y2,Y2) -

Now for each fixed y; we have

o21(y1,t,y2) = M(y1)ys + Aa(y1) + As(y1)y2 »
but (6.5) yields
My +9)ys + Xe(yn +90)t + sy +31)ve
= A (y1)yE + Aa(y1)(t + hy2) + Xs(yn)yz + A (¥1)ws + da(w)t + As(v1)yz
giving

Ay +95) = Ma(ya) + M(yh) or Ma(y1) = My
Ao(yr +y1) = Ao (y1) + Aa(yy) or A2(y1) = Aay1 for constants A1, Ao,

and finally,

As(yr +9)) = i Aa(yr) + As(yn) + Xs(w1) = Aathyn + Aa(yn) + As(vh)

A 2
which gives A3(y1) = 291 + Asy1, for some constant A\3. Then we may write
Y ya
o1y, y2) = My + deyit + AT Ay

Now every 2-cocycle on H; can be written as
U(yl,ta y2)7 (yllatl7y§)) =02 <y17(tl7 yl2)) + o1 ((t, y2)7 (tl + ylyé7yl2))
the specialization of (3.8) to semidirect products; but this is just

Y Y5

5 + Xay1yh + Aatyh .

/\1y1(y'z)2 + Aoyt 4+ Ag

If we want this to be a 2-cocycle, linear algebra shows us that we must have Ay = 21 and
)3 arbitrary. But, we saw earlier, y1v5 is a trivial 2-cocycle, and so we are left with

)\10&1 + )\2012.

Theorem 6.14. The groups furnished by the cocycles % and —O;—Z of theorem 3.8 have
faithful representations in SI(4,IR).

Proof.
For %l, %3, respectively, these are
1 %12_ 1 vy ¢ s
0 1 y1 ¢ 0 1 vy LE
s,t, Y1, — 2
(stwns) =1y o 7 4,0 {0 0 0
0 0 0 1 0 0 0 1




22 A. M. DUPRE

Theorem 6.15. The two groups in theorem 6.14 are isomorphic.
Proof.

The first of the two groups above is also a semidirect product of the normal subgroup
of elements of the form (s,t,0,y2) and the nonnormal subgroup of elements of the form
(0,0,y1,0). The second is a semidirect product of the normal subgroup of elements of the
form (s,t,91,0) and the nonnormal subgroup of elements of the form (0,0,0,y;). If we
are going to show these extensions isomorphic, it is easier to first ask whether they are
isomorphic as semidirect product extensions, i.e., we want to find an equivariant map IR?
— TR3 for the two actions. These actions are, respectively,

I - yzi
Ty1(5>t>y2) - (5 - ylt + (y%/2)y2at - y1y29y2) with matrix 0 1 —Y1 | »
0 0 1
9 . . 1 %2
and Ty, (s,t,y1) = (s + y2t + (¥3/2)y1,t + y2y1,91) with matrix 10 1 gy |,
0 0 1

and thus these actions differ by the automorphism y; — —yi. Since the map (s,t,y1, ya) —
(s,,92,¥1) is an anti-automorphism between the two extension groups, we can, by compos-
ing with the inverse map (s,t,%1,¥2) — (s,t,y1,y2) ", obtain our desired isomorphism.

Remark 6.16.

Now consider the following automorphism of H; :

0(t,y1,92) = (tya,y1) " = (—t+ 192, —y2,—91) -

If we define

al((t,y1,92), (8,5, 93)) = (07 (1,91, 92), 071 (¢, 91, 42))
= ay((—t + y1y2, —Y2, —y1), (' + Y1¥5, —Y2, —¥1))

2.1
y3y
= ———221 + a2t — y2y1Yh

then this is cohomologous to —23, which of course gives an extension isomorphic to that

given by as. We shall see in theorem 8.3 that every two nontrivial 2-cocycles in H*(H;,IR)
yield isomorphic extension groups. Anticipating the discussion in the next section, this fact
can be stated as “every nontrivial one-dimensional central extension of H; is rigid’, i.e.,
extensions near it are isomorphic to it. Now let us examine this idea in more detail.

VII. RESTRICTED DEFORMATIONS

In its usual setting, as in [Ge], the deformation theory of algebras is concerned with the set
of algebra structures on a fixed vector space. Nijenhuis in [Ni] has considered deformations
of ideals, which is a more restricted type of variation. In this paper we fix a normal subgroup
not only setwise, but fix the subgroup and quotient group structure as well. Another way of
looking at the matter is this. Classical deformation theory takes a local point of view and
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here we take a global one. Also, classical deformation theory would consider all the possible
group laws on a fixed locally compact space and study when two such were isomorphic,
whereas here we demand that the locally compact space of the extension group be the
product as Borel spaces of two locally compact spaces, one representing the space of the
normal subgroup and the other representing that of the quotient group. Further, we also
assume group structures on these two locally compact spaces as fixed. This is why it is
more fitting to call what we do in this paper a studying of isomorphism classes of group
extensions, or, if we wish to focus on how the isomorphism class changes as a function of
the natural topology in Ha, whenever there is one, of restricted deformations.

The question is this: when do two elements of H?(G,A) represent isomorphic extension
groups? It is to be emphasized that we speak here of the isomorphism of two groups, not
just as extensions, but purely as topological groups. A large component of this looser type
of equivalence is the outer automorphism group of G and its action on H?(G,A), an example
of which action was given in remark 6.16 in the previous section. This is explained fully in
theorem 9.10.

Lemma 7.1. The extensions of IR? given by the two cohomologous 2-cocycles y1y, and
Y1¥s — Y1Ys
2

are 1somorphic via

Ny
T(t’yl,y2) = (t+ Lzz,ylyy2)

Proof.
Calculational.
Lemma 7.2. The eight 2-cocycles on Hy, a;, 1 <1 < 6,0,ab, when composed with TxT
of the previous lemma, become, respectively
&1 = Yy + 2yt +y1y19
& = y1(v)’ + 2tys + Y1295
&3 = YY1 + Y29192 — 20t
& = y2(91)" + y1m2u — 244

(7.3) ~ / / , ,
&5 = (y1 +y1)(Y292/2) + y2t’ — 1y,
& = (y1y1/2)(y2 + v3) +tyh — uit’
&) = yivh + 2191 ys + 2091 + Y1yey)
&y = y1(¥5)” + 19295 + yat' + v2y19s -

Proof.

Calculational.
Remark 7.3.

We could also explicitly write down the outer automorphism sending &; into &;. We
want now to look more carefully at what it means for two elements of H*(H;,IR) to yield
isomorphic extension groups. The first thing we ask ourselves is : how large can the center
of the extension group be?
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Theorem 7.4. The center of the extension group of Hy given by the cocycle Arar + Aoz
is one-dimensional.

Proof.
Let the extension group be given by the four-tuples (s,1, y1,Y2) with the multiplication

(s,t,91,92)(s'5 1,91, 92)
(s + 8"+ A (v2uh + 2u1t") + Aa(y1 (v5)* + 2t95),t + ¢+ 31ys, 01 U1, ¥2 +95)

and suppose (sq,%0,(y1)0,(y2)o) is in the center of the group. Then we see that we must
have y1(y2)o = (y1)oy2 for all y1,y2 € IR and

(74) o (¥3 (y2)o + 2y1to) + A2(v1 (y2)a + 2t(y2)o
= M (y1)gy2 + 2(%1)ot) + A2((y1)0y3 + 2t0y2)

which implies that (y1)o = (y2)o = 0, and (7.4) becomes

(7.5) A1(2y1t0) = X2(2t0y2) ,

showing that o = 0 if (A1, A2) # (0,0) and proving the theorem.
Before we look at isomorphisms of extensions of Hi, we must look at automorphisms of

H;.

aip 412

0 a2 } ’
where ai1,azs are, respectively, an automorphism of IR, the center of Hy, and an auto-
morphism of IR?, the quotient Hi /IR, a13 a homomorphism IR? — IR, and composition of
automorphisms corresponds to multiplication of matrices

] !
a1z Q12 a1 Q12
0 as9 0 a'22

Theorem 7.5. We may represent an automorphism a: Hy — Hy by a matric

! ! !
@11a7; 11075 + 1209y
!

Proof.

Since the center of H; must go onto itself under any automorphism a: Hy — Hi, a must
be of the form

(7.6) (t,y1,92) 2, (a11(t) + a12(y1,9Y2), a22(y1,92)) -

By letting y; = y» = 0, we see that a1 is an automorphism of IR, and hence of the form
a11(t) = At, for some constant X # 0. If we let ¢ =0, the automorphism property of a gives
us

az2(y1 + yi,yz +y§) = azz(ylayz) ~+ a22(y£ay,2) )

showing that ay; is an automorphism of IR?, and

(7.7) a12(y1,y5) — ar2(y1 + y1,Y2 +ya) + a12(y1,92)
= Xo((y1,92), (Y1, 4%)) — a(aza(y1,92),a22(¥1:93))
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which says that the two 2-cocycles Aa and a o (a22 X az2) are cohomologous. But they are
each antisymmetric and thus identical, so as; has the property that it takes o into a multiple
of itself. If [ > 0 then ags is some scalar multiple v/lay, of a symplectic automorphism as,
of IR? with respect to o. If [ < 0, then by following az2 by any automorphism 6 of IR?

. . . 1 .
which replaces o by —a, say the one with matrix 0 , 8 0 ass teplaces o by a positive
b 1 0 y

multiple of itself, and we may write § 0 @22 = \/ldh, as before. Since §* = 12, we have that
the group of such as, is isomorphic to Z; x IR* x Sp(2), or IR x Sp(2).

As for any group, the inner automorphisms of H; correspond to H;/IR= IR?. By rep-
resenting automorphisms as two by two matrices, it becomes a nice way to see the known
fact that

Corollary 7.6. The inner automorphisms are a normal subgroup of the group of all auto-
morphisms, which is a semidirect product of this normal subgroup and the group of outer
automorphisms.

Corollary 7.7. The outer automorphism group of Hy is isomorphic to IR @ SI(2,R).
Proof.
SI(2,IR) is known to be the symplectic group for the determinant form y1y5 — y1y2.

Theorem 7.8. Any isomorphism i: E — E' between two one-dimensional central exten-

111 212
0 29
morphism between centers, i22 an automorphism of Hy, and 412 is a map Hi — IRy whose

coboundary is

sions of Hy by IR can be represented by a 2 X 2 matriz [ , where 111 ts an iso-

Aal((t,yl,yZ)a(tlayllayé)) - 0'2(7:22(tay17y2)77:22(tl7y/1?y;)) )

where o1,09 are two 2-cocycles in Z?(H;,JR) and 111(s) = As.
Proof.
We have shown that the centers of E,E' are 2 IR, and from there on the proof is similar
to that of theorem 7.5.
VIII. THE AcTioN oF Aut(H;) on H?(Hy,IR).

We now find it more convenient to conceive of H; as being defined by the form

! !
Y1Yy — Y1Y2
a((yl,yZ)’(y:lUylz)) = __23—1“— .

This makes it easier to identify the group of automorphisms of IR? which fix this form
as S1(2,IR) instead of some conjugate group. The group of outer automorphisms is thus

R* & SI(2,IR).

Theorem 8.1. If we take &z,a; as a basis of H2(H;,JR), then the matriz of the action of
a1 € SI(2,IR) as part of the outer automorphism group of Hy on H'(H;,JR), expressed in
this basis is identical to the matriz of a1 expressed in the usual basis (1,0),(0,1).

Proof.
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S1(2,IR) is generated by matrices of the form

ERR RN R

The symplectic mapping corresponding to the first matrix is (y1,¥2) — (A1, (%)y2), yielding
the automorphism

Or(ty1,92) = (4 2y1,(X)v2)
of H;. But remember, in order to have a representation and not an antirepresentation of
SI(2,IR) on H?*(H;,IR), we define

a®(g1,92) = a(07 91,67 g2) ,

for g1, 9> € Hy and o € Z?(H;,JR). Choosing the cohomology classes of @3, as a basis of
H?(H;,IR), we calculate the effect of 8, above on az,d;.

(&2)9A((tay17y2))(tl’ylhyé)) = &2((t,(%)y1,)‘y2)7(tl’(%)yL)‘yIZ))
= M1 (v5)? + 2ty + y1y295) = Aaa((t,y1,92), (' ¥1,92))

(@)% (4,91, 92), (', 91,92)) = (3 ((ty1,92), (¢ 91, 92)) -
For 05(t,y1,92) = (t,y1,8Y1 +92), we get
(82)% ((t, y1, ), (', 91, 95)) = @2((t,91, —By1 +12), (,91, =B + 92))
= y1(—BY; +v3)° + 2U(—By} + y5) + y1(—Byr + v2)(—BYi +v2)
— 1 (ys)? + 2ty + y1uavh + B(—201vis — 2yt — yive — vaveun) + 87 (v (1) + viwm) -
Since yi1(y))? + y2y, is trivial, this is cohomologous to &z + B(—d;), and remembering
that —&] is cohomologous to &;, we get [;} as the first column of our matrix. Similarly,

(61)% = &1, and so too for the remaining generators of SI(2,IR).

Corollary 8.2. There are just two orbits of the cohomology classes in H?(H;,JR) under
the action of SI(2,IR) - the origin, a one-point orbit, and the complement of the origin, the
other orbit, which is open.

Proof.
The actions of SI(2,IR) on H?(H;,JR) and on IR? are identical

In terms of our definition of restricted deformations and rigidity, we may state this result
as follows:

Theorem 8.3. Any restricted deformation of a nontrivial one-dimensional central exten-
sion of Hy by IR within the space of such extensions is of the same isomorphism class.

Remark 8.4.

In this particular case, we did not have to look at all outer automorphisms of Hy, just the
subgroup S1(2,R) of codimension one. Furthermore, the group of outer automorphisms
was only a part of what has to be looked at in general to obtain the complete set of
isomorphisms between two extensions. This is indicated by theorem 7.8. When we look
at groups other than Hy, e.g., H,, we will not be able to get open orbits even by taking
these other isomorphisms into account, and this is indicated in theorem 9.10.
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IX. IsomorpHISM CLAsSEs IN H?(H,,IR).
Rewriting H!(IR*" H!(IR,IR)), we get

o1 ™ 11
9.1) 0 >RLE (R R) L (H, R, S H (IR, H! (R,R))—- B (IR”",R).
Theorem 9.1. If G = H,,, A = R, with H, operating trivially on IR, with N = IR, the
center and commutator subgroup of Hy,, and H = H,,/IR = IR*", and o € Z*(H,,IR), with
012 =0, then equations (4.10)-(4.12) become

(9.2) o21(y, 21 + 22) = 021(y, 1) + 721 (Y, 22)
(9.3) o21(y1 +¥2,2) = 021(y1,2) + 021(y2, 2)
(9.4) 8(22)(y1,Y2,y3) = 021 (yl,(a(yz,ys))-
Proof.

Clear.

Remark 9.2.

Using these equations, it is possible to say more about the maps in (8.1). The map di!
is given at the cocycle level as

dél(azl)(ylayZayS) = 021(y1,a(yz,y3)),

where we have identified the o217 which appears on the left side of this equation as the
argument of di! with its counterpart in the set of functions from H to the set of functions

from N to A.
Theorem 9.3. The map di', as given in (9.1), is injective for n > 2.
Proof.
Let us look at the kernel of di! in H!(IR?>",H'(IR,IR)), which is the subspace of forms 721

which become trivial when we consider d3' (021 )(y1,¥2,Y3) = 021(y1, @(y2,y3)) as a trilinear
function on IR?". We may take as a basis for the subspace of trilinear forms of the form
o21(y1, 2(y2,ys)), for some 21, the 2n forms

yia(yl7y”)7 1=1,2,...,2n,
where y = (y1,---,Yn), and similarly for y',y". Now it is precisely here that we see
the difference between H; and H,, for n > 2. If n = 1, the two trilinear functions
y1a(y',y"), yaa(y',y") are each annihilated by the alternating map. But for n > 2 this is
no longer the case.
Let us consider the effect of the alternating map on each of the 2n trilinear functions
yia(y',y"") i = 1,...,2n. The alternating form « is the sum of n alternating forms

y;cylzln—{—l—k - y;c/yén+1—k .

Now exactly one of these forms contains both y; and y}'. The alternating map A anni-
hilates the two terms y;yiv4,, 1 _; and ¥;y5, 1 ;¥;'. On the other hand, A does not take to
zero any other product y;(¥},¥5,1_p — Yoni1-4Ys) for 1 # k,2n + 1 — k. Not only this, but
it is the case that for i = 1,...,2n, the set of forms A(y;a(y’,y")) is linearly independent,
since the sets of basis vectors y;y,y!, by means of which these forms can be expressed as
linear combinations, are disjoint.

Thus we observe what might be aptly termed a cohomological multilinearizability stability
theorem.
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Theorem 9.4. H?(H,,,R) may be computed using alternating bilinear functions, as soon
as n > 2. For Hy, every alternating bilinear function on Hy is trivial, and every measurable
2-cocycle is cohomologous to a cocycle which is a polynomial in siz variables at least one of
whose terms is of degree two in one variable and linear in the others, and whose terms not
of this form are bilinear.

Proof.

Exactness of (9.1) at H'(IR*”,H!(IR,IR)) and injectivity of d3' means that the trans-
gression map has image zero, which is another way of saying that we may choose cocycles
o so that 097 = 015 = 011 = 0, and this is necessary and sufficient for o to be defined on
H,/IR= IR?", yielding the result stated in the theorem for n > 2. We have already proved
the stated results in theorem 3.9 for H;.

Corollary 9.5. H?(H,, ,IR) fits into an ezact sequence

0 — R - H(IR?",R) L HX(H,,R) - 0 ,
where i(IR) is the one-dimensional subspace of H2(IR*",IR) generated by c, the form defin-
ing H,.
Proof.
This follows from the exactness of (9.1) and injectivity of d3".

Lemma 9.6. Ifn > 2 and (—IR—E—H,,—1 is a central extension, then the center of E
15 at least dimension two.

Proof.

Let 8 be the alternating form defining the extension. Sincen > 2, 8 is defined modulo the
center of H,,, i.e., it is defined on H,, /IR~ IR?"™. Since we may write the group multiplication
in E as

(5:t,7)(s,t,y) = (s + 5 + By, ¥ )t +1' + ey, ¥),y +¥)
we see that
(5,,0)(s',t,y") = (s + s, t+1,y") = (s',t',y")(s,t,0) .
Theorem 9.7. With the hypotheses as in the previous lemma, E is a two-step nilpotent
group with center and commutator subgroup = {(s,t,0,0)|s,t € IR}.

Proof.
Suppose that

(307t07y0)(37t7y) = (30 +s +ﬂ(y07y)at0 +1+ a(yo,y),yo +y)

and
(s,t,9)(s0,t0,¥0) = (s + 80 + B(¥,¥0),t +to + (y,¥0),¥ + ¥o)

are equal. Then a(yq,y) = a(y,yo) for all y € IR®>”. But « is nondegenerate and so yo = 0.
In order to compute a commutator, first compute the inverse of (s,,¥y) to be (—s,~t —y).
The commutator is then

(S,t, y)('sl ’tla yl)(_sa —t7 _y)(_sla '—tla —yl) = (25(}’,)’1)7 2a(y7yl)7 0) ’

and because we may take 8 not to be a multiple of «, we see that this is the entire center.
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Theorem 9.8. If n > 2 and
0-mR—->E —-H,—-1, 0-IR—-E, —H,—1,

are two central extensions of H, with cocycles B1,B2 respectively, then Eq = Eo if there
ezists a symplectic map §: IR*™ — IR2" such that

B2(Sy,8y') = Bu(y,y')s ¥,y € R,
Proof.
If such an S exists, then we define the isomorphism
f: (s,t,y) — (s,t,5y)
from E; to E», where E; is the set of triples (s,?,y) with the multiplication
(5,1, ¥)(s',t,¥y) = (s + ' + By, ¥ )t +t' +oly,y' )y +')

and B, is the same set of triples with the multiplication using 32 in place of 3. The remainder
of the proof is a straightfoward calculation.

Lemma 9.9. If E1,E, are as in the previous theorem and 6: E1 — Es is an isomorphism,
then we can assoctate to 0 a 3 X 3 matriz

611 612 i3 9 9
921 012 013 3 where [011 012] & G1(2,]R,) )
0 0 65 21 U2z
{Z;j € Hom(IR?",JR?), 633 € Gl(2n,IR) ,
and multiplication of matrices corresponds to composition of automorphisms.
Proof.

Since § must take the center of E; onto that of E», we must have

8(s,1,y) = (611(s) + 012(2) + 013(y), 021 (s) + B22(t) + O23(¥), O53(y)) -

Letting y = 0, we see that z; z;z € Gl(2,IR) and 633 € GI(2n,IR), using the homo-
morphism property of §. On the other hand, let s = ¢ = 0. The homomorphism property
for @ in this case is that the following two expressions are equal.
6(0,0,¥)0(0,0,") = (013(¥), 823(y), 933(¥))(#13(¥"), f23(¥") faa(y"))
= (B13(y) + 013(y") + A2(833 (¥), B33 (")), 023(¥) + 023(y') + (033 (¥), B33 (")), B3 (¥) + 033 (¥"))
8((0,0,¥)(0,0,y")) = 0(B1(y,¥"), aly, ¥')y +¥')
= (011(B1 (3, ¥")) + 012(a(y, ¥')) + 013 (y +¥), 021 (B (y, ') + 022y, ¥)) + 023 (¥ +¥'), B3 (y +¥1))
Equating the right side of these equations gives
(9.5)
015(y') — O13(y +y') + 013(y) = 011 (B1(y,y')) + f12(a(y,y')) — Ba(033(y), 033(y"))
(9.6)
B35(y') — 013(y +¥') + 013(y) = 021 (Ba(y,¥")) + O22(a(y,¥')) — a(f33(y), 033(y"))
Since the right side of these equations are alternating forms which the left side says are

cohomologous to zero, both sides must be identically zero. This forces ;3,823 to be homo-

morphisms from IR?*” to IR and {le} € Hom(IR?*",IR?), as stated.
23
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Theorem 9.10. Two one-dimensional central extensions E1,Eq of H,, by IR are isomorphic
iff there are maps 61,05 in Gl(2n,JR),G1(2,IR) respectively, for which

(9.7) 6, o [%] _ ['B?] o 65

(81

as alternating bilinear functions IR?™ x IR*™ — IR?.
Proof.

The right side of equations (9.5),(9.6), being identically zero, may be written in the form
11 b12
021 022

necessary, and certainly sufficient, since we have already proved sufficiency in theorem 9.8

stated in the theorem, where 6; = [ } , @5 = B33. Tt is clear that these equations are

for a special case.
Definition 9.11.
Let the group S1(2,JR)®S1(2n,IR) act on the space of bilinear maps

{b: R*"xIR’"—IR’}

as

(6:,65)(b) = 6,65 .

Theorem 9.12. The extensions Eq,Ey of the previous theorem are isomorphic iff the two

bilinear maps b= ﬁoj , b= %’} are in the same orbit with respect to the action of
S1(2,IR)®S1(2n,IR) as defined above.
Proof.

Equation 9.7 can be rewritten to read

010[%]092—1: li%jl .

Tf we express this result in terms of the matrices A,B1,B2,T1,T2 which we may associate
to a, B1, 82,01, 02, respectively, we obtain

Corollary 9.13. The extensions Eq,E> above are isomorphic iff the two pencils {AA +
pBi|A, p € R} and {)A + By |\, p € R} are congruent in the extended sense, i.e., if we
have

!
MNA+ y/'By ,where T [A} = [A,} ,
pl o p

and T2(AA -+ ,UBl) = )\TZATz + NT;B1T2 )

then the two pencils are congruent in this extended sense.
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Theorem 9.14. In theorem 9.12, we may assume that the 02 belong to Sp(2n,IR)$IR.

Proof.

First of all, we are not interested in the case that (3, is in the subspace Af; + pa, because
this would make 8; cohomologous to Af31, since po is cohomologous to zero. Thus we may
assume that 81,0 lie in different two dimensional subspaces {\3 + po}.Each of these two
dimensional subspaces generated by « and 3 passes through the line generated by « and so
we may assume that 8, takes this line into itself. But this means that 6, is a multiple of a
symplectic map for the form c.

Corollary 9.15. Since the planes generated by o and 3 pass through a, we may assume

that 01 is of the form 611 b1 .
0 0

Proof.
Clear.

Theorem 9.16. We may write an automorphism a of H,, in the form

a(t,y) = (rz + a(v,¥),8y) ,

where r € R*, and we have represented a linear form on IR®*™ using the nondegenerate

alternating form o. We may write the matriz for a in the form [6 a('g, )}, and the

product of two such matrices is

ri oy, )] [r2 a(y2, )] [rire alriya + 57771, )
0 Sq 0 Ss 0 S1S,
Proof.

Note that a(y,S2y') = a(S;'y,y’') and use methods similar to those used in proving
theorem 7.5.

Theorem 9.17. If a € Aut(H,,) and 8 € A*(H,,JR), then

8 ((4,y), (', ¥") = rB((t,Sy), (¢, %))

o oelr)
zfa—[o g ]
Proof.

The outer automorphism group of H, is [6 g:l, and the inner automorphism group

a(v, ) has no effect on cohomology, as is well known, e.g., [Mac|, prop.5.6.
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X. PROJECTIVE ¢-REPRESENTATIONS

In this section, we interpret our result in theorem 8.3 on the isomorphism classes of central
extensions of H; by IR in terms of projective representations. We recall some definitions

and theorems from [Mal], p.267ff.
Definition 10.1.

If G is a locally compact polonais group, then a projective representation p of G is a
continuous map p: G — PU(0), the projective unitary group, with the quotient topology
induced from U(oo), the group of unitary operators, with the strong operator topology, on
a separable Hilbert space.

Remark 10.2.

There is an exact sequence of polonais groups
15T -5 Uoo) L PU(c0) — 1.

It can be shown that j has a Borel measurable cross-section s, which we may compose with
a projective representation p in order to get a measurable map p = so p from G into U(c0),
which satisfies the relation

p(g192) = 0(91,92)p(91)p(g2) ,

where o(g1,92) is a Borel measurable 2-cocycle with values in T, the kernel of j in the
exact sequence above. This gives an alternate way of defining projective representation, and
such a measurable function § is called a projective o-representation. Most of the theory of
ordinary Hilbert Space representations of locally compact groups goes through for projective
o-representations([Mal], p267ff).

Theorem 10.3(Mackey). If
1-THELG -1

is a central eztension with the usual conditions on i and j, then by Schur’s lemma, if
we restrict an irreducible representation r: G — U(oo) to s(G), we obtain a projective
representation of G by composing v with s. The o associated to this projective representation,
when looked at as a function on G x @, is a Borel-measurable 2-cocycle with values in T which
is cohomologous to the 2-cocycle of the extension above.

Theorem 10.4(Mackey). Given a Borel measurable 2-cocycle o in 72 (G,T ), we construct
the eztension G associated to o. Then there is a 1 — 1 correspondence between ordinary
irreducible representations of G and irreducible prejective o-representations of G.

Definition 10.5.

If1— N — R(G) — G — 1is a central extension, then R(G) is called a o-representation
group for G if every irreducible o-projective representation g, of G occurs as the restriction
to s(G) of an ordinary irreducible representation p of R(G).



REAL HEISENBERG GROUP EXTENSION ISOMORPHISM CLASSES 33

Definition 10.6.

If1 > N — Ry (G) - G — 1is a central extension, R,(G) is called a generalized
representation group for G if every irreducible o-projective representation p, of G occurs
as the composition with an automorphism 6 of G of the restriction to s(G) of an ordinary
irreducible representation p of Ry(G).

As we have remarked earlier, the simple connectedness of Hy results in the isomorphism
H?(H;,JR)~H?(H;,T). Using the isomorphism exhibited between HY and HY', for o,0' in
Z%(H;,JR), which carries over to o, o' in Z}(H,T), we get the

Theorem 10.7. Let ’ .
1-T5H LH —1

be the extension of T by Hy defined by o €Z2(Hy,T), and suppose that 6 cAut(H;) so that
0(c) = o'. Then if pss is any irreducible o' -projective representation of Hy, we may find an
ordinary representation p of H] so that posof = po.

Proof.
Since 8(c) = o', §(s 0 8) = o', since és = o.
Remark 10.8.

Of course, theorem 10.7 just says, according to definition 10.6, that HY is a generalized
representation group Ry(H;) for Hy for any o. The ordinary representation group R(H;) of
H, is five-dimensional, as opposed to Ry(Hi ), which is only four-dimensional, but twisting
by outer automorphisms is not allowed in R(H;).

Remark 10.9.

The next question which naturally presents itself is this: is there any way of combining
the various G° for o running through a set of representatives of isomorphism classes, so as
to construct a generalized representation group Ry(G) of G?

XI. CONCLUSION.

Describing the congruence of antisymmetric matrices with respect to symplectic ones
is equivalent to describing the geometry of the orbit structure of the second fundamen-
tal representation of the symplectic group Sp(2n,JR) on AZ(IR*",JR). This representation
decomposes into two irreducible pieces: one, a one-dimensional piece generated by scalar
multiples of a, the form defining Sp(2n), and a ((22” ) —1) = (2n*® — n + 1)-dimensional
piece. To begin to understand the geometry of these orbits, it is necessary to first study the
classical literature [Kr],[Fr],[We],[Wi]. These authors give various cross-sections from the
set of orbits into the representation space.

The methods introduced in this paper can also be applied to extensions of Hy by a vector
group IR™, in which we are looking at the problem of symplectic congruence of webs of
antisymmetric forms, which are just higher dimensional analogues of pencils.

Because H,, is simply connected, all the results in this paper not involving unique divis-
ibility hold for 2-cocycles on H, with values in the circle group T, which arise in physics
in the study of projective representations. These representations are of interest in quantum
mechanics because many of the studied phenomena are independent of phase angle. In fact,
we have shown for H; that, by taking any one nontrivial 2-cocycle o with values in T,
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and constructing the extension G’ as in [Mal], theorem 2.1, we obtain all the projective
representations of H,, for each multiplier o', by looking at the ordinary representations of
G?, and twisting by an outer automorphism.

Notice too, that this inductive procedure of building up 2-cocycles can lead only to ones
which are at most polynomial in the parameters defining the nilpotent group, and the
extensions they define are all linear algebraic groups. It is an interesting question in general
to determine what conditions on a cocycle will ensure that the extension group is linear and
algebraic if the range and domain groups are. For affine algebraic groups, it appears that
the correct condition may be that the graph of the 2-cocycle is a variety. This then would
reduce the question to that of asking when a variety with a group map having a varietal
graph and an inverse having a varietal graph is an affine algebraic group. As far as I know,
there is no general theory of cohomology which addresses itself to this question.

There is also a generalization of the methods and results of this paper to H?® of the
Heisenberg groups, based on a set of equations which generalize (4.9) — (4.13), and this is
done in [Du2].
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